ggml.go 34.4 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
package ggml

3
4
5
6
7
8
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
// #include <stdlib.h>
// #include <stdint.h>
// #include "ggml.h"
// #include "ggml-cpu.h"
// #include "ggml-backend.h"
Michael Yang's avatar
Michael Yang committed
9
10
11
import "C"

import (
12
	"context"
Michael Yang's avatar
Michael Yang committed
13
14
15
	"fmt"
	"io"
	"log/slog"
16
	"maps"
Michael Yang's avatar
Michael Yang committed
17
	"os"
18
	"runtime"
19
20
21
	"slices"
	"strconv"
	"strings"
22
	"sync/atomic"
23
	"unicode"
Michael Yang's avatar
Michael Yang committed
24
25
26
	"unsafe"

	"github.com/ollama/ollama/format"
27
28
	"github.com/ollama/ollama/fs"
	fsggml "github.com/ollama/ollama/fs/ggml"
29
	"github.com/ollama/ollama/logutil"
Michael Yang's avatar
Michael Yang committed
30
	"github.com/ollama/ollama/ml"
31
	ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
32
	"github.com/ollama/ollama/ml/nn/rope"
Michael Yang's avatar
Michael Yang committed
33
34
35
	"golang.org/x/sync/errgroup"
)

Michael Yang's avatar
Michael Yang committed
36
37
38
39
40
func devices() []*C.struct_ggml_backend_device {
	ggml.OnceLoad()
	ds := make([]*C.struct_ggml_backend_device, C.ggml_backend_dev_count())
	for i := range ds {
		ds[i] = C.ggml_backend_dev_get(C.size_t(i))
Michael Yang's avatar
Michael Yang committed
41
	}
Michael Yang's avatar
Michael Yang committed
42
43

	return ds
44
}
Michael Yang's avatar
Michael Yang committed
45
46

type Backend struct {
47
48
49
	// modelPath is the location of the model data
	modelPath string

50
51
	meta *fsggml.GGML

52
53
54
55
	// tensorLoadTargets maps from the name of the tensor in the file
	// to the name that is used by the model definition
	tensorLoadTargets map[string][]string

56
57
58
59
	sched         *C.struct_ggml_backend_sched
	schedBackends []*C.struct_ggml_backend
	schedBufts    []*C.struct_ggml_backend_buffer_type

60
	tensors map[string]*C.struct_ggml_tensor
Michael Yang's avatar
Michael Yang committed
61
62

	// input is the backend used for inputs
63
	input *C.struct_ggml_backend_buffer_type
Michael Yang's avatar
Michael Yang committed
64
65

	// layers is the backend used for repeating layers
66
	layers map[int]*C.struct_ggml_backend_buffer_type
67

68
69
70
71
72
73
	// requiredMemory is the cumulative memory allocations needed by the backend
	requiredMemory *ml.BackendMemory

	// btDeviceMemory maps from a buffer type to the memory allocations associated with that device
	btDeviceMemory map[*C.struct_ggml_backend_buffer_type]*ml.DeviceMemory

74
	flashAttention bool
Michael Yang's avatar
Michael Yang committed
75
76
77

	// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
	maxGraphNodes int
Michael Yang's avatar
Michael Yang committed
78
79
}

80
81
82
83
84
85
86
87
func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
	r, err := os.Open(modelPath)
	if err != nil {
		return nil, err
	}
	defer r.Close()

	meta, err := fsggml.Decode(r, -1)
Michael Yang's avatar
Michael Yang committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
	if err != nil {
		return nil, err
	}

	slog.Info(
		"",
		"architecture", meta.KV().Architecture(),
		"file_type", meta.KV().FileType(),
		"name", meta.KV().String("general.name"),
		"description", meta.KV().String("general.description"),
		"num_tensors", len(meta.Tensors().Items()),
		"num_key_values", len(meta.KV()),
	)

102
103
104
	var requiredMemory ml.BackendMemory
	btDeviceMemory := make(map[*C.struct_ggml_backend_buffer_type]*ml.DeviceMemory)

105
	type deviceBufferType struct {
106
107
108
109
110
		d   *C.struct_ggml_backend_device
		bts []*C.struct_ggml_backend_buffer_type
	}

	var cpus, accels, gpus []*C.struct_ggml_backend_device
Michael Yang's avatar
Michael Yang committed
111
	for _, d := range devices() {
112
113
		switch C.ggml_backend_dev_type(d) {
		case C.GGML_BACKEND_DEVICE_TYPE_CPU:
114
115
116
117
			if len(cpus) == 0 {
				// only the first cpu device should be used
				cpus = append(cpus, d)
			}
118
119
		case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
			accels = append(accels, d)
Michael Yang's avatar
Michael Yang committed
120
		case C.GGML_BACKEND_DEVICE_TYPE_GPU:
121
			gpus = append(gpus, d)
Michael Yang's avatar
Michael Yang committed
122
123
124
		}
	}

125
126
	blocks := int(meta.KV().BlockCount())

Michael Yang's avatar
Michael Yang committed
127
	// create list of buffer types for the cpu
Michael Yang's avatar
Michael Yang committed
128
	cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)}
129
130
131
132
	for _, d := range append(accels, append(gpus, cpus...)...) {
		switch C.ggml_backend_dev_type(d) {
		case C.GGML_BACKEND_DEVICE_TYPE_CPU,
			C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
Michael Yang's avatar
Michael Yang committed
133
			cpuDeviceBufferType.bts = append(cpuDeviceBufferType.bts, C.ggml_backend_dev_buffer_type(d))
134
			btDeviceMemory[C.ggml_backend_dev_buffer_type(d)] = &requiredMemory.CPU
Michael Yang's avatar
Michael Yang committed
135
		}
136
137
	}

