runner.go 26.8 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package ollamarunner
2
3

import (
4
	"bytes"
5
6
7
8
9
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
10
	"hash/maphash"
11
	"image"
12
13
14
15
16
	"log"
	"log/slog"
	"net"
	"net/http"
	"os"
Jesse Gross's avatar
Jesse Gross committed
17
	"reflect"
18
19
20
21
22
23
	"regexp"
	"runtime"
	"strconv"
	"strings"
	"sync"
	"time"
24
	"unicode/utf8"
25

26
	"golang.org/x/image/bmp"
27
28
	"golang.org/x/sync/semaphore"

29
	"github.com/ollama/ollama/api"
30
	"github.com/ollama/ollama/envconfig"
31
	"github.com/ollama/ollama/llm"
32
	"github.com/ollama/ollama/logutil"
33
	"github.com/ollama/ollama/ml"
Jesse Gross's avatar
Jesse Gross committed
34
	"github.com/ollama/ollama/model"
35
	"github.com/ollama/ollama/model/input"
Jesse Gross's avatar
Jesse Gross committed
36
37
38
39
	"github.com/ollama/ollama/runner/common"
	"github.com/ollama/ollama/sample"

	_ "github.com/ollama/ollama/model/models"
40
41
42
)

type Sequence struct {
43
	// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
44
	// multimodal embeddings
45
	ctxs []ml.Context
46

47
48
49
	// mmStore holds multimodal embeddings to mange memory and enable splitting across batches
	mmStore multimodalStore

50
51
52
53
	// batch index
	iBatch int

	// prompt inputs left to evaluate
54
	inputs []input.Input
55

Jesse Gross's avatar
Jesse Gross committed
56
	// inputs that have been added to a batch but not yet submitted to Forward
57
	pendingInputs []input.Input
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

74
75
	// sampler with transforms to run on generated logits
	sampler sample.Sampler
76
77
78
79
80
81
82
83

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
Jesse Gross's avatar
Jesse Gross committed
84
	numKeep int32
85
86
87
88

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

89
	doneReason llm.DoneReason
90
91
92
93

	// Metrics
	startProcessingTime time.Time
	startGenerationTime time.Time
Jesse Gross's avatar
Jesse Gross committed
94
	numPredicted        int
95
96
97
98
	numPromptInputs     int
}

type NewSequenceParams struct {
Jesse Gross's avatar
Jesse Gross committed
99
100
101
	numPredict int
	stop       []string
	numKeep    int32
102
	sampler    sample.Sampler
Jesse Gross's avatar
Jesse Gross committed
103
	embedding  bool
104
105
}

106
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
107
108
109
110
	s.ready.Wait()

	startTime := time.Now()

111
	inputs, ctxs, mmStore, err := s.inputs(prompt, images)
112
113
114
115
116
117
118
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
Jesse Gross's avatar
Jesse Gross committed
119
		params.numKeep = int32(len(inputs))
120
121
	}

122
123
124
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

Jesse Gross's avatar
Jesse Gross committed
125
126
	if int32(len(inputs)) > s.cache.numCtx {
		discard := int32(len(inputs)) - s.cache.numCtx
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
		promptStart := params.numKeep + discard

		// If we need to truncate in the middle of a unbreakable batch, remove the entire batch
		sameBatch := 0
		for i, inp := range inputs {
			if sameBatch > 0 {
				sameBatch--

				if promptStart == int32(i) {
					promptStart++
				}
			} else if promptStart == int32(i) {
				break
			}

			if inp.SameBatch != 0 {
				if int32(i) < params.numKeep {
					return nil, fmt.Errorf("SameBatch may not be specified within numKeep (index: %v numKeep: %v SameBatch: %v)", i, params.numKeep, inp.SameBatch)
				}

				sameBatch = inp.SameBatch
			}
		}

		if promptStart >= int32(len(inputs)) {
			return nil, errors.New("entire prompt removed by truncation")
		}

