"megatron/vscode:/vscode.git/clone" did not exist on "bc56e4a56803cff00bac47401cea119a88e3b179"
ggml.go 34.5 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
package ggml

3
4
5
6
7
8
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
// #include <stdlib.h>
// #include <stdint.h>
// #include "ggml.h"
// #include "ggml-cpu.h"
// #include "ggml-backend.h"
Michael Yang's avatar
Michael Yang committed
9
10
11
import "C"

import (
12
	"context"
Michael Yang's avatar
Michael Yang committed
13
14
15
	"fmt"
	"io"
	"log/slog"
16
	"maps"
Michael Yang's avatar
Michael Yang committed
17
	"os"
18
	"runtime"
19
20
21
	"slices"
	"strconv"
	"strings"
22
	"sync/atomic"
23
	"unicode"
Michael Yang's avatar
Michael Yang committed
24
25
26
	"unsafe"

	"github.com/ollama/ollama/format"
27
28
	"github.com/ollama/ollama/fs"
	fsggml "github.com/ollama/ollama/fs/ggml"
29
	"github.com/ollama/ollama/logutil"
Michael Yang's avatar
Michael Yang committed
30
	"github.com/ollama/ollama/ml"
31
	ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
32
	"github.com/ollama/ollama/ml/nn/rope"
Michael Yang's avatar
Michael Yang committed
33
34
35
	"golang.org/x/sync/errgroup"
)

Michael Yang's avatar
Michael Yang committed
36
37
38
39
40
func devices() []*C.struct_ggml_backend_device {
	ggml.OnceLoad()
	ds := make([]*C.struct_ggml_backend_device, C.ggml_backend_dev_count())
	for i := range ds {
		ds[i] = C.ggml_backend_dev_get(C.size_t(i))
Michael Yang's avatar
Michael Yang committed
41
	}
Michael Yang's avatar
Michael Yang committed
42
43

	return ds
44
}
Michael Yang's avatar
Michael Yang committed
45
46

type Backend struct {
47
48
49
	// modelPath is the location of the model data
	modelPath string

50
51
	meta *fsggml.GGML

52
53
54
55
	// tensorLoadTargets maps from the name of the tensor in the file
	// to the name that is used by the model definition
	tensorLoadTargets map[string][]string

56
57
58
59
	sched         *C.struct_ggml_backend_sched
	schedBackends []*C.struct_ggml_backend
	schedBufts    []*C.struct_ggml_backend_buffer_type

60
	tensors map[string]*C.struct_ggml_tensor
Michael Yang's avatar
Michael Yang committed
61
62

	// input is the backend used for inputs
63
	input *C.struct_ggml_backend_buffer_type
Michael Yang's avatar
Michael Yang committed
64
65

	// layers is the backend used for repeating layers
66
	layers map[int]*C.struct_ggml_backend_buffer_type
67

68
69
70
71
72
73
	// requiredMemory is the cumulative memory allocations needed by the backend
	requiredMemory *ml.BackendMemory

	// btDeviceMemory maps from a buffer type to the memory allocations associated with that device
	btDeviceMemory map[*C.struct_ggml_backend_buffer_type]*ml.DeviceMemory

74
	flashAttention bool
Michael Yang's avatar
Michael Yang committed
75
76
77

	// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
	maxGraphNodes int
Michael Yang's avatar
Michael Yang committed
78
79
}

80
81
82
83
84
85
86
87
func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
	r, err := os.Open(modelPath)
	if err != nil {
		return nil, err
	}
	defer r.Close()

	meta, err := fsggml.Decode(r, -1)
Michael Yang's avatar
Michael Yang committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
	if err != nil {
		return nil, err
	}

	slog.Info(
		"",
		"architecture", meta.KV().Architecture(),
		"file_type", meta.KV().FileType(),
		"name", meta.KV().String("general.name"),
		"description", meta.KV().String("general.description"),
		"num_tensors", len(meta.Tensors().Items()),
		"num_key_values", len(meta.KV()),
	)

102
103
104
	var requiredMemory ml.BackendMemory
	btDeviceMemory := make(map[*C.struct_ggml_backend_buffer_type]*ml.DeviceMemory)

105
	type deviceBufferType struct {
106
107
108
109
110
		d   *C.struct_ggml_backend_device
		bts []*C.struct_ggml_backend_buffer_type
	}

	var cpus, accels, gpus []*C.struct_ggml_backend_device
Michael Yang's avatar
Michael Yang committed
111
	for _, d := range devices() {
112
113
		switch C.ggml_backend_dev_type(d) {
		case C.GGML_BACKEND_DEVICE_TYPE_CPU:
114
115
116
117
			if len(cpus) == 0 {
				// only the first cpu device should be used
				cpus = append(cpus, d)
			}
118
119
		case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
			accels = append(accels, d)
Michael Yang's avatar
Michael Yang committed
120
		case C.GGML_BACKEND_DEVICE_TYPE_GPU:
121
			gpus = append(gpus, d)
Michael Yang's avatar
Michael Yang committed
122
123
124
		}
	}

125
126
	blocks := int(meta.KV().BlockCount())

Michael Yang's avatar
Michael Yang committed
127
	// create list of buffer types for the cpu
Michael Yang's avatar
Michael Yang committed
128
	cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)}
129
130
131
132
	for _, d := range append(accels, append(gpus, cpus...)...) {
		switch C.ggml_backend_dev_type(d) {
		case C.GGML_BACKEND_DEVICE_TYPE_CPU,
			C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
Michael Yang's avatar
Michael Yang committed
133
			cpuDeviceBufferType.bts = append(cpuDeviceBufferType.bts, C.ggml_backend_dev_buffer_type(d))
134
			btDeviceMemory[C.ggml_backend_dev_buffer_type(d)] = &requiredMemory.CPU
Michael Yang's avatar
Michael Yang committed
135
		}
136
137
	}