138
	requiredMemory.CPU.Name = C.GoString(C.ggml_backend_dev_name(cpuDeviceBufferType.d))
139
140
	var props C.struct_ggml_backend_dev_props
	C.ggml_backend_dev_get_props(cpuDeviceBufferType.d, &props)
141
	requiredMemory.CPU.ID = C.GoString(props.id)
142
143
144
	requiredMemory.CPU.Weights = make([]ml.Memory, blocks+1)
	requiredMemory.CPU.Cache = make([]ml.Memory, blocks+1)

Michael Yang's avatar
Michael Yang committed
145
	// create list of buffer types for each gpu
146
	var gpuDeviceBufferTypes []deviceBufferType
147
148
	requiredMemory.GPUs = make([]ml.DeviceMemory, len(gpus))
	for i, d := range gpus {
149
		bt := C.ggml_backend_dev_buffer_type(d)
150
		gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{
151
			d:   d,
Michael Yang's avatar
Michael Yang committed
152
			bts: append([]*C.struct_ggml_backend_buffer_type{bt}, cpuDeviceBufferType.bts...),
153
		})
154
155
		btDeviceMemory[bt] = &requiredMemory.GPUs[i]
		requiredMemory.GPUs[i].Name = C.GoString(C.ggml_backend_dev_name(d))
156
157
		var props C.struct_ggml_backend_dev_props
		C.ggml_backend_dev_get_props(d, &props)
158
		requiredMemory.GPUs[i].ID = C.GoString(props.id)
159
160
		requiredMemory.GPUs[i].Weights = make([]ml.Memory, blocks+1)
		requiredMemory.GPUs[i].Cache = make([]ml.Memory, blocks+1)
Michael Yang's avatar
Michael Yang committed
161
162
	}

Michael Yang's avatar
Michael Yang committed
163
164
165
166
167
	useDefaultSplit := true
	for _, s := range params.TensorSplit {
		if s != 0 {
			useDefaultSplit = false
			break
168
		}
Michael Yang's avatar
Michael Yang committed
169
	}
170

Michael Yang's avatar
Michael Yang committed
171
172
173
174
	// calculate splits
	splits := make([]float32, len(gpus))
	if useDefaultSplit {
		// default: split on free memory
175
176
177
178
179
		for i := range splits {
			var free, total C.size_t
			C.ggml_backend_dev_memory(gpus[i], &free, &total)
			splits[i] = float32(free)
		}
Michael Yang's avatar
Michael Yang committed
180
181
	} else {
		splits = params.TensorSplit
182
183
184
	}

	var sum float32
Michael Yang's avatar
Michael Yang committed
185
	// cumulative sum of all splits
186
187
188
189
190
	for i := range splits {
		sum += splits[i]
		splits[i] = sum
	}

Michael Yang's avatar
Michael Yang committed
191
	// normalize splits
192
	for i := range splits {
193
		splits[i] /= sum
194
195
	}

Michael Yang's avatar
Michael Yang committed
196
	// inputs always use cpu
Michael Yang's avatar
Michael Yang committed
197
	input := cpuDeviceBufferType
198

Michael Yang's avatar
Michael Yang committed
199
200
201
	// define a range of gpu layers. anything outside of this range is assigned to the cpu
	gpuRangeStart := max(0, blocks-params.NumGPULayers)
	gpuRangeStop := min(gpuRangeStart+params.NumGPULayers, blocks+1)
Michael Yang's avatar
Michael Yang committed
202
	assignLayer := func(i int) deviceBufferType {
Michael Yang's avatar
Michael Yang committed
203
		if i < gpuRangeStart || i >= gpuRangeStop {
Michael Yang's avatar
Michael Yang committed
204
			return cpuDeviceBufferType
205
		}
206

Michael Yang's avatar
Michael Yang committed
207
		index := slices.IndexFunc(splits, func(f float32) bool { return float32(i-gpuRangeStart)/float32(gpuRangeStop-gpuRangeStart) < f })
208
		if index < 0 || index >= len(gpuDeviceBufferTypes) {
Michael Yang's avatar
Michael Yang committed
209
			return cpuDeviceBufferType
210
211
212
		}

		return gpuDeviceBufferTypes[index]
213
214
	}

Michael Yang's avatar
Michael Yang committed
215
	// repeating layers are assigned based on their index in reverse order, e.g. i / (block_count + 1)
216
	layers := make([]deviceBufferType, blocks)
217
	for i := range layers {
218
		layers[i] = assignLayer(i)
219
220
	}

Michael Yang's avatar
Michael Yang committed
221
	// outputs are assigned iff allowed by splits and configured number of gpu layers
222
	output := assignLayer(blocks)
223
224
225

	maxTensors := len(meta.Tensors().Items())
	maxTensors += 1
Michael Yang's avatar
Michael Yang committed
226
	// each layer has at most 2 extra tensors for rope operations
227
228
	maxTensors += blocks * 2

229
	type tensor struct {
230
		source *fsggml.Tensor
231
232
233
		target string
	}

Michael Yang's avatar
Michael Yang committed
234
	// some tensors are mapped to different names so keep a list
235
236
	targets := make(map[string][]string)

Michael Yang's avatar
Michael Yang committed
237
	// contexts are shared by tensors of the same buffer type
238
	ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
239
	createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type, layer int) *C.struct_ggml_tensor {
240
241
242
243
244
245
246
		for _, bt := range bts {
			if _, ok := ctxs[bt]; !ok {
				ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
					mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
					no_alloc: true,
				})
			}
Michael Yang's avatar
Michael Yang committed
247

248
249
250
251
252
253
254
255
			targets[t.source.Name] = append(targets[t.source.Name], t.target)

			name := t.source.Name
			if t.target != "" {
				name = t.target
			}

			cname := C.CString(name)
Michael Yang's avatar
Michael Yang committed
256
			defer C.free(unsafe.Pointer(cname))
257
258
259
260
			if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
				return tt
			}

261
			tt := C.ggml_new_tensor(ctxs[bt], t.source.Kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
Michael Yang's avatar
Michael Yang committed
262
263
			C.ggml_set_name(tt, cname)