155
		newInputs := inputs[:params.numKeep]
156
		newInputs = append(newInputs, inputs[promptStart:]...)
157
158

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
159
		inputs = newInputs
160
161
	}

Jesse Gross's avatar
Jesse Gross committed
162
	// TODO(jessegross): Ingest cached history for grammar
163
164

	return &Sequence{
165
		ctxs:                ctxs,
166
		mmStore:             mmStore,
167
168
169
170
171
172
173
174
		inputs:              inputs,
		numPromptInputs:     len(inputs),
		startProcessingTime: startTime,
		numPredict:          params.numPredict,
		pendingResponses:    make([]string, 0),
		responses:           make(chan string, 100),
		quit:                make(chan bool, 1),
		embedding:           make(chan []float32, 1),
175
		sampler:             params.sampler,
176
177
178
179
180
181
182
183
		embeddingOnly:       params.embedding,
		stop:                params.stop,
		numKeep:             params.numKeep,
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
Jesse Gross's avatar
Jesse Gross committed
184
// decoding images
185
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, []ml.Context, multimodalStore, error) {
186
	var inputs []input.Input
187
	var ctxs []ml.Context
188
	var mmStore multimodalStore
189

190
191
192
	var parts []string
	var matches [][]string

193
	multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
194

195
196
197
198
	if visionModel {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
199
		mmStore = newMultimodalStore()
200
201
202
203
204
	} else {
		parts = []string{prompt}
	}

	postTokenize := false
205
206
	for i, part := range parts {
		// text - tokenize
207
		tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
208
		if err != nil {
209
			return nil, nil, nil, err
210
		}
211

212
		for _, t := range tokens {
213
			inputs = append(inputs, input.Input{Token: t})
214
215
		}

Jesse Gross's avatar
Jesse Gross committed
216
		// image - decode and store
217
218
219
220
221
222
223
224
225
226
227
228
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
229
				return nil, nil, nil, fmt.Errorf("invalid image index: %d", n)
230
231
			}

232
			ctx := s.model.Backend().NewContext()
233
234
			runtime.SetFinalizer(ctx, func(c ml.Context) { c.Close() })
			ctxs = append(ctxs, ctx)
235
			imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
Jesse Gross's avatar
Jesse Gross committed
236
			if err != nil {
237
				return nil, nil, nil, err
Jesse Gross's avatar
Jesse Gross committed
238
239
			}

240
241
242
243
			s.multimodalHash.Reset()
			_, _ = s.multimodalHash.Write(images[imageIndex].Data)
			imageHash := s.multimodalHash.Sum64()

244
245
			mmStore.addMultimodal(imageEmbeddings)

246
			inputs = append(inputs, input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
247
248
249
250
251
252
			postTokenize = true
		}
	}

	if visionModel && postTokenize {
		var err error
253
		inputs, err = multimodalProcessor.PostTokenize(inputs)
254
		if err != nil {
255
			return nil, nil, nil, err
256
257
258
		}
	}

259
	return inputs, ctxs, mmStore, nil
260
261
262
}

type Server struct {
Jesse Gross's avatar
Jesse Gross committed
263
264
265
266
267
268
269
270
271
272
	// modelPath is the location of the model to be loaded
	modelPath string

	// loadMu prevents more than one load attempt from occurring at a time
	loadMu sync.Mutex

	// lastLoad is the load request from the previous load attempt. Used to
	// detect if we can reuse an existing memory allocation.
	lastLoad llm.LoadRequest

273
274
275
276
277
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
Jesse Gross's avatar
Jesse Gross committed
278
	model model.Model
279

280
	// status for external health reporting - loading, ready to serve, etc.
281
	status llm.ServerStatus
282
283
284
285
286
287
288
289

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
290
	// TODO (jmorganca): make this n_batch
291
292
	batchSize int