138
	requiredMemory.CPU.Name = C.GoString(C.ggml_backend_dev_name(cpuDeviceBufferType.d))
139
140
	var props C.struct_ggml_backend_dev_props
	C.ggml_backend_dev_get_props(cpuDeviceBufferType.d, &props)
141
	requiredMemory.CPU.ID = C.GoString(props.id)
142
143
144
	requiredMemory.CPU.Weights = make([]ml.Memory, blocks+1)
	requiredMemory.CPU.Cache = make([]ml.Memory, blocks+1)

Michael Yang's avatar
Michael Yang committed
145
	// create list of buffer types for each gpu
146
	var gpuDeviceBufferTypes []deviceBufferType
147
148
	requiredMemory.GPUs = make([]ml.DeviceMemory, len(gpus))
	for i, d := range gpus {
149
		bt := C.ggml_backend_dev_buffer_type(d)
150
		gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{
151
			d:   d,
Michael Yang's avatar
Michael Yang committed
152
			bts: append([]*C.struct_ggml_backend_buffer_type{bt}, cpuDeviceBufferType.bts...),
153
		})
154
155
		btDeviceMemory[bt] = &requiredMemory.GPUs[i]
		requiredMemory.GPUs[i].Name = C.GoString(C.ggml_backend_dev_name(d))
156
157
		var props C.struct_ggml_backend_dev_props
		C.ggml_backend_dev_get_props(d, &props)
158
		requiredMemory.GPUs[i].ID = C.GoString(props.id)
159
160
		requiredMemory.GPUs[i].Weights = make([]ml.Memory, blocks+1)
		requiredMemory.GPUs[i].Cache = make([]ml.Memory, blocks+1)
Michael Yang's avatar
Michael Yang committed
161
162
	}

Michael Yang's avatar
Michael Yang committed
163
164
165
166
167
	useDefaultSplit := true
	for _, s := range params.TensorSplit {
		if s != 0 {
			useDefaultSplit = false
			break
168
		}
Michael Yang's avatar
Michael Yang committed
169
	}
170

Michael Yang's avatar
Michael Yang committed
171
172
173
174
	// calculate splits
	splits := make([]float32, len(gpus))
	if useDefaultSplit {
		// default: split on free memory
175
176
177
178
179
		for i := range splits {
			var free, total C.size_t
			C.ggml_backend_dev_memory(gpus[i], &free, &total)
			splits[i] = float32(free)
		}
Michael Yang's avatar
Michael Yang committed
180
181
	} else {
		splits = params.TensorSplit
182
183
184
	}

	var sum float32
Michael Yang's avatar
Michael Yang committed
185
	// cumulative sum of all splits
186
187
188
189
190
	for i := range splits {
		sum += splits[i]
		splits[i] = sum
	}

Michael Yang's avatar
Michael Yang committed
191
	// normalize splits
192
	for i := range splits {
193
		splits[i] /= sum
194
195
	}

Michael Yang's avatar
Michael Yang committed
196
	// inputs always use cpu
Michael Yang's avatar
Michael Yang committed
197
	input := cpuDeviceBufferType
198

Michael Yang's avatar
Michael Yang committed
199
200
201
	// define a range of gpu layers. anything outside of this range is assigned to the cpu
	gpuRangeStart := max(0, blocks-params.NumGPULayers)
	gpuRangeStop := min(gpuRangeStart+params.NumGPULayers, blocks+1)
Michael Yang's avatar
Michael Yang committed
202
	assignLayer := func(i int) deviceBufferType {
Michael Yang's avatar
Michael Yang committed
203
		if i < gpuRangeStart || i >= gpuRangeStop {
Michael Yang's avatar
Michael Yang committed
204
			return cpuDeviceBufferType
205
		}
206

Michael Yang's avatar
Michael Yang committed
207
		index := slices.IndexFunc(splits, func(f float32) bool { return float32(i-gpuRangeStart)/float32(gpuRangeStop-gpuRangeStart) < f })
208
		if index < 0 || index >= len(gpuDeviceBufferTypes) {
Michael Yang's avatar
Michael Yang committed
209
			return cpuDeviceBufferType
210
211
212
		}

		return gpuDeviceBufferTypes[index]
213
214
	}

Michael Yang's avatar
Michael Yang committed
215
	// repeating layers are assigned based on their index in reverse order, e.g. i / (block_count + 1)
216
	layers := make([]deviceBufferType, blocks)
217
	for i := range layers {
218
		layers[i] = assignLayer(i)
219
220
	}

Michael Yang's avatar
Michael Yang committed
221
	// outputs are assigned iff allowed by splits and configured number of gpu layers
222
	output := assignLayer(blocks)
223
224
225

	maxTensors := len(meta.Tensors().Items())
	maxTensors += 1
Michael Yang's avatar
Michael Yang committed
226
	// each layer has at most 2 extra tensors for rope operations
227
228
	maxTensors += blocks * 2

229
	type tensor struct {
230
		source *fsggml.Tensor
231
232
233
		target string
	}

Michael Yang's avatar
Michael Yang committed
234
	// some tensors are mapped to different names so keep a list
235
236
	targets := make(map[string][]string)

Michael Yang's avatar
Michael Yang committed
237
	// contexts are shared by tensors of the same buffer type
238
	ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
239
	createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type, layer int) *C.struct_ggml_tensor {
240
241
242
243
244
245
246
		for _, bt := range bts {
			if _, ok := ctxs[bt]; !ok {
				ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
					mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
					no_alloc: true,
				})
			}
Michael Yang's avatar
Michael Yang committed
247

248
249
250
251
252
253
254
255
			targets[t.source.Name] = append(targets[t.source.Name], t.target)

			name := t.source.Name
			if t.target != "" {
				name = t.target
			}

			cname := C.CString(name)
Michael Yang's avatar
Michael Yang committed
256
			defer C.free(unsafe.Pointer(cname))
257
258
259
260
			if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
				return tt
			}

261
			tt := C.ggml_new_tensor(ctxs[bt], t.source.Kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
Michael Yang's avatar
Michael Yang committed
262
263
			C.ggml_set_name(tt, cname)