264
			slog.Log(context.TODO(), logutil.LevelTrace, "created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
265
266
267
268
269
270
271
272
273
274

			size := pad(C.ggml_backend_buft_get_alloc_size(bt, tt), C.ggml_backend_buft_get_alignment(bt))
			if layer == -1 {
				// Assume that InputWeights can be allocated - they're always in system memory and can't be moved in any case
				requiredMemory.InputWeights.Status = ml.Allocated
				requiredMemory.InputWeights.Size += uint64(size)
			} else {
				btDeviceMemory[bt].Weights[layer].Size += uint64(size)
			}

275
276
277
278
279
			//nolint:staticcheck // TODO: check if buffer type supports this tensor
			return tt
		}

		return nil
Michael Yang's avatar
Michael Yang committed
280
281
	}

282
	contains := func(s string, parts ...string) bool {
283
284
285
286
287
288
289
290
		split := strings.Split(s, ".")
		for _, part := range parts {
			if slices.Contains(split, part) {
				return true
			}
		}

		return false
Michael Yang's avatar
Michael Yang committed
291
292
	}

293
294
	for _, t := range meta.Tensors().Items() {
		switch {
295
		case contains(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
296
			createTensor(tensor{source: t}, input.bts, -1)
Michael Yang's avatar
Michael Yang committed
297
			if _, ok := meta.Tensors().GroupLayers()["output"]; !ok && t.Name == "token_embd.weight" {
298
				createTensor(tensor{source: t, target: "output.weight"}, output.bts, blocks)
Michael Yang's avatar
Michael Yang committed
299
			}
Michael Yang's avatar
Michael Yang committed
300
301
302
		case contains(t.Name, "cls", "output", "output_norm",
			"altup_proj", "altup_unembd_proj",
			"per_layer_token_embd", "per_layer_model_proj", "per_layer_proj_norm"):
303
			createTensor(tensor{source: t}, output.bts, blocks)
304
		case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
Michael Yang's avatar
Michael Yang committed
305
			// TODO: assign vision tensors to the gpu if possible
306
			createTensor(tensor{source: t}, output.bts, blocks)
Michael Yang's avatar
Michael Yang committed
307
308
309
310
311
312
		case contains(t.Name, "rope_freqs", "rope_factors_long", "rope_factors_short"):
			// these tensors should be repeated per layer
			for i, layer := range layers {
				createTensor(tensor{
					source: t,
					target: "blk." + strconv.Itoa(i) + "." + t.Name,
313
				}, layer.bts, i)
Michael Yang's avatar
Michael Yang committed
314
			}
315
		default:
Michael Yang's avatar
Michael Yang committed
316
317
318
319
			layerIndex := -1
			if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
				if i, err := strconv.Atoi(fields[0]); err == nil {
					layerIndex = i
320
				}
Michael Yang's avatar
Michael Yang committed
321
			}
322

Michael Yang's avatar
Michael Yang committed
323
			if layerIndex >= 0 {
324
				createTensor(tensor{source: t}, layers[layerIndex].bts, layerIndex)
325
			} else {
Michael Yang's avatar
Michael Yang committed
326
				// load all other tensors on the cpu
327
				createTensor(tensor{source: t}, input.bts, -1)
328
329
330
			}
		}
	}
Michael Yang's avatar
Michael Yang committed
331

Michael Yang's avatar
Michael Yang committed
332
333
	// allocate buffers for each context
	bbs := make(map[*C.struct_ggml_context]*C.struct_ggml_backend_buffer, len(ctxs))
334
335
336
337
338
339
	for bt, c := range ctxs {
		if C.ggml_get_first_tensor(c) == nil {
			continue
		}

		b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
340
341
342
343
344
345
346
347
348
349
		for i := range btDeviceMemory[bt].Weights {
			if btDeviceMemory[bt].Weights[i].Size != 0 {
				if b != nil {
					btDeviceMemory[bt].Weights[i].Status = ml.Allocated
				} else {
					btDeviceMemory[bt].Weights[i].Status = ml.Failed
				}
			}
		}

350
		if b == nil {
351
			panic(ml.ErrNoMem{BackendMemory: requiredMemory})
352
353
		}

354
		C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
Michael Yang's avatar
Michael Yang committed
355
		bbs[c] = b
356
357
	}

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
	// Mimic llama runner logs summarizing layers and memory
	slog.Info(fmt.Sprintf("offloading %d repeating layers to GPU", max(0, params.NumGPULayers-1)))
	gpuLayers := 0
	switch C.ggml_backend_dev_type(output.d) {
	case 0: // CPU
		slog.Info("offloading output layer to CPU")
	case 1: // GPU
		slog.Info("offloading output layer to GPU")
		gpuLayers++
	case 2: // ACCEL
		slog.Info("offloading output layer to ACCEL")
	}
	for _, layer := range layers {
		if C.ggml_backend_dev_type(layer.d) == 1 {
			gpuLayers++
		}
	}
	slog.Info(fmt.Sprintf("offloaded %d/%d layers to GPU", gpuLayers, len(layers)+1))
376
	for bs := range maps.Values(bbs) {
Michael Yang's avatar
Michael Yang committed
377
		slog.Info("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
378
379
	}

Michael Yang's avatar
Michael Yang committed
380
	// map tensor names to tensors for easy lookup later
381
382
383
384
385
386
387
	tensors := make(map[string]*C.struct_ggml_tensor)
	for _, c := range ctxs {
		for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
			tensors[C.GoString(C.ggml_get_name(t))] = t
		}
	}

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
	// map devices to backend buffer types so new tensors can be assigned to the correct device
	deviceBufferTypes := make(map[*C.struct_ggml_backend_device]*C.struct_ggml_backend_buffer_type)