293
294
295
296
297
298
299
300
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// the list of simultaneous sequences being evaluated
301
302
	seqs []*Sequence

303
304
305
306
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

307
308
309
	// KV cache
	cache *InputCache

310
311
312
	// next sequence for prompt processing to avoid starvation
	nextSeq int

313
314
315
	// multimodalHash generates hashes for comparing equality
	// of non-text data
	multimodalHash maphash.Hash
316
317
318
319
320
321
322
323
324
325
326
327
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
328
329
330
331
332
333
334
335
336
337
338
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
339
340
	}

341
342
343
344
345
346
347
348
349
350
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
351
352
}

353
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
354
355
356
357
358
359
360
361
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
362
	s.seqsSem.Release(1)
363
364
365
366
367
368
369
370
371
372
}

func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

	for {
		select {
		case <-ctx.Done():
			return
		default:
Jesse Gross's avatar
Jesse Gross committed
373
			err := s.processBatch()
374
375
376
			if err != nil {
				panic(err)
			}
377
378
379
380
		}
	}
}

Jesse Gross's avatar
Jesse Gross committed
381
func (s *Server) processBatch() error {
382
383
384
385
386
387
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

388
389
390
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()

391
	var batchInputs []int32
Jesse Gross's avatar
Jesse Gross committed
392
	var batch input.Batch
393

394
395
396
397
398
399
	resumeSeq := -1
	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]

400
401
402
403
404
		if seq == nil {
			continue
		}

		// if past the num predict limit
405
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
406
			s.removeSequence(seqIdx, llm.DoneReasonLength)
407
408
409
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
410
411
		if !s.cache.enabled {
			seq.inputs = append(seq.cache.Inputs, seq.inputs...)
412
			seq.cache.Inputs = []input.Input{}
Jesse Gross's avatar
Jesse Gross committed
413
414
		}

415
416
		batchSize := s.batchSize

417
		for i, inp := range seq.inputs {
418
419
			// If we are required to put following inputs into a single batch then extend the
			// batch size. Since we are only extending the size the minimum amount possible, this
420
			// will cause a break if we have existing inputs.
421
422
423
424
425
			minBatch := 1 + inp.SameBatch
			if minBatch > batchSize {
				batchSize = minBatch
			}

426
427
428
429
430
431
432
433
			// Stop if the required batch would put us over the total batch size (including tokens
			// added by other sequences). If we haven't been able to add anything yet then pick up
			// here again for the next batch to avoid starvation, though we can opportunistically
			// check if other sequences can still squeeze something in.
			if len(batchInputs)+minBatch > batchSize {
				if len(seq.pendingInputs) == 0 && resumeSeq == -1 {
					resumeSeq = seqIdx
				}
434
435
				break
			}
Jesse Gross's avatar
Jesse Gross committed
436

437
438
439
440
441
442
443
444
445
446
			// If the sum of our working set (already processed tokens, tokens we added to this
			// batch, required following tokens) exceeds the context size, then trigger a shift
			// now so we don't have to do one later when we can't break the batch.
			if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
				if len(seq.pendingInputs) != 0 {
					break
				}

				err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
				if err != nil {
447
448
449
450
451
452
453
454
455
					var reprocess *ErrReprocessInputs
					if errors.As(err, &reprocess) {
						// Prepend these inputs to the sequence's inputs queue for reprocessing
						seq.inputs = append(reprocess.Inputs, seq.inputs...)
						// Skip this sequence but continue processing the rest
						continue
					} else {
						return err
					}
456
457
458
				}
			}

459
			batchInputs = append(batchInputs, inp.Token)
460
			if inp.Multimodal != nil {
461
				mm, err := seq.mmStore.getMultimodal(s.model.Backend(), ctx, inp.Multimodal, false)
462
463
464
465
				if err != nil {
					return err
				}
				batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: mm})
466
467
			}