264
			slog.Log(context.TODO(), logutil.LevelTrace, "created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
265
266
267
268
269
270
271
272
273
274

			size := pad(C.ggml_backend_buft_get_alloc_size(bt, tt), C.ggml_backend_buft_get_alignment(bt))
			if layer == -1 {
				// Assume that InputWeights can be allocated - they're always in system memory and can't be moved in any case
				requiredMemory.InputWeights.Status = ml.Allocated
				requiredMemory.InputWeights.Size += uint64(size)
			} else {
				btDeviceMemory[bt].Weights[layer].Size += uint64(size)
			}

275
276
277
278
279
			//nolint:staticcheck // TODO: check if buffer type supports this tensor
			return tt
		}

		return nil
Michael Yang's avatar
Michael Yang committed
280
281
	}

282
	contains := func(s string, parts ...string) bool {
283
284
285
286
287
288
289
290
		split := strings.Split(s, ".")
		for _, part := range parts {
			if slices.Contains(split, part) {
				return true
			}
		}

		return false
Michael Yang's avatar
Michael Yang committed
291
292
	}

293
294
	for _, t := range meta.Tensors().Items() {
		switch {
295
		case contains(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
296
			createTensor(tensor{source: t}, input.bts, -1)
Michael Yang's avatar
Michael Yang committed
297
			if _, ok := meta.Tensors().GroupLayers()["output"]; !ok && t.Name == "token_embd.weight" {
298
				createTensor(tensor{source: t, target: "output.weight"}, output.bts, blocks)
Michael Yang's avatar
Michael Yang committed
299
			}
Michael Yang's avatar
Michael Yang committed
300
301
302
		case contains(t.Name, "cls", "output", "output_norm",
			"altup_proj", "altup_unembd_proj",
			"per_layer_token_embd", "per_layer_model_proj", "per_layer_proj_norm"):
303
			createTensor(tensor{source: t}, output.bts, blocks)
304
		case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
Michael Yang's avatar
Michael Yang committed
305
			// TODO: assign vision tensors to the gpu if possible
306
			createTensor(tensor{source: t}, output.bts, blocks)
Michael Yang's avatar
Michael Yang committed
307
308
309
310
311
312
		case contains(t.Name, "rope_freqs", "rope_factors_long", "rope_factors_short"):
			// these tensors should be repeated per layer
			for i, layer := range layers {
				createTensor(tensor{
					source: t,
					target: "blk." + strconv.Itoa(i) + "." + t.Name,
313
				}, layer.bts, i)
Michael Yang's avatar
Michael Yang committed
314
			}
315
		default:
Michael Yang's avatar
Michael Yang committed
316
317
318
319
			layerIndex := -1
			if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
				if i, err := strconv.Atoi(fields[0]); err == nil {
					layerIndex = i
320
				}
Michael Yang's avatar
Michael Yang committed
321
			}
322

Michael Yang's avatar
Michael Yang committed
323
			if layerIndex >= 0 {
324
				createTensor(tensor{source: t}, layers[layerIndex].bts, layerIndex)
325
			} else {
Michael Yang's avatar
Michael Yang committed
326
				// load all other tensors on the cpu
327
				createTensor(tensor{source: t}, input.bts, -1)
328
329
330
			}
		}
	}
Michael Yang's avatar
Michael Yang committed
331

Michael Yang's avatar
Michael Yang committed
332
333
	// allocate buffers for each context
	bbs := make(map[*C.struct_ggml_context]*C.struct_ggml_backend_buffer, len(ctxs))
334
335
336
337
338
339
	for bt, c := range ctxs {
		if C.ggml_get_first_tensor(c) == nil {
			continue
		}

		b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
340
341
342
343
344
345
346
347
348
349
		for i := range btDeviceMemory[bt].Weights {
			if btDeviceMemory[bt].Weights[i].Size != 0 {
				if b != nil {
					btDeviceMemory[bt].Weights[i].Status = ml.Allocated
				} else {
					btDeviceMemory[bt].Weights[i].Status = ml.Failed
				}
			}
		}

350
		if b == nil {
351
			panic(ml.ErrNoMem{BackendMemory: requiredMemory})
352
353
		}

354
		C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
Michael Yang's avatar
Michael Yang committed
355
		bbs[c] = b
356
357
	}

358
359
	// Mimic llama runner logs summarizing layers and memory
	gpuLayers := 0
360
361
362
363
364
365
366
	for _, layer := range layers {
		if C.ggml_backend_dev_type(layer.d) == C.GGML_BACKEND_DEVICE_TYPE_GPU {
			gpuLayers++
		}
	}
	slog.Info(fmt.Sprintf("offloading %d repeating layers to GPU", gpuLayers))

367
	switch C.ggml_backend_dev_type(output.d) {
368
	case C.GGML_BACKEND_DEVICE_TYPE_CPU:
369
		slog.Info("offloading output layer to CPU")
370
	case C.GGML_BACKEND_DEVICE_TYPE_GPU:
371
372
		slog.Info("offloading output layer to GPU")
		gpuLayers++
373
	case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
374
375
376
		slog.Info("offloading output layer to ACCEL")
	}
	slog.Info(fmt.Sprintf("offloaded %d/%d layers to GPU", gpuLayers, len(layers)+1))
377

378
	for bs := range maps.Values(bbs) {
Michael Yang's avatar
Michael Yang committed
379
		slog.Info("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
380
381
	}

Michael Yang's avatar
Michael Yang committed
382
	// map tensor names to tensors for easy lookup later
383
384
385
386
387
388
389
	tensors := make(map[string]*C.struct_ggml_tensor)
	for _, c := range ctxs {
		for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
			tensors[C.GoString(C.ggml_get_name(t))] = t
		}
	}

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
	// map devices to backend buffer types so new tensors can be assigned to the correct device
	deviceBufferTypes := make(map[*C.struct_ggml_backend_device]*C.struct_ggml_backend_buffer_type)