	// create backends and buffer types used for the compute graph scheduler
	var schedBackends []*C.struct_ggml_backend
	var schedBufts []*C.struct_ggml_backend_buffer_type
	for _, d := range append(gpus, append(accels, cpus...)...) {
		b := C.ggml_backend_dev_init(d, nil)
		bt := C.ggml_backend_get_default_buffer_type(b)

		deviceBufferTypes[d] = bt

		schedBackends = append(schedBackends, b)
		schedBufts = append(schedBufts, bt)

		if C.ggml_backend_is_cpu(b) {
			// set number of threads for cpu backend
			C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(params.NumThreads)))
		}
	}

	maxGraphNodes := max(8192, len(meta.Tensors().Items())*5)
	return &Backend{
		modelPath:         modelPath,
		flashAttention:    params.FlashAttention,
		meta:              meta,
		tensorLoadTargets: targets,
		tensors:           tensors,
		sched: C.ggml_backend_sched_new(
			(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
			(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
			C.int(len(schedBackends)),
			C.size_t(maxGraphNodes),
421
			C._Bool(false),
422
423
424
425
426
427
428
429
430
431
432
433
			C._Bool(false),
		),
		schedBackends: schedBackends,
		schedBufts:    schedBufts,
		input:         deviceBufferTypes[input.d],
		layers: func() map[int]*C.struct_ggml_backend_buffer_type {
			m := make(map[int]*C.struct_ggml_backend_buffer_type)
			for i, layer := range layers {
				m[i] = deviceBufferTypes[layer.d]
			}
			return m
		}(),
434
435
436
		requiredMemory: &requiredMemory,
		btDeviceMemory: btDeviceMemory,
		maxGraphNodes:  maxGraphNodes,
437
438
439
440
441
442
443
444
	}, nil
}

func init() {
	ml.RegisterBackend("ggml", New)
}

func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
445
	var doneBytes atomic.Uint64
446
	totalBytes := uint64(b.meta.Length) - b.meta.Tensors().Offset
447
448
449

	g, ctx := errgroup.WithContext(ctx)
	g.SetLimit(runtime.GOMAXPROCS(0))
450
	for _, t := range b.meta.Tensors().Items() {
451
		t := t
452
		g.Go(func() error {
453
			tts := make([]*C.struct_ggml_tensor, max(1, len(b.tensorLoadTargets[t.Name])))
454
			for i := range tts {
455
				target := b.tensorLoadTargets[t.Name][i]
456
457
458
				if target == "" {
					target = t.Name
				}
459

460
				tt, ok := b.tensors[target]
461
462
463
				if !ok {
					return fmt.Errorf("unassigned tensor: %s", t.Name)
				}
Michael Yang's avatar
Michael Yang committed
464

465
466
467
				tts[i] = tt
			}

468
469
			// Create a new FD for each goroutine so that each FD is read sequentially, rather than
			// seeking around within an FD shared between all goroutines.
470
			file, err := os.Open(b.modelPath)
471
			if err != nil {
472
				slog.Warn("file open error", "file", b.modelPath, "error", err)
473
474
475
				return err
			}
			defer file.Close()
476
			sr := io.NewSectionReader(file, int64(b.meta.Tensors().Offset+t.Offset), int64(t.Size()))
477
478
479
480
			bts := make([]byte, 128*format.KibiByte)

			var s uint64
			for s < t.Size() {
481
482
483
484
485
				// Stop if either the parent context has been canceled or if any of the other tensors returned an error
				if err := ctx.Err(); err != nil {
					return err
				}

486
487
				n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
				if err != nil {
488
					slog.Warn("file read error", "file", b.modelPath, "error", err)
489
					return err
490
				}
Michael Yang's avatar
Michael Yang committed
491

492
493
				for _, tt := range tts {
					C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
494
				}
Michael Yang's avatar
Michael Yang committed
495

496
497
				s += uint64(n)

498
				if progress != nil {
499
					done := doneBytes.Add(uint64(n))
500
					progress(float32(done) / float32(totalBytes))
501
502
503
504
505
				}
			}

			return nil
		})
Michael Yang's avatar
Michael Yang committed
506
507
	}

508
	if err := g.Wait(); err != nil {
509
		return err
510
511
	}

512
	return nil
Michael Yang's avatar
Michael Yang committed
513
514
}

515
516
517
518
func (b *Backend) BackendMemory() ml.BackendMemory {
	return *b.requiredMemory
}

519
func (b *Backend) Config() fs.Config {
Michael Yang's avatar
Michael Yang committed
520
521
522
523
	return b.meta.KV()
}

func (b *Backend) Get(name string) ml.Tensor {
524
525
	if t, ok := b.tensors[name]; ok {
		return &Tensor{b: b, t: t}
Michael Yang's avatar
Michael Yang committed
526
527
528
529
530
531
	}

	return nil
}

func (b *Backend) NewContext() ml.Context {
Michael Yang's avatar
Michael Yang committed
532
	return b.NewContextSize(b.maxGraphNodes)
533
534
535
}

func (b *Backend) NewContextSize(n int) ml.Context {
Jesse Gross's avatar
Jesse Gross committed
536
537
538
539
	if n > b.maxGraphNodes {
		panic(fmt.Errorf("requested number of graph nodes (%v) for new context exceeds maximum (%v)", n, b.maxGraphNodes))
	}

540
541
	var allocatedBuffers []*C.struct_ggml_backend_buffer

Michael Yang's avatar
Michael Yang committed
542
	return &Context{
543
544
		b:             b,
		maxGraphNodes: n,
545
		ctx: C.ggml_init(C.struct_ggml_init_params{
546
			mem_size: C.size_t(n)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(n), false),
547
548
			no_alloc: true,
		}),
549
		allocatedBuffers: &allocatedBuffers,
550
		layer:            -1,
Michael Yang's avatar
Michael Yang committed
551
552
553
	}
}

554
func (b *Backend) CacheConfig() ml.CacheConfig {
555
556
557
558
559
	if b.flashAttention {
		return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD}
	} else {
		return ml.CacheConfig{CachePadding: 32, PermutedV: true}
	}
560
561
}

Michael Yang's avatar
Michael Yang committed
562
type Context struct {
563
	b *Backend
Michael Yang's avatar
Michael Yang committed
564