Jesse Gross's avatar
Jesse Gross committed
468
469
			batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
			batch.Sequences = append(batch.Sequences, seq.cache.Id)
Jesse Gross's avatar
Jesse Gross committed
470

Jesse Gross's avatar
Jesse Gross committed
471
			seq.iBatch = len(batch.Outputs)
472
			if i+1 == len(seq.inputs) {
473
				batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
Jesse Gross's avatar
Jesse Gross committed
474
			}
475
			seq.pendingInputs = append(seq.pendingInputs, inp)
476
		}
477
478

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
479
480
	}

481
482
483
484
485
486
	if resumeSeq != -1 {
		s.nextSeq = resumeSeq
	} else {
		s.nextSeq = seqIdx + 1
	}

487
	if len(batchInputs) == 0 {
488
		return nil
489
490
	}

491
	modelOutput, err := model.Forward(ctx, s.model, batchInputs, batch)
492
	if err != nil {
493
		return fmt.Errorf("failed to decode batch: %w", err)
494
495
	}

496
	logits := modelOutput.Floats()
497

498
499
500
501
502
	for i, seq := range s.seqs {
		if seq == nil {
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
503
		// After calling Forward, pending inputs are now in the cache
504
505
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
506
			seq.pendingInputs = []input.Input{}
507
508
		}

509
510
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
Jesse Gross's avatar
Jesse Gross committed
511
512
513
			if !s.cache.enabled {
				return errors.New("caching disabled but unable to fit entire input in a batch")
			}
514
515
516
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
517
518
		seq.numPredicted++
		if seq.numPredicted == 1 {
519
520
521
522
523
			seq.startGenerationTime = time.Now()
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
Jesse Gross's avatar
Jesse Gross committed
524
			// TODO(jessegross): Embedding support
525
			slog.Warn("generation of embedding outputs not yet supported")
526
			s.removeSequence(i, llm.DoneReasonStop)
527
			continue
528
529
530
		}

		// sample a token
Jesse Gross's avatar
Jesse Gross committed
531
		vocabSize := len(logits) / len(batch.Outputs)
532
533

		token, err := seq.sampler.Sample(logits[seq.iBatch*vocabSize : (seq.iBatch+1)*vocabSize])
Jesse Gross's avatar
Jesse Gross committed
534
		if err != nil {
535
			return fmt.Errorf("failed to sample token: %w", err)
Jesse Gross's avatar
Jesse Gross committed
536
		}
537
538

		// if it's an end of sequence token, break
Jesse Gross's avatar
Jesse Gross committed
539
		if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
540
541
542
543
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece

544
			s.removeSequence(i, llm.DoneReasonStop)
545
546
547
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
548
549
550
551
552
		piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
		if err != nil {
			return err
		}

553
		seq.inputs = []input.Input{{Token: token}}
554
555
556
557

		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
558
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
559
560
561
562
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
563
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
579

580
			s.removeSequence(i, llm.DoneReasonStop)
581
582
583
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
584
		if common.ContainsStopSuffix(sequence, seq.stop) {
585
586
587
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
588
		if common.IncompleteUnicode(sequence) {
589
590
591
592
			continue
		}

		if !flushPending(seq) {
593
			s.removeSequence(i, llm.DoneReasonConnectionClosed)
594
595
		}
	}
596
597

	return nil
598
599
600
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
601
	var req llm.CompletionRequest
602
603
604
605
606
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

607
608
609
610
611
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

612
613
614
615
616
617
618
619
620
621
	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

622
	var grammar *sample.GrammarSampler
623
624
	var err error
	if req.Grammar != "" {
625
		grammar, err = sample.NewGrammarSampler(s.model.(model.TextProcessor), req.Grammar)
626
627
628
629
		if err != nil {
			http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
			return
		}
630
		defer grammar.Free()
631
632
	}

633
	sampler := sample.NewSampler(
634
635
636
637
638
		req.Options.Temperature,
		req.Options.TopK,
		req.Options.TopP,
		req.Options.MinP,
		req.Options.Seed,
639
		grammar,
640
641
	)