	// create backends and buffer types used for the compute graph scheduler
	var schedBackends []*C.struct_ggml_backend
	var schedBufts []*C.struct_ggml_backend_buffer_type
	for _, d := range append(gpus, append(accels, cpus...)...) {
		b := C.ggml_backend_dev_init(d, nil)
		bt := C.ggml_backend_get_default_buffer_type(b)

		deviceBufferTypes[d] = bt

		schedBackends = append(schedBackends, b)
		schedBufts = append(schedBufts, bt)

		if C.ggml_backend_is_cpu(b) {
			// set number of threads for cpu backend
			C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(params.NumThreads)))
		}
	}

	maxGraphNodes := max(8192, len(meta.Tensors().Items())*5)
	return &Backend{
		modelPath:         modelPath,
		flashAttention:    params.FlashAttention,
		meta:              meta,
		tensorLoadTargets: targets,
		tensors:           tensors,
		sched: C.ggml_backend_sched_new(
			(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
			(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
			C.int(len(schedBackends)),
			C.size_t(maxGraphNodes),
423
			C._Bool(false),
424
425
426
427
428
429
430
431
432
433
434
435
			C._Bool(false),
		),
		schedBackends: schedBackends,
		schedBufts:    schedBufts,
		input:         deviceBufferTypes[input.d],
		layers: func() map[int]*C.struct_ggml_backend_buffer_type {
			m := make(map[int]*C.struct_ggml_backend_buffer_type)
			for i, layer := range layers {
				m[i] = deviceBufferTypes[layer.d]
			}
			return m
		}(),
436
437
438
		requiredMemory: &requiredMemory,
		btDeviceMemory: btDeviceMemory,
		maxGraphNodes:  maxGraphNodes,
439
440
441
442
443
444
445
446
	}, nil
}

func init() {
	ml.RegisterBackend("ggml", New)
}

func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
447
	var doneBytes atomic.Uint64
448
	totalBytes := uint64(b.meta.Length) - b.meta.Tensors().Offset
449
450
451

	g, ctx := errgroup.WithContext(ctx)
	g.SetLimit(runtime.GOMAXPROCS(0))
452
	for _, t := range b.meta.Tensors().Items() {
453
		t := t
454
		g.Go(func() error {
455
			tts := make([]*C.struct_ggml_tensor, max(1, len(b.tensorLoadTargets[t.Name])))
456
			for i := range tts {
457
				target := b.tensorLoadTargets[t.Name][i]
458
459
460
				if target == "" {
					target = t.Name
				}
461

462
				tt, ok := b.tensors[target]
463
464
465
				if !ok {
					return fmt.Errorf("unassigned tensor: %s", t.Name)
				}
Michael Yang's avatar
Michael Yang committed
466

467
468
469
				tts[i] = tt
			}

470
471
			// Create a new FD for each goroutine so that each FD is read sequentially, rather than
			// seeking around within an FD shared between all goroutines.
472
			file, err := os.Open(b.modelPath)
473
			if err != nil {
474
				slog.Warn("file open error", "file", b.modelPath, "error", err)
475
476
477
				return err
			}
			defer file.Close()
478
			sr := io.NewSectionReader(file, int64(b.meta.Tensors().Offset+t.Offset), int64(t.Size()))
479
480
481
482
			bts := make([]byte, 128*format.KibiByte)

			var s uint64
			for s < t.Size() {
483
484
485
486
487
				// Stop if either the parent context has been canceled or if any of the other tensors returned an error
				if err := ctx.Err(); err != nil {
					return err
				}

488
489
				n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
				if err != nil {
490
					slog.Warn("file read error", "file", b.modelPath, "error", err)
491
					return err
492
				}
Michael Yang's avatar
Michael Yang committed
493

494
495
				for _, tt := range tts {
					C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
496
				}
Michael Yang's avatar
Michael Yang committed
497

498
499
				s += uint64(n)

500
				if progress != nil {
501
					done := doneBytes.Add(uint64(n))
502
					progress(float32(done) / float32(totalBytes))
503
504
505
506
507
				}
			}

			return nil
		})
Michael Yang's avatar
Michael Yang committed
508
509
	}

510
	if err := g.Wait(); err != nil {
511
		return err
512
513
	}

514
	return nil
Michael Yang's avatar
Michael Yang committed
515
516
}

517
518
519
520
func (b *Backend) BackendMemory() ml.BackendMemory {
	return *b.requiredMemory
}

521
func (b *Backend) Config() fs.Config {
Michael Yang's avatar
Michael Yang committed
522
523
524
525
	return b.meta.KV()
}

func (b *Backend) Get(name string) ml.Tensor {
526
527
	if t, ok := b.tensors[name]; ok {
		return &Tensor{b: b, t: t}
Michael Yang's avatar
Michael Yang committed
528
529
530
531
532
533
	}

	return nil
}

func (b *Backend) NewContext() ml.Context {
Michael Yang's avatar
Michael Yang committed
534
	return b.NewContextSize(b.maxGraphNodes)
535
536
537
}

func (b *Backend) NewContextSize(n int) ml.Context {
Jesse Gross's avatar
Jesse Gross committed
538
539
540
541
	if n > b.maxGraphNodes {
		panic(fmt.Errorf("requested number of graph nodes (%v) for new context exceeds maximum (%v)", n, b.maxGraphNodes))
	}

542
543
	var allocatedBuffers []*C.struct_ggml_backend_buffer

Michael Yang's avatar
Michael Yang committed
544
	return &Context{
545
546
		b:             b,
		maxGraphNodes: n,
547
		ctx: C.ggml_init(C.struct_ggml_init_params{
548
			mem_size: C.size_t(n)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(n), false),
549
550
			no_alloc: true,
		}),
551
		allocatedBuffers: &allocatedBuffers,
552
		layer:            -1,
Michael Yang's avatar
Michael Yang committed
553
554
555
	}
}

556
func (b *Backend) CacheConfig() ml.CacheConfig {
557
558
559
560
561
	if b.flashAttention {
		return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD}
	} else {
		return ml.CacheConfig{CachePadding: 32, PermutedV: true}
	}
562
563
}

