backend.go 15.3 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
package ml

import (
	"bytes"
5
	"context"
Michael Yang's avatar
Michael Yang committed
6
7
	"encoding/binary"
	"fmt"
Jesse Gross's avatar
Jesse Gross committed
8
	"hash/maphash"
9
	"log/slog"
10
	"math"
Michael Yang's avatar
Michael Yang committed
11
	"slices"
Michael Yang's avatar
Michael Yang committed
12
13
14
	"strconv"
	"strings"

Jesse Gross's avatar
Jesse Gross committed
15
	"github.com/ollama/ollama/format"
16
17
	"github.com/ollama/ollama/fs"
)
Michael Yang's avatar
Michael Yang committed
18
19

type Backend interface {
Jesse Gross's avatar
Jesse Gross committed
20
21
22
	// Close frees all memory associated with this backend
	Close()

23
	Load(ctx context.Context, progress func(float32)) error
24
25
26
27

	// BackendMemory returns the memory allocations that were made for this model
	BackendMemory() BackendMemory

28
	Config() fs.Config
Michael Yang's avatar
Michael Yang committed
29
30
	Get(name string) Tensor
	NewContext() Context
31
	NewContextSize(size int) Context
Michael Yang's avatar
Michael Yang committed
32
33
}

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
// BackendCacheConfig should be implemented by backends that need special output
// from the cache to meet specific requirements. It is frequently implemented in
// conjunction with ScaledDotProductAttention.
type BackendCacheConfig interface {
	CacheConfig() CacheConfig
}

// CacheConfig controls optimizations (mostly backend-specific) that may transform
// the output the cache to work better with specific kernels.
type CacheConfig struct {
	// CachePadding specifies the multiple for the number of tokens of cache history
	// that will be returned from cache Get for k, v and mask. The capacity of the
	// cache itself will also be increased to a multiple of this size if needed.
	CachePadding int

	// PermutedV performs Permute(ctx, 1, 2, 0, 3) on v tensors stored via Put
	// and return the permuted version via Get. This uses the cache copy operation
	// to avoid a Contiguous call on the permuted tensor.
	PermutedV bool
53
54
55
56
57
58
59
60

	// MaskDType specifies the data type for generating the mask. If unset it will
	// default to DTypeF32.
	MaskDType DType

	// MaskBatchPadding specifies the multiple for the batch size dimension in the mask.
	// Any position that does not correspond to an actual token will be filled with -Inf.
	MaskBatchPadding int
61
62
}

Jesse Gross's avatar
Jesse Gross committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// GPULayers is a set of layers to be allocated on a single GPU
type GPULayers struct {
	// ID is the identifier of the GPU, as reported in DeviceMemory
	ID string

	// Layers is a set of layer indicies to load
	Layers []int
}

func (g GPULayers) String() string {
	if len(g.Layers) == 0 {
		return ""
	}

	slices.Sort(g.Layers)

	contiguous := true
	base := g.Layers[0]
	for i := range g.Layers {
		if g.Layers[i] != base+i {
			contiguous = false
			break
		}
	}

	if contiguous {
		return fmt.Sprintf("ID:%v Layers:%v(%v..%v)", g.ID, len(g.Layers), g.Layers[0], g.Layers[len(g.Layers)-1])
	} else {
		return fmt.Sprintf("ID:%v Layers:%v%v", g.ID, len(g.Layers), g.Layers)
	}
}

// GPULayersList is a set of layer allocations across multiple GPUs
type GPULayersList []GPULayers

func (l GPULayersList) String() string {
	if l.Sum() > 0 {
		return fmt.Sprintf("%v%v", l.Sum(), []GPULayers(l))
	} else {
		return fmt.Sprintf("%v", []GPULayers(l))
	}
}

// Sum is the total number of layers assigned across all GPUs
func (l GPULayersList) Sum() int {
	var sum int

	for _, g := range l {
		sum += len(g.Layers)
	}

	return sum
}

var h maphash.Hash

// Hash is an identifier of this layer assignment
func (l GPULayersList) Hash() uint64 {
	h.Reset()
	for _, g := range l {
		if len(g.Layers) > 0 {
			h.WriteString(g.ID)
			for _, l := range g.Layers {
				binary.Write(&h, binary.NativeEndian, int64(l))
			}
		}
	}

	return h.Sum64()
}

134
135
// BackendParams controls how the backend loads and executes models
type BackendParams struct {
Jesse Gross's avatar
Jesse Gross committed
136
137
138
139
140
	// AllocMemory causes the backend to allocate memory for the model. If
	// false, this is only being used for discovering the required amount of
	// memory and cannot load the model for running.
	AllocMemory bool

141
142
	// NumThreads sets the number of threads to use if running on the CPU
	NumThreads int
Michael Yang's avatar
Michael Yang committed
143