642
	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
643
644
645
		numPredict: req.Options.NumPredict,
		stop:       req.Options.Stop,
		numKeep:    int32(req.Options.NumKeep),
646
		sampler:    sampler,
Jesse Gross's avatar
Jesse Gross committed
647
		embedding:  false,
648
649
650
651
652
653
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

654
	// Ensure there is a place to put the sequence, released when removed from s.seqs
655
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
656
657
658
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
659
			http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
660
		}
661
662
663
		return
	}

664
	s.mu.Lock()
665
	found := false
666
667
	for i, sq := range s.seqs {
		if sq == nil {
668
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs)
669
670
			if err != nil {
				s.mu.Unlock()
671
				s.seqsSem.Release(1)
672
673
674
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
675

676
677
			s.seqs[i] = seq
			s.cond.Signal()
678
			found = true
679
680
681
682
683
			break
		}
	}
	s.mu.Unlock()

684
	if !found {
685
		s.seqsSem.Release(1)
686
687
688
689
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

690
691
692
693
694
695
696
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
697
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
698
699
700
701
702
703
704
705
706
					Content: content,
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
707
708
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
					Done:               true,
709
					DoneReason:         seq.doneReason,
710
711
712
713
					PromptEvalCount:    seq.numPromptInputs,
					PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
					EvalCount:          seq.numPredicted,
					EvalDuration:       time.Since(seq.startGenerationTime),
714
715
716
717
718
719
720
721
722
723
724
725
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
726
727
	if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
		Status:   s.status,
728
729
730
731
732
733
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

734
func (s *Server) reserveWorstCaseGraph() error {
735
736
737
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()

738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
	var err error
	inputs := make([]input.Input, s.batchSize)
	mmStore := newMultimodalStore()

	// Multimodal strategy:
	// - Encode a 2048x2048 image. This assumes that a single image of this
	//   size is sufficient to trigger the worst case. This is currently true
	//   because for existing models, only a single image fits in a batch.
	// - Add the embedding to a full batch of tokens - this is necessary because
	//   the model may be looking for non-image data, such as <image> tags.
	// - Run PostTokenize to execute any transformations between generated
	//   embeddings and what the forward pass expects.
	// - The result may now be larger than a batch (images may not fit in a
	//   single batch), so trim based on what will fit and must be grouped together.
	// - Fill out the rest of the space with text tokens.
	if multimodalProcessor, ok := s.model.(model.MultimodalProcessor); ok {
		mmCtx := s.model.Backend().NewContext()
		defer mmCtx.Close()

		img := image.NewGray(image.Rect(0, 0, 2048, 2048))
		var buf bytes.Buffer
		bmp.Encode(&buf, img)

		if inputs[0].Multimodal, err = multimodalProcessor.EncodeMultimodal(mmCtx, buf.Bytes()); err == nil {
			mmStore.addMultimodal(inputs[0].Multimodal)

			inputs, err = multimodalProcessor.PostTokenize(inputs)
			if err != nil {
				return err
			}

			for i, inp := range inputs {
				minBatch := 1 + inp.SameBatch
				if minBatch > s.batchSize {
					inputs = inputs[i:min(i+minBatch, len(inputs))]
					break
				} else if i+minBatch > s.batchSize {
					inputs = inputs[:i]
					break
				}
			}

			if len(inputs) < s.batchSize {
				newInputs := make([]input.Input, s.batchSize)
				copy(newInputs, inputs)
				inputs = newInputs
			}
		}
	}

788
789
	var batch input.Batch

790
	batchInputs := make([]int32, len(inputs))
791
792
	batch.Positions = make([]int32, len(inputs))
	batch.Sequences = make([]int, len(inputs))
793
794
795
796
797
798
799
800
801
802
	for i, inp := range inputs {
		batchInputs[i] = inp.Token
		if inp.Multimodal != nil {
			mm, err := mmStore.getMultimodal(s.model.Backend(), ctx, inp.Multimodal, true)
			if err != nil {
				return err
			}
			batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: i, Multimodal: mm})
		}