Michael Yang's avatar
Michael Yang committed
564
type Context struct {
565
	b *Backend
Michael Yang's avatar
Michael Yang committed
566

567
	ctx   *C.struct_ggml_context
Michael Yang's avatar
Michael Yang committed
568
	graph *C.struct_ggml_cgraph
569

570
571
	// buft is the buffer type used for new tensors
	buft *C.struct_ggml_backend_buffer_type
572

573
574
575
576
	// allocatedBuffers are buffers for tensors that we have allocated in this context
	// so that we can free them when we close the context
	allocatedBuffers *[]*C.struct_ggml_backend_buffer

Michael Yang's avatar
Michael Yang committed
577
	// maxGraphNodes is the maximum allowed number of graph nodes in this context
578
	maxGraphNodes int
579
580
581

	// layer is the graph layer that this context is allocating for - assumed to be cache
	layer int
Michael Yang's avatar
Michael Yang committed
582
583
}

584
func (c *Context) Input() ml.Context {
Michael Yang's avatar
Michael Yang committed
585
	if c.b.input != nil {
586
		return &Context{
587
588
589
590
591
			b:                c.b,
			ctx:              c.ctx,
			buft:             c.b.input,
			allocatedBuffers: c.allocatedBuffers,
			maxGraphNodes:    c.maxGraphNodes,
592
			layer:            -1,
593
594
595
		}
	}

596
	return c
597
598
}

599
func (c *Context) Layer(i int) ml.Context {
600
	if buft, ok := c.b.layers[i]; ok {
601
		return &Context{
602
603
604
605
606
			b:                c.b,
			ctx:              c.ctx,
			buft:             buft,
			allocatedBuffers: c.allocatedBuffers,
			maxGraphNodes:    c.maxGraphNodes,
607
			layer:            i,
608
609
610
		}
	}

611
	return c
612
613
}

614
func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
Michael Yang's avatar
Michael Yang committed
615
	if c.graph == nil {
616
		c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxGraphNodes), false)
Michael Yang's avatar
Michael Yang committed
617
618
	}

619
620
621
622
623
	for _, tensor := range tensors {
		C.ggml_build_forward_expand(c.graph, tensor.(*Tensor).t)
	}

	return c
Michael Yang's avatar
Michael Yang committed
624
625
}

626
func (c *Context) Compute(tensors ...ml.Tensor) {
627
628
629
	if status := C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph); status != C.GGML_STATUS_SUCCESS {
		panic(fmt.Errorf("error computing ggml graph: %v", status))
	}
Michael Yang's avatar
Michael Yang committed
630
	C.ggml_backend_sched_reset(c.b.sched)
Michael Yang's avatar
Michael Yang committed
631

632
633
634
	needSync := true
	sync := func() {
		if needSync {
635
			C.ggml_backend_sched_synchronize(c.b.sched)
636
637
638
			needSync = false
		}
	}
Michael Yang's avatar
Michael Yang committed
639

640
641
642
	for _, t := range tensors {
		if C.ggml_nbytes(t.(*Tensor).t) > 0 {
			t.(*Tensor).sync = sync
643
644
		}
	}
Michael Yang's avatar
Michael Yang committed
645
646
}

647
648
func (c *Context) Reserve() {
	reserved := C.ggml_backend_sched_reserve(c.b.sched, c.graph)
649
650

	slog.Debug("compute graph", "nodes", C.ggml_graph_n_nodes(c.graph), "splits", C.ggml_backend_sched_get_n_splits(c.b.sched))
651
652
653
654
655
656

	// Reserve may get called multiple times for different graphs - we just want the last run, which will contain the max allocations
	for _, bt := range c.b.schedBufts {
		c.b.btDeviceMemory[bt].Graph = ml.Memory{}
	}

657
	for i := range c.b.schedBackends {
658
659
660
661
662
663
664
665
666
667
		bufferStatus := C.ggml_backend_sched_get_attempted_buffer_size(c.b.sched, c.b.schedBackends[i])

		graph := &c.b.btDeviceMemory[c.b.schedBufts[i]].Graph
		graph.Size += uint64(bufferStatus.size)
		if bufferStatus.allocated && graph.Status != ml.Failed {
			graph.Status = ml.Allocated
		} else {
			graph.Status = ml.Failed
		}

668
		slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])), "buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])),
669
			"size", format.HumanBytes2(uint64(bufferStatus.size)))
670
671
	}

672
673
674
	if !reserved {
		panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
	}
675
676
}

677
func (c *Context) MaxGraphNodes() int {
678
	return c.maxGraphNodes
Jesse Gross's avatar
Jesse Gross committed
679
680
}

681
682
683
func shapeToGGML(shape []int) *C.int64_t {
	sh := make([]C.int64_t, len(shape))
	for i, s := range shape {
684
		sh[i] = C.int64_t(s)
685
686
687
688
689
	}

	return &sh[0]
}

690
691
692
693
func pad(length, pad C.size_t) C.size_t {
	return ((length + pad - 1) / pad) * pad
}

694
func (c *Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
695
	if c.buft == nil {
696
		panic("set Input or Layer before creating tensors")
697
698
	}

Michael Yang's avatar
Michael Yang committed
699
700
701
702
703
704
	var cdtype uint32
	switch dtype {
	case ml.DTypeF32:
		cdtype = C.GGML_TYPE_F32
	case ml.DTypeF16:
		cdtype = C.GGML_TYPE_F16
705
706
707
708
	case ml.DTypeQ80:
		cdtype = C.GGML_TYPE_Q8_0
	case ml.DTypeQ40:
		cdtype = C.GGML_TYPE_Q4_0
Michael Yang's avatar
Michael Yang committed
709
710
711
712
713
714
	case ml.DTypeI32:
		cdtype = C.GGML_TYPE_I32
	default:
		panic("unsupported dtype")
	}