565
	ctx   *C.struct_ggml_context
Michael Yang's avatar
Michael Yang committed
566
	graph *C.struct_ggml_cgraph
567

568
569
	// buft is the buffer type used for new tensors
	buft *C.struct_ggml_backend_buffer_type
570

571
572
573
574
	// allocatedBuffers are buffers for tensors that we have allocated in this context
	// so that we can free them when we close the context
	allocatedBuffers *[]*C.struct_ggml_backend_buffer

Michael Yang's avatar
Michael Yang committed
575
	// maxGraphNodes is the maximum allowed number of graph nodes in this context
576
	maxGraphNodes int
577
578
579

	// layer is the graph layer that this context is allocating for - assumed to be cache
	layer int
Michael Yang's avatar
Michael Yang committed
580
581
}

582
func (c *Context) Input() ml.Context {
Michael Yang's avatar
Michael Yang committed
583
	if c.b.input != nil {
584
		return &Context{
585
586
587
588
589
			b:                c.b,
			ctx:              c.ctx,
			buft:             c.b.input,
			allocatedBuffers: c.allocatedBuffers,
			maxGraphNodes:    c.maxGraphNodes,
590
			layer:            -1,
591
592
593
		}
	}

594
	return c
595
596
}

597
func (c *Context) Layer(i int) ml.Context {
598
	if buft, ok := c.b.layers[i]; ok {
599
		return &Context{
600
601
602
603
604
			b:                c.b,
			ctx:              c.ctx,
			buft:             buft,
			allocatedBuffers: c.allocatedBuffers,
			maxGraphNodes:    c.maxGraphNodes,
605
			layer:            i,
606
607
608
		}
	}

609
	return c
610
611
}

612
func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
Michael Yang's avatar
Michael Yang committed
613
	if c.graph == nil {
614
		c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxGraphNodes), false)
Michael Yang's avatar
Michael Yang committed
615
616
	}

617
618
619
620
621
	for _, tensor := range tensors {
		C.ggml_build_forward_expand(c.graph, tensor.(*Tensor).t)
	}

	return c
Michael Yang's avatar
Michael Yang committed
622
623
}

624
func (c *Context) Compute(tensors ...ml.Tensor) {
625
626
627
	if status := C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph); status != C.GGML_STATUS_SUCCESS {
		panic(fmt.Errorf("error computing ggml graph: %v", status))
	}
Michael Yang's avatar
Michael Yang committed
628
	C.ggml_backend_sched_reset(c.b.sched)
Michael Yang's avatar
Michael Yang committed
629

630
631
632
	needSync := true
	sync := func() {
		if needSync {
633
			C.ggml_backend_sched_synchronize(c.b.sched)
634
635
636
			needSync = false
		}
	}
Michael Yang's avatar
Michael Yang committed
637

638
639
640
	for _, t := range tensors {
		if C.ggml_nbytes(t.(*Tensor).t) > 0 {
			t.(*Tensor).sync = sync
641
642
		}
	}
Michael Yang's avatar
Michael Yang committed
643
644
}

645
646
func (c *Context) Reserve() {
	reserved := C.ggml_backend_sched_reserve(c.b.sched, c.graph)
647
648

	slog.Debug("compute graph", "nodes", C.ggml_graph_n_nodes(c.graph), "splits", C.ggml_backend_sched_get_n_splits(c.b.sched))
649
650
651
652
653
654

	// Reserve may get called multiple times for different graphs - we just want the last run, which will contain the max allocations
	for _, bt := range c.b.schedBufts {
		c.b.btDeviceMemory[bt].Graph = ml.Memory{}
	}

655
	for i := range c.b.schedBackends {
656
657
658
659
660
661
662
663
664
665
		bufferStatus := C.ggml_backend_sched_get_attempted_buffer_size(c.b.sched, c.b.schedBackends[i])

		graph := &c.b.btDeviceMemory[c.b.schedBufts[i]].Graph
		graph.Size += uint64(bufferStatus.size)
		if bufferStatus.allocated && graph.Status != ml.Failed {
			graph.Status = ml.Allocated
		} else {
			graph.Status = ml.Failed
		}

666
		slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])), "buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])),
667
			"size", format.HumanBytes2(uint64(bufferStatus.size)))
668
669
	}

670
671
672
	if !reserved {
		panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
	}
673
674
}

675
func (c *Context) MaxGraphNodes() int {
676
	return c.maxGraphNodes
Jesse Gross's avatar
Jesse Gross committed
677
678
}

679
680
681
func shapeToGGML(shape []int) *C.int64_t {
	sh := make([]C.int64_t, len(shape))
	for i, s := range shape {
682
		sh[i] = C.int64_t(s)
683
684
685
686
687
	}

	return &sh[0]
}

688
689
690
691
func pad(length, pad C.size_t) C.size_t {
	return ((length + pad - 1) / pad) * pad
}

692
func (c *Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
693
	if c.buft == nil {
694
		panic("set Input or Layer before creating tensors")
695
696
	}

Michael Yang's avatar
Michael Yang committed
697
698
699
700
701
702
	var cdtype uint32
	switch dtype {
	case ml.DTypeF32:
		cdtype = C.GGML_TYPE_F32
	case ml.DTypeF16:
		cdtype = C.GGML_TYPE_F16
703
704
705
706
	case ml.DTypeQ80:
		cdtype = C.GGML_TYPE_Q8_0
	case ml.DTypeQ40:
		cdtype = C.GGML_TYPE_Q4_0
Michael Yang's avatar
Michael Yang committed
707
708
709
710
711
712
	case ml.DTypeI32:
		cdtype = C.GGML_TYPE_I32
	default:
		panic("unsupported dtype")
	}