803
804
805
806
807
808
809
810
		batch.Positions[i] = int32(i)
	}

	batch.Outputs = make([]int32, s.parallel)
	for i := range batch.Outputs {
		batch.Outputs[i] = int32(i)
	}

811
	batch.Inputs = ctx.Input().FromIntSlice(batchInputs, len(batchInputs))
812
813
814
815
816
817
818
819
820
821
822
823
824
825

	cache := s.model.Config().Cache
	if cache != nil {
		err := cache.StartForward(ctx, batch, true)
		if err != nil {
			return err
		}
	}

	t, err := s.model.Forward(ctx, batch)
	if err != nil {
		return err
	}

826
	ctx.Forward(t).Reserve()
827
828

	return nil
829
}
830

Jesse Gross's avatar
Jesse Gross committed
831
832
833
// allocModel pre-allocates the maximum needed memory for a model
// based on the given parameters
func (s *Server) allocModel(
834
	mpath string,
835
	params ml.BackendParams,
Jesse Gross's avatar
Jesse Gross committed
836
	loraPath []string,
Jesse Gross's avatar
Jesse Gross committed
837
	parallel int,
838
	kvCacheType string,
Jesse Gross's avatar
Jesse Gross committed
839
	kvSize int,
840
	multiUserCache bool,
Jesse Gross's avatar
Jesse Gross committed
841
842
843
844
845
846
847
848
849
850
851
852
) (panicErr error) {
	// Convert memory allocation panics to errors
	defer func() {
		if r := recover(); r != nil {
			if err, ok := r.(error); ok {
				panicErr = err
			} else {
				panic(r)
			}
		}
	}()

853
	var err error
854
	s.model, err = model.New(mpath, params)
855
	if err != nil {
856
		return err
857
	}
858

Jesse Gross's avatar
Jesse Gross committed
859
	// TODO(jessegross): LoRA loading
Jesse Gross's avatar
Jesse Gross committed
860
	if len(loraPath) > 0 {
861
		return errors.New("loras are not yet implemented")
862
863
	}

864
	s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
865
	if err != nil {
866
		return err
867
	}
868

Jesse Gross's avatar
Jesse Gross committed
869
870
871
872
873
874
875
876
877
	if !s.cache.enabled && parallel > 1 {
		parallel = 1
		slog.Warn("model does not support caching, disabling parallel processing")
	}

	s.parallel = parallel
	s.seqs = make([]*Sequence, s.parallel)
	s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

878
879
880
	return s.reserveWorstCaseGraph()
}

Jesse Gross's avatar
Jesse Gross committed
881
882
883
884
885
886
887
// closeModel frees all memory associated with a model
func (s *Server) closeModel() {
	s.cache.Close()
	s.cache = nil
	if s.model != nil {
		s.model.Backend().Close()
		s.model = nil
888
	}
Jesse Gross's avatar
Jesse Gross committed
889
}
890

Jesse Gross's avatar
Jesse Gross committed
891
892
893
894
// loadModel loads the weights for a model. The memory must already
// have been allocated with allocModel
func (s *Server) loadModel() {
	err := s.model.Backend().Load(context.TODO(),
895
896
897
898
		func(progress float32) {
			s.progress = progress
		})
	if err != nil {
Jesse Gross's avatar
Jesse Gross committed
899
		panic(fmt.Errorf("failed to load model: %v", err))
900
901
	}