Jesse Gross's avatar
Jesse Gross committed
715
	if len(shape) < 1 || shape[0] == 0 {
Michael Yang's avatar
Michael Yang committed
716
		var shape C.int64_t = 0
717
		return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
Michael Yang's avatar
Michael Yang committed
718
	} else if len(shape) > 4 {
Michael Yang's avatar
Michael Yang committed
719
720
721
722
723
724
725
726
727
		panic("unsupported number of dimensions")
	}

	for _, dim := range shape {
		if dim < 1 {
			panic("invalid shape")
		}
	}

Michael Yang's avatar
Michael Yang committed
728
	t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
729
	size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
730

731
	b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
732
733
734
735
736
737
738
739
740
741
742
	if c.layer >= 0 {
		cache := &c.b.btDeviceMemory[c.buft].Cache[c.layer]

		cache.Size += uint64(size)
		if b != nil {
			cache.Status = ml.Allocated
		} else {
			cache.Status = ml.Failed
		}
	}

743
	if b == nil {
744
		panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
745
746
	}

747
	*c.allocatedBuffers = append(*c.allocatedBuffers, b)
Michael Yang's avatar
Michael Yang committed
748
	C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
749
	return &Tensor{b: c.b, t: t}
750
751
}

752
func (c *Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
753
	return c.newTensor(dtype, shape)
754
755
}

756
func (c *Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
757
	t := c.newTensor(dtype, shape)
758
759
	C.ggml_set_zero(t.(*Tensor).t)
	return t
Michael Yang's avatar
Michael Yang committed
760
761
}

762
func checkShape[S ~[]E, E any](s S, shape ...int) {
Michael Yang's avatar
Michael Yang committed
763
	n := len(s)
Jesse Gross's avatar
Jesse Gross committed
764
765

	if n == 0 {
766
		return
Jesse Gross's avatar
Jesse Gross committed
767
768
	}

Michael Yang's avatar
Michael Yang committed
769
770
771
772
773
	for _, v := range shape {
		n /= v
	}

	if n != 1 {
774
		panic(fmt.Errorf("invalid shape: %v", shape))
Michael Yang's avatar
Michael Yang committed
775
776
777
	}
}

778
779
func (c *Context) FromFloatSlice(s []float32, shape ...int) ml.Tensor {
	checkShape(s, shape...)
780

781
	t := c.newTensor(ml.DTypeF32, shape)
782

Jesse Gross's avatar
Jesse Gross committed
783
784
785
786
	if len(s) > 0 {
		C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
	}

787
	return t
Michael Yang's avatar
Michael Yang committed
788
789
}

790
791
func (c *Context) FromIntSlice(s []int32, shape ...int) ml.Tensor {
	checkShape(s, shape...)
792

793
	t := c.newTensor(ml.DTypeI32, shape)
794

Jesse Gross's avatar
Jesse Gross committed
795
796
797
798
	if len(s) > 0 {
		C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
	}

799
	return t
Michael Yang's avatar
Michael Yang committed
800
801
}

Michael Yang's avatar
arange  
Michael Yang committed
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
func (c Context) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
	switch dtype {
	case ml.DTypeF32:
		// ggml_arange creates a float32 tensor
		return &Tensor{
			b: c.b,
			t: C.ggml_arange(c.ctx, C.float(start), C.float(stop), C.float(step)),
		}
	case ml.DTypeI32:
		// ggml_cast does not support float32 to int32 conversion
		arange := make([]int32, 0, int((stop-start)/step))
		for i := start; i < stop; i += step {
			arange = append(arange, int32(i))
		}

817
		return c.Input().FromIntSlice(arange, len(arange))
Michael Yang's avatar
arange  
Michael Yang committed
818
819
820
821
822
	default:
		panic("unsupported dtype for arange")
	}
}

Michael Yang's avatar
Michael Yang committed
823
824
func (c *Context) Close() {
	if c != nil {
825
826
827
828
829
		for _, b := range *c.allocatedBuffers {
			C.ggml_backend_buffer_free(b)
		}
		*c.allocatedBuffers = nil

830
831
		C.ggml_free(c.ctx)
	}
Michael Yang's avatar
Michael Yang committed
832
833
834
}

type Tensor struct {
835
	b    *Backend
Michael Yang's avatar
Michael Yang committed
836
	t    *C.struct_ggml_tensor
837
	sync func()
Michael Yang's avatar
Michael Yang committed
838
839
840
841
842
843
844
845
846
847
}

func (t *Tensor) LogValue() slog.Value {
	return slog.GroupValue(
		slog.String("name", C.GoString(C.ggml_get_name(t.t))),
		slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
		slog.Any("shape", t.Shape()),
	)
}

848
849
func (t *Tensor) Dim(n int) int {
	return int(t.t.ne[n])
Michael Yang's avatar
Michael Yang committed
850
851
}

852
853
func (t *Tensor) Stride(n int) int {
	return int(t.t.nb[n])
Michael Yang's avatar
Michael Yang committed
854
855
}

856
857
func (t *Tensor) Shape() []int {
	shape := make([]int, C.ggml_n_dims(t.t))
Michael Yang's avatar
Michael Yang committed
858
859
860
861
862
863
864
	for i := range shape {
		shape[i] = t.Dim(i)
	}

	return shape
}

865
866
867
868
869
870
871
872
873
func (t *Tensor) Bytes() (data []byte) {
	if t.sync != nil {
		data = make([]byte, C.ggml_nbytes(t.t))

		t.sync()
		C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
	}

	return
Michael Yang's avatar
Michael Yang committed
874
875
}

876
877
878
879
880
881
func (t *Tensor) Floats() (data []float32) {
	if t.sync != nil {
		data = make([]float32, C.ggml_nelements(t.t))

		t.sync()
		C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
Michael Yang's avatar
Michael Yang committed
882
883
884
885
886
887
888
889
890
	}

	return
}

func (t *Tensor) DType() ml.DType {
	switch t.t._type {
	case C.GGML_TYPE_F32:
		return ml.DTypeF32
Jesse Gross's avatar
Jesse Gross committed
891
892
	case C.GGML_TYPE_F16:
		return ml.DTypeF16
893
894
895
896
	case C.GGML_TYPE_Q8_0:
		return ml.DTypeQ80
	case C.GGML_TYPE_Q4_0:
		return ml.DTypeQ40
Michael Yang's avatar
Michael Yang committed
897
898
899
900
901
902
903
	case C.GGML_TYPE_I32:
		return ml.DTypeI32
	default:
		return ml.DTypeOther
	}
}