Jesse Gross's avatar
Jesse Gross committed
713
	if len(shape) < 1 || shape[0] == 0 {
Michael Yang's avatar
Michael Yang committed
714
		var shape C.int64_t = 0
715
		return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
Michael Yang's avatar
Michael Yang committed
716
	} else if len(shape) > 4 {
Michael Yang's avatar
Michael Yang committed
717
718
719
720
721
722
723
724
725
		panic("unsupported number of dimensions")
	}

	for _, dim := range shape {
		if dim < 1 {
			panic("invalid shape")
		}
	}

Michael Yang's avatar
Michael Yang committed
726
	t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
727
	size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
728

729
	b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
730
731
732
733
734
735
736
737
738
739
740
	if c.layer >= 0 {
		cache := &c.b.btDeviceMemory[c.buft].Cache[c.layer]

		cache.Size += uint64(size)
		if b != nil {
			cache.Status = ml.Allocated
		} else {
			cache.Status = ml.Failed
		}
	}

741
	if b == nil {
742
		panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
743
744
	}

745
	*c.allocatedBuffers = append(*c.allocatedBuffers, b)
Michael Yang's avatar
Michael Yang committed
746
	C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
747
	return &Tensor{b: c.b, t: t}
748
749
}

750
func (c *Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
751
	return c.newTensor(dtype, shape)
752
753
}

754
func (c *Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
755
	t := c.newTensor(dtype, shape)
756
757
	C.ggml_set_zero(t.(*Tensor).t)
	return t
Michael Yang's avatar
Michael Yang committed
758
759
}

760
func checkShape[S ~[]E, E any](s S, shape ...int) {
Michael Yang's avatar
Michael Yang committed
761
	n := len(s)
Jesse Gross's avatar
Jesse Gross committed
762
763

	if n == 0 {
764
		return
Jesse Gross's avatar
Jesse Gross committed
765
766
	}

Michael Yang's avatar
Michael Yang committed
767
768
769
770
771
	for _, v := range shape {
		n /= v
	}

	if n != 1 {
772
		panic(fmt.Errorf("invalid shape: %v", shape))
Michael Yang's avatar
Michael Yang committed
773
774
775
	}
}

776
777
func (c *Context) FromFloatSlice(s []float32, shape ...int) ml.Tensor {
	checkShape(s, shape...)
778

779
	t := c.newTensor(ml.DTypeF32, shape)
780

Jesse Gross's avatar
Jesse Gross committed
781
782
783
784
	if len(s) > 0 {
		C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
	}

785
	return t
Michael Yang's avatar
Michael Yang committed
786
787
}

788
789
func (c *Context) FromIntSlice(s []int32, shape ...int) ml.Tensor {
	checkShape(s, shape...)
790

791
	t := c.newTensor(ml.DTypeI32, shape)
792

Jesse Gross's avatar
Jesse Gross committed
793
794
795
796
	if len(s) > 0 {
		C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
	}

797
	return t
Michael Yang's avatar
Michael Yang committed
798
799
}

Michael Yang's avatar
arange  
Michael Yang committed
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
func (c Context) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
	switch dtype {
	case ml.DTypeF32:
		// ggml_arange creates a float32 tensor
		return &Tensor{
			b: c.b,
			t: C.ggml_arange(c.ctx, C.float(start), C.float(stop), C.float(step)),
		}
	case ml.DTypeI32:
		// ggml_cast does not support float32 to int32 conversion
		arange := make([]int32, 0, int((stop-start)/step))
		for i := start; i < stop; i += step {
			arange = append(arange, int32(i))
		}

815
		return c.Input().FromIntSlice(arange, len(arange))
Michael Yang's avatar
arange  
Michael Yang committed
816
817
818
819
820
	default:
		panic("unsupported dtype for arange")
	}
}

Michael Yang's avatar
Michael Yang committed
821
822
func (c *Context) Close() {
	if c != nil {
823
824
825
826
827
		for _, b := range *c.allocatedBuffers {
			C.ggml_backend_buffer_free(b)
		}
		*c.allocatedBuffers = nil

828
829
		C.ggml_free(c.ctx)
	}
Michael Yang's avatar
Michael Yang committed
830
831
832
}

type Tensor struct {
833
	b    *Backend
Michael Yang's avatar
Michael Yang committed
834
	t    *C.struct_ggml_tensor
835
	sync func()
Michael Yang's avatar
Michael Yang committed
836
837
838
839
840
841
842
843
844
845
}

func (t *Tensor) LogValue() slog.Value {
	return slog.GroupValue(
		slog.String("name", C.GoString(C.ggml_get_name(t.t))),
		slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
		slog.Any("shape", t.Shape()),
	)
}

846
847
func (t *Tensor) Dim(n int) int {
	return int(t.t.ne[n])
Michael Yang's avatar
Michael Yang committed
848
849
}

850
851
func (t *Tensor) Stride(n int) int {
	return int(t.t.nb[n])
Michael Yang's avatar
Michael Yang committed
852
853
}

854
855
func (t *Tensor) Shape() []int {
	shape := make([]int, C.ggml_n_dims(t.t))
Michael Yang's avatar
Michael Yang committed
856
857
858
859
860
861
862
	for i := range shape {
		shape[i] = t.Dim(i)
	}

	return shape
}

863
864
865
866
867
868
869
870
871
func (t *Tensor) Bytes() (data []byte) {
	if t.sync != nil {
		data = make([]byte, C.ggml_nbytes(t.t))

		t.sync()
		C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
	}

	return
Michael Yang's avatar
Michael Yang committed
872
873
}

874
875
876
877
878
879
func (t *Tensor) Floats() (data []float32) {
	if t.sync != nil {
		data = make([]float32, C.ggml_nelements(t.t))

		t.sync()
		C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
Michael Yang's avatar
Michael Yang committed
880
881
882
883
884
885
886
887
888
	}

	return
}

func (t *Tensor) DType() ml.DType {
	switch t.t._type {
	case C.GGML_TYPE_F32:
		return ml.DTypeF32
Jesse Gross's avatar
Jesse Gross committed
889
890
	case C.GGML_TYPE_F16:
		return ml.DTypeF16
891
892
893
894
	case C.GGML_TYPE_Q8_0:
		return ml.DTypeQ80
	case C.GGML_TYPE_Q4_0:
		return ml.DTypeQ40
Michael Yang's avatar
Michael Yang committed
895
896
897
898
899
900
901
	case C.GGML_TYPE_I32:
		return ml.DTypeI32
	default:
		return ml.DTypeOther
	}
}