902
	s.status = llm.ServerStatusReady
903
904
905
	s.ready.Done()
}

Jesse Gross's avatar
Jesse Gross committed
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
// load is the handler called by the Ollama server to process different
// load operations
func (s *Server) load(w http.ResponseWriter, r *http.Request) {
	s.loadMu.Lock()
	defer s.loadMu.Unlock()

	w.Header().Set("Content-Type", "application/json")

	if s.status != llm.ServerStatusLaunched {
		http.Error(w, "model already loaded", http.StatusInternalServerError)
		return
	}

	var req llm.LoadRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "bad request", http.StatusBadRequest)
		return
	}

	slog.Info("load", "request", req)

	if req.Operation == llm.LoadOperationClose {
		s.closeModel()
		if err := json.NewEncoder(w).Encode(&llm.LoadResponse{}); err != nil {
			http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		}
		return
	}

	s.lastLoad.Operation = req.Operation
	loadModel := s.model == nil || !reflect.DeepEqual(req, s.lastLoad)

	s.lastLoad = req

	if loadModel {
		s.closeModel()

		params := ml.BackendParams{
			AllocMemory:    req.Operation != llm.LoadOperationFit,
			NumThreads:     req.NumThreads,
			GPULayers:      req.GPULayers,
			FlashAttention: req.FlashAttention,
		}

		s.batchSize = req.BatchSize

		err := s.allocModel(s.modelPath, params, req.LoraPath, req.Parallel, req.KvCacheType, req.KvSize, req.MultiUserCache)
		if err != nil {
			s.closeModel()

			var noMem ml.ErrNoMem
			if errors.As(err, &noMem) {
				resp := llm.LoadResponse{Success: false, Memory: noMem.BackendMemory}
				if err := json.NewEncoder(w).Encode(&resp); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
				}

				return
			}

			http.Error(w, fmt.Sprintf("failed to initialize model: %v", err), http.StatusInternalServerError)
			return
		}
	}

	mem := s.model.Backend().BackendMemory()

	switch req.Operation {
	case llm.LoadOperationFit:
		// LoadOperationFit can't be used for anything else, so just close it
		s.closeModel()

	// LoadOperationAlloc should stay open for future operations

	case llm.LoadOperationCommit:
		s.status = llm.ServerStatusLoadingModel
		go s.loadModel()
	}

	resp := llm.LoadResponse{Success: true, Memory: mem}
	if err := json.NewEncoder(w).Encode(&resp); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		return
	}
}

992
993
994
995
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	port := fs.Int("port", 8080, "Port to expose the server on")
996
	_ = fs.Bool("verbose", false, "verbose output (default: disabled)")
997

998
999
1000
1001
1002
1003
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
1004
	}
1005
	slog.SetDefault(logutil.NewLogger(os.Stderr, envconfig.LogLevel()))
Jesse Gross's avatar
Jesse Gross committed
1006
	slog.Info("starting ollama engine")
1007

1008
1009
1010
	ctx, cancel := context.WithCancel(context.Background())
	defer cancel()

Jesse Gross's avatar
Jesse Gross committed
1011
1012
1013
	server := &Server{
		modelPath: *mpath,
		status:    llm.ServerStatusLaunched,
1014
1015
	}

Jesse Gross's avatar
Jesse Gross committed
1016
1017
	server.cond = sync.NewCond(&server.mu)
	server.ready.Add(1)
1018
1019
1020
1021
1022
1023
1024

	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
1025
		return err
1026
1027
1028
1029
	}
	defer listener.Close()

	mux := http.NewServeMux()
1030
	// TODO: support embeddings
Jesse Gross's avatar
Jesse Gross committed
1031
	mux.HandleFunc("POST /load", server.load)
1032
1033
1034
1035
1036
1037
	mux.HandleFunc("POST /embedding", func(w http.ResponseWriter, r *http.Request) {
		http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
	})

	mux.HandleFunc("POST /completion", server.completion)
	mux.HandleFunc("GET /health", server.health)
1038
1039
1040
1041
1042
1043
1044
1045

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
1046
		return err
1047
1048
	}

1049
	return nil
1050
}