904
905
906
907
908
909
910
func (t *Tensor) Neg(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_neg(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
Michael Yang committed
911
912
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
913
		b: t.b,
Michael Yang's avatar
Michael Yang committed
914
915
916
917
		t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

Michael Yang's avatar
Michael Yang committed
918
919
920
921
922
923
924
func (t *Tensor) Sub(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sub(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
func (t *Tensor) Repeat(ctx ml.Context, dim, n int) ml.Tensor {
	if dim < 0 || dim >= C.GGML_MAX_DIMS {
		panic("invalid dimension")
	}

	shape := make([]C.int64_t, C.GGML_MAX_DIMS)
	for i := range C.GGML_MAX_DIMS {
		if i == dim {
			shape[i] = C.int64_t(t.Dim(i) * n)
		} else {
			shape[i] = C.int64_t(t.Dim(i))
		}
	}

	tmpl := C.ggml_new_tensor(ctx.(*Context).ctx, t.t._type, C.int(len(shape)), unsafe.SliceData(shape))
	return &Tensor{
		b: t.b,
		t: C.ggml_repeat(ctx.(*Context).ctx, t.t, tmpl),
	}
}

Michael Yang's avatar
Michael Yang committed
946
947
948
949
950
951
952
953
954
955
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
	if len(s) > 0 {
		return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
	}

	return t
}

func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
	return &Tensor{
956
		b: t.b,
Michael Yang's avatar
Michael Yang committed
957
958
959
960
961
962
		t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
	}
}

func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
	return &Tensor{
963
		b: t.b,
Michael Yang's avatar
Michael Yang committed
964
965
966
967
968
969
		t: C.ggml_cont(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
970
		b: t.b,
Michael Yang's avatar
Michael Yang committed
971
972
973
974
		t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

975
976
977
978
979
980
981
func (t *Tensor) Div(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_div(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

Michael Yang's avatar
Michael Yang committed
982
983
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
984
		b: t.b,
Michael Yang's avatar
Michael Yang committed
985
986
987
988
		t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

989
990
991
992
993
func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
	C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)

	return &Tensor{
994
		b: t.b,
995
996
997
998
		t: mul,
	}
}

Michael Yang's avatar
llama4  
Michael Yang committed
999
1000
1001
1002
1003
1004
1005
func (t *Tensor) MulmatID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_mul_mat_id(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, ids.(*Tensor).t),
	}
}

Michael Yang's avatar
Michael Yang committed
1006
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
Michael Yang's avatar
llama4  
Michael Yang committed
1007
1008
1009
1010
1011
1012
	tt := C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))
	if w != nil {
		tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
		if b != nil {
			tt = C.ggml_add(ctx.(*Context).ctx, tt, b.(*Tensor).t)
		}
Michael Yang's avatar
Michael Yang committed
1013
1014
	}

Michael Yang's avatar
llama4  
Michael Yang committed
1015
	return &Tensor{b: t.b, t: tt}
Michael Yang's avatar
Michael Yang committed
1016
1017
1018
}

func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
Michael Yang's avatar
llama4  
Michael Yang committed
1019
1020
1021
1022
1023
1024
	tt := C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))
	if w != nil {
		tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
	}

	return &Tensor{b: t.b, t: tt}
Michael Yang's avatar
Michael Yang committed
1025
1026
}

1027
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
1028
1029
	if len(shape) != 4 {
		panic("expected 4 dimensions")
1030
1031
	} else if shape[3] != 0 {
		panic("cuda does not support 4d tensors")
Michael Yang's avatar
Michael Yang committed
1032
1033
1034
	}

	return &Tensor{
1035
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
		t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
	}
}

func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
	if len(shape) != 4 {
		panic("expected 4 dimensions")
	}

	return &Tensor{
1046
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1047
1048
1049
1050
1051
1052
		t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
	}
}

func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
1053
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1054
1055
1056
1057
1058
1059
		t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
1060
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1061
1062
1063
1064
		t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

1065
func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
1066
1067
1068
	switch len(shape) {
	case 1:
		return &Tensor{
1069
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1070
1071
1072
1073
			t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
		}
	case 2:
		return &Tensor{
1074
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1075
1076
1077
1078
			t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
		}
	case 3:
		return &Tensor{
1079
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1080
1081
1082
1083
			t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
		}
	case 4:
		return &Tensor{
1084
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1085
1086
1087
1088
1089
1090
1091
1092
1093
			t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
		}
	default:
		panic("unsupported number of dimensions")
	}
}

func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
	return &Tensor{
1094
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1095
1096
1097
1098
		t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
	}
}

1099
1100
1101
1102
1103
1104
1105
func (t *Tensor) SumRows(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sum_rows(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
Michael Yang committed
1106
1107
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
	return &Tensor{
1108
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1109
1110
1111
1112
		t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
	}
}

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
func (t *Tensor) Sin(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sin(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) Cos(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_cos(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
Michael Yang committed
1127
1128
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
	return &Tensor{
1129
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1130
1131
1132
1133
		t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
llama4  
Michael Yang committed
1134
1135
1136
1137
1138
1139
1140
func (t *Tensor) Sigmoid(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sigmoid_inplace(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
Michael Yang committed
1141
1142
1143
1144
func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
	switch len(shape) {
	case 1:
		return &Tensor{
1145
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1146
1147
1148
1149
			t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
		}
	case 3:
		return &Tensor{
1150
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1151
1152
1153
1154
1155
1156
1157
			t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
				C.int64_t(shape[0]), C.int64_t(shape[2]),
				C.size_t(shape[1]),
				C.size_t(offset)),
		}
	case 5:
		return &Tensor{
1158
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1159
1160
1161
1162
1163
1164
1165
			t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
				C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
				C.size_t(shape[1]), C.size_t(shape[3]),
				C.size_t(offset)),
		}
	case 7:
		return &Tensor{
1166
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
			t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
				C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
				C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
				C.size_t(offset)),
		}
	default:
		panic("unsupported number of dimensions")
	}
}