902
903
904
905
906
907
908
func (t *Tensor) Neg(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_neg(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
Michael Yang committed
909
910
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
911
		b: t.b,
Michael Yang's avatar
Michael Yang committed
912
913
914
915
		t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

Michael Yang's avatar
Michael Yang committed
916
917
918
919
920
921
922
func (t *Tensor) Sub(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sub(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
func (t *Tensor) Repeat(ctx ml.Context, dim, n int) ml.Tensor {
	if dim < 0 || dim >= C.GGML_MAX_DIMS {
		panic("invalid dimension")
	}

	shape := make([]C.int64_t, C.GGML_MAX_DIMS)
	for i := range C.GGML_MAX_DIMS {
		if i == dim {
			shape[i] = C.int64_t(t.Dim(i) * n)
		} else {
			shape[i] = C.int64_t(t.Dim(i))
		}
	}

	tmpl := C.ggml_new_tensor(ctx.(*Context).ctx, t.t._type, C.int(len(shape)), unsafe.SliceData(shape))
	return &Tensor{
		b: t.b,
		t: C.ggml_repeat(ctx.(*Context).ctx, t.t, tmpl),
	}
}

Michael Yang's avatar
Michael Yang committed
944
945
946
947
948
949
950
951
952
953
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
	if len(s) > 0 {
		return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
	}

	return t
}

func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
	return &Tensor{
954
		b: t.b,
Michael Yang's avatar
Michael Yang committed
955
956
957
958
959
960
		t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
	}
}

func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
	return &Tensor{
961
		b: t.b,
Michael Yang's avatar
Michael Yang committed
962
963
964
965
966
967
		t: C.ggml_cont(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
968
		b: t.b,
Michael Yang's avatar
Michael Yang committed
969
970
971
972
		t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

973
974
975
976
977
978
979
func (t *Tensor) Div(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_div(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

Michael Yang's avatar
Michael Yang committed
980
981
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
982
		b: t.b,
Michael Yang's avatar
Michael Yang committed
983
984
985
986
		t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

987
988
989
990
991
func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
	C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)

	return &Tensor{
992
		b: t.b,
993
994
995
996
		t: mul,
	}
}

Michael Yang's avatar
llama4  
Michael Yang committed
997
998
999
1000
1001
1002
1003
func (t *Tensor) MulmatID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_mul_mat_id(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, ids.(*Tensor).t),
	}
}

Michael Yang's avatar
Michael Yang committed
1004
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
Michael Yang's avatar
llama4  
Michael Yang committed
1005
1006
1007
1008
1009
1010
	tt := C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))
	if w != nil {
		tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
		if b != nil {
			tt = C.ggml_add(ctx.(*Context).ctx, tt, b.(*Tensor).t)
		}
Michael Yang's avatar
Michael Yang committed
1011
1012
	}

Michael Yang's avatar
llama4  
Michael Yang committed
1013
	return &Tensor{b: t.b, t: tt}
Michael Yang's avatar
Michael Yang committed
1014
1015
1016
}

func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
Michael Yang's avatar
llama4  
Michael Yang committed
1017
1018
1019
1020
1021
1022
	tt := C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))
	if w != nil {
		tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
	}

	return &Tensor{b: t.b, t: tt}
Michael Yang's avatar
Michael Yang committed
1023
1024
}

1025
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
1026
1027
	if len(shape) != 4 {
		panic("expected 4 dimensions")
1028
1029
	} else if shape[3] != 0 {
		panic("cuda does not support 4d tensors")
Michael Yang's avatar
Michael Yang committed
1030
1031
1032
	}

	return &Tensor{
1033
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
		t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
	}
}

func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
	if len(shape) != 4 {
		panic("expected 4 dimensions")
	}

	return &Tensor{
1044
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1045
1046
1047
1048
1049
1050
		t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
	}
}

func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
1051
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1052
1053
1054
1055
1056
1057
		t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
1058
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1059
1060
1061
1062
		t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

1063
func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
1064
1065
1066
	switch len(shape) {
	case 1:
		return &Tensor{
1067
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1068
1069
1070
1071
			t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
		}
	case 2:
		return &Tensor{
1072
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1073
1074
1075
1076
			t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
		}
	case 3:
		return &Tensor{
1077
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1078
1079
1080
1081
			t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
		}
	case 4:
		return &Tensor{
1082
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1083
1084
1085
1086
1087
1088
1089
1090
1091
			t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
		}
	default:
		panic("unsupported number of dimensions")
	}
}

func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
	return &Tensor{
1092
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1093
1094
1095
1096
		t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
	}
}

1097
1098
1099
1100
1101
1102
1103
func (t *Tensor) SumRows(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sum_rows(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
Michael Yang committed
1104
1105
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
	return &Tensor{
1106
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1107
1108
1109
1110
		t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
	}
}

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
func (t *Tensor) Sin(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sin(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) Cos(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_cos(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
Michael Yang committed
1125
1126
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
	return &Tensor{
1127
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1128
1129
1130
1131
		t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
llama4  
Michael Yang committed
1132
1133
1134
1135
1136
1137
1138
func (t *Tensor) Sigmoid(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sigmoid_inplace(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
Michael Yang committed
1139
1140
1141
1142
func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
	switch len(shape) {
	case 1:
		return &Tensor{
1143
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1144
1145
1146
1147
			t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
		}
	case 3:
		return &Tensor{
1148
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1149
1150
1151
1152
1153
1154
1155
			t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
				C.int64_t(shape[0]), C.int64_t(shape[2]),
				C.size_t(shape[1]),
				C.size_t(offset)),
		}
	case 5:
		return &Tensor{
1156
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1157
1158
1159
1160
1161
1162
1163
			t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
				C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
				C.size_t(shape[1]), C.size_t(shape[3]),
				C.size_t(offset)),
		}
	case 7:
		return &Tensor{
1164
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
			t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
				C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
				C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
				C.size_t(offset)),
		}
	default:
		panic("unsupported number of dimensions")
	}
}

1175
func (t *Tensor) RoPE(ctx ml.Context, positions ml.Tensor, ropeDim int, ropeBase, ropeScale float32, options ...func(*rope.Options)) ml.Tensor {
1176
	// Default options
1177
	opts := &rope.Options{OriginalContextLength: 131072, Factors: &Tensor{}}
1178
1179
1180
1181
1182
1183

	// Apply any provided options
	for _, option := range options {
		option(opts)
	}

Jesse Gross's avatar
Jesse Gross committed
1184
1185
1186
1187
1188
	dequant := t.t
	if C.ggml_is_quantized(t.t._type) {
		dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
	}

Michael Yang's avatar
Michael Yang committed
1189
	return &Tensor{
1190
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1191
		t: C.ggml_rope_ext(
1192
1193
			ctx.(*Context).ctx,
			dequant,
1194
1195
			positions.(*Tensor).t,
			opts.Factors.(*Tensor).t,
Michael Yang's avatar
Michael Yang committed
1196
			C.int(ropeDim),
1197
1198
			C.int(opts.Type),
			C.int(opts.OriginalContextLength),
Michael Yang's avatar
Michael Yang committed
1199
1200
			C.float(ropeBase),
			C.float(ropeScale),
1201
1202
1203
1204
			C.float(0.0),
			C.float(1.0),
			C.float(32.0),
			C.float(1.0),
Michael Yang's avatar
Michael Yang committed
1205
1206
1207
1208
		),
	}
}

1209
1210
1211
1212
1213
1214
1215
func (t *Tensor) IM2Col(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_im2col(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1), true, C.GGML_TYPE_F32),
	}
}

Michael Yang's avatar
Michael Yang committed
1216
1217
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
	return &Tensor{
1218
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1219
1220
1221
1222
1223
1224
		t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
	return &Tensor{
1225
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1226
1227
1228
1229
		t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
Michael Yang committed
1230
1231
1232
1233
1234
1235
1236
func (t *Tensor) RELU(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_relu_inplace(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
Michael Yang committed
1237
1238
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
	return &Tensor{
1239
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1240
1241
1242
		t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
	}
}
1243

Michael Yang's avatar
Michael Yang committed
1244
func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
1245
1246
	return &Tensor{
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1247
		t: C.ggml_pool_2d(ctx.(*Context).ctx, t.t, C.GGML_OP_POOL_AVG, C.int(k), C.int(k), C.int(s), C.int(s), C.float(p), C.float(p)),
Michael Yang's avatar
Michael Yang committed
1248
1249
1250
	}
}

Michael Yang's avatar
Michael Yang committed
1251
1252
1253
1254
func (t *Tensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
	var tt *C.struct_ggml_tensor
	switch len(strides) {
	case 0:
Michael Yang's avatar
Michael Yang committed
1255
		tt = C.ggml_set_1d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset))
Michael Yang's avatar
Michael Yang committed
1256
	case 1:
Michael Yang's avatar
Michael Yang committed
1257
		tt = C.ggml_set_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset), C.size_t(strides[0]))
Michael Yang's avatar
Michael Yang committed
1258
1259
1260
1261
1262
1263
1264
	default:
		panic("unsupported number of dimensions")
	}

	return &Tensor{b: t.b, t: tt}
}

1265
1266
1267
1268
1269
1270
func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.Tensor, scale float64) ml.Tensor {
	var kqMask *C.struct_ggml_tensor
	if mask != nil {
		kqMask = mask.(*Tensor).t
	}

1271
1272
1273
	query := t.Permute(ctx, 0, 2, 1, 3)
	key = key.Permute(ctx, 0, 2, 1, 3)

1274
1275
	if t.b.flashAttention {
		value = value.Permute(ctx, 0, 2, 1, 3)
1276

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
		kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0)
		C.ggml_flash_attn_ext_set_prec(kqv, C.GGML_PREC_F32)
		return &Tensor{b: t.b, t: kqv}
	} else {
		kq := key.MulmatFullPrec(ctx, query)
		kq = &Tensor{
			b: t.b,
			t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0),
		}

		kqv := value.Mulmat(ctx, kq)
		return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	}
1290
}
1291
1292
1293
1294
1295
1296
1297

func (t *Tensor) Duplicate(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_dup(ctx.(*Context).ctx, t.t),
	}
}
Michael Yang's avatar
llama4  
Michael Yang committed
1298
1299
1300
1301
1302
1303
1304

func (t *Tensor) TopK(ctx ml.Context, k int) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_top_k(ctx.(*Context).ctx, t.t, C.int(k)),
	}
}
1305
1306
1307
1308
1309
1310
1311

func (t *Tensor) Argsort(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_argsort(ctx.(*Context).ctx, t.t, C.GGML_SORT_ORDER_ASC),
	}
}
Michael Yang's avatar
Michael Yang committed
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350

func (t *Tensor) Mean(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_mean(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) Variance(ctx ml.Context) ml.Tensor {
	return t.Add(ctx, t.Mean(ctx).Scale(ctx, -1)).
		Sqr(ctx).
		SumRows(ctx).
		Scale(ctx, 1/float64(t.Dim(0)))
}

func (t *Tensor) Stddev(ctx ml.Context) ml.Tensor {
	return t.Variance(ctx).Sqrt(ctx)
}

func (t *Tensor) Sqr(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sqr(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) Sqrt(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sqrt(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) Clamp(ctx ml.Context, min, max float32) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_clamp(ctx.(*Context).ctx, t.t, C.float(min), C.float(max)),
	}
}