1177
func (t *Tensor) RoPE(ctx ml.Context, positions ml.Tensor, ropeDim int, ropeBase, ropeScale float32, options ...func(*rope.Options)) ml.Tensor {
1178
	// Default options
1179
	opts := &rope.Options{OriginalContextLength: 131072, Factors: &Tensor{}}
1180
1181
1182
1183
1184
1185

	// Apply any provided options
	for _, option := range options {
		option(opts)
	}

Jesse Gross's avatar
Jesse Gross committed
1186
1187
1188
1189
1190
	dequant := t.t
	if C.ggml_is_quantized(t.t._type) {
		dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
	}

Michael Yang's avatar
Michael Yang committed
1191
	return &Tensor{
1192
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1193
		t: C.ggml_rope_ext(
1194
1195
			ctx.(*Context).ctx,
			dequant,
1196
1197
			positions.(*Tensor).t,
			opts.Factors.(*Tensor).t,
Michael Yang's avatar
Michael Yang committed
1198
			C.int(ropeDim),
1199
1200
			C.int(opts.Type),
			C.int(opts.OriginalContextLength),
Michael Yang's avatar
Michael Yang committed
1201
1202
			C.float(ropeBase),
			C.float(ropeScale),
1203
1204
1205
1206
			C.float(0.0),
			C.float(1.0),
			C.float(32.0),
			C.float(1.0),
Michael Yang's avatar
Michael Yang committed
1207
1208
1209
1210
		),
	}
}

1211
1212
1213
1214
1215
1216
1217
func (t *Tensor) IM2Col(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_im2col(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1), true, C.GGML_TYPE_F32),
	}
}

Michael Yang's avatar
Michael Yang committed
1218
1219
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
	return &Tensor{
1220
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1221
1222
1223
1224
1225
1226
		t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
	return &Tensor{
1227
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1228
1229
1230
1231
		t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
Michael Yang committed
1232
1233
1234
1235
1236
1237
1238
func (t *Tensor) RELU(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_relu_inplace(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
Michael Yang committed
1239
1240
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
	return &Tensor{
1241
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1242
1243
1244
		t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
	}
}
1245

Michael Yang's avatar
Michael Yang committed
1246
func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
1247
1248
	return &Tensor{
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1249
		t: C.ggml_pool_2d(ctx.(*Context).ctx, t.t, C.GGML_OP_POOL_AVG, C.int(k), C.int(k), C.int(s), C.int(s), C.float(p), C.float(p)),
Michael Yang's avatar
Michael Yang committed
1250
1251
1252
	}
}

Michael Yang's avatar
Michael Yang committed
1253
1254
1255
1256
func (t *Tensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
	var tt *C.struct_ggml_tensor
	switch len(strides) {
	case 0:
Michael Yang's avatar
Michael Yang committed
1257
		tt = C.ggml_set_1d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset))
Michael Yang's avatar
Michael Yang committed
1258
	case 1:
Michael Yang's avatar
Michael Yang committed
1259
		tt = C.ggml_set_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset), C.size_t(strides[0]))
Michael Yang's avatar
Michael Yang committed
1260
1261
1262
1263
1264
1265
1266
	default:
		panic("unsupported number of dimensions")
	}

	return &Tensor{b: t.b, t: tt}
}

1267
1268
1269
1270
1271
1272
func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.Tensor, scale float64) ml.Tensor {
	var kqMask *C.struct_ggml_tensor
	if mask != nil {
		kqMask = mask.(*Tensor).t
	}

1273
1274
1275
	query := t.Permute(ctx, 0, 2, 1, 3)
	key = key.Permute(ctx, 0, 2, 1, 3)

1276
1277
	if t.b.flashAttention {
		value = value.Permute(ctx, 0, 2, 1, 3)
1278

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
		kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0)
		C.ggml_flash_attn_ext_set_prec(kqv, C.GGML_PREC_F32)
		return &Tensor{b: t.b, t: kqv}
	} else {
		kq := key.MulmatFullPrec(ctx, query)
		kq = &Tensor{
			b: t.b,
			t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0),
		}

		kqv := value.Mulmat(ctx, kq)
		return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	}
1292
}
1293
1294
1295
1296
1297
1298
1299

func (t *Tensor) Duplicate(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_dup(ctx.(*Context).ctx, t.t),
	}
}
Michael Yang's avatar
llama4  
Michael Yang committed
1300
1301
1302
1303
1304
1305
1306

func (t *Tensor) TopK(ctx ml.Context, k int) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_top_k(ctx.(*Context).ctx, t.t, C.int(k)),
	}
}
1307
1308
1309
1310
1311
1312
1313

func (t *Tensor) Argsort(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_argsort(ctx.(*Context).ctx, t.t, C.GGML_SORT_ORDER_ASC),
	}
}
Michael Yang's avatar
Michael Yang committed
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352

func (t *Tensor) Mean(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_mean(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) Variance(ctx ml.Context) ml.Tensor {
	return t.Add(ctx, t.Mean(ctx).Scale(ctx, -1)).
		Sqr(ctx).
		SumRows(ctx).
		Scale(ctx, 1/float64(t.Dim(0)))
}

func (t *Tensor) Stddev(ctx ml.Context) ml.Tensor {
	return t.Variance(ctx).Sqrt(ctx)
}

func (t *Tensor) Sqr(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sqr(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) Sqrt(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sqrt(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) Clamp(ctx ml.Context, min, max float32) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_clamp(ctx.(*Context).ctx, t.t, C.float(min), C.float(max)),
	}
}