Jesse Gross's avatar
Jesse Gross committed
144
145
	// GPULayers is the set of layers to offload to GPUs
	GPULayers GPULayersList
146
147
148

	// FlashAttention indicates that we should use a fused flash attention kernel
	FlashAttention bool
149
150
}

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// ErrNoMem is returned when panicing due to insufficient memory. It includes
// the attempted memory allocation.
type ErrNoMem struct {
	BackendMemory
}

func (e ErrNoMem) Error() string {
	return fmt.Sprintf("insufficient memory - required allocations: %+v", e.BackendMemory)
}

// DeviceMemory provides a breakdown of the memory needed
// per device, such as a CPU or GPU.
type DeviceMemory struct {
	// Name is the name of the device as labeled by the backend. It
	// may not be persistent across instances of the runner.
	Name string

168
169
170
	// ID is an identifier for the device for matching with system
	// management libraries.
	ID string
171

172
	// Weights is the per-layer memory needed for the model weights.
173
	Weights []uint64
174
175

	// Cache is the per-layer memory needed for the KV cache.
176
	Cache []uint64
177
178

	// Graph is the size of the compute graph. It is not per-layer.
179
	Graph uint64
180
181
}

182
183
func sumMemory(mem []uint64) uint64 {
	var sum uint64
Jesse Gross's avatar
Jesse Gross committed
184

185
186
	for _, m := range mem {
		sum += m
Jesse Gross's avatar
Jesse Gross committed
187
188
	}

189
	return sum
Jesse Gross's avatar
Jesse Gross committed
190
191
}

192
193
194
195
196
197
198
// Size returns the total size of the memory required by this device
func (m DeviceMemory) Size() uint64 {
	return sumMemory(m.Weights) + sumMemory(m.Cache) + m.Graph
}

func memoryPresent(mem []uint64) bool {
	return slices.ContainsFunc(mem, func(m uint64) bool { return m != 0 })
199
200
201
202
203
204
205
206
207
208
209
210
}

func (m DeviceMemory) LogValue() slog.Value {
	var attrs []slog.Attr
	if memoryPresent(m.Weights) {
		attrs = append(attrs, slog.Any("Weights", m.Weights))
	}

	if memoryPresent(m.Cache) {
		attrs = append(attrs, slog.Any("Cache", m.Cache))
	}

211
	if m.Graph != 0 {
212
213
214
		attrs = append(attrs, slog.Any("Graph", m.Graph))
	}

215
216
	if len(attrs) > 0 && m.ID != "" {
		attrs = append([]slog.Attr{slog.String("ID", m.ID)}, attrs...)
217
218
	}

219
220
221
	return slog.GroupValue(attrs...)
}

222
223
224
225
226
227
// BackendMemory provides the amount of memory required to load the model
// per device based on the BackendParams. In some cases, not all required
// allocations will be known at this point. However, the size of the most recent
// allocation is guaranteed to be provided so that if it failed, the caller can
// accommodate that to make forward progress.
type BackendMemory struct {
228
	// InputWeights are always located on the CPU and cannot be moved
229
	InputWeights uint64
230
231
232
233
234
235
236
237
238

	// CPU model components are located in system memory. This does not
	// include unified memory allocated through the GPU.
	CPU DeviceMemory

	// GPU model components are located on one or more GPUs.
	GPUs []DeviceMemory
}

239
240
func (m BackendMemory) LogValue() slog.Value {
	var attrs []slog.Attr
241
	if m.InputWeights != 0 {
242
243
244
245
246
247
248
249
250
251
252
		attrs = append(attrs, slog.Any("InputWeights", m.InputWeights))
	}

	attrs = append(attrs, slog.Any(m.CPU.Name, m.CPU))
	for _, g := range m.GPUs {
		attrs = append(attrs, slog.Any(g.Name, g))
	}

	return slog.GroupValue(attrs...)
}

253
// Log prints a high level summary of the memory
Jesse Gross's avatar
Jesse Gross committed
254
255
256
257
258
259
260
261
262
func (m BackendMemory) Log(level slog.Level) {
	var total uint64

	for _, gpu := range m.GPUs {
		if sum := sumMemory(gpu.Weights); sum > 0 {
			slog.Log(context.TODO(), level, "model weights", "device", gpu.Name, "size", format.HumanBytes2(sum))
			total += sum
		}
	}
263
	if sum := m.InputWeights + sumMemory(m.CPU.Weights); sum > 0 {
Jesse Gross's avatar
Jesse Gross committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
		slog.Log(context.TODO(), level, "model weights", "device", m.CPU.Name, "size", format.HumanBytes2(sum))
		total += sum
	}

	for _, gpu := range m.GPUs {
		if sum := sumMemory(gpu.Cache); sum > 0 {
			slog.Log(context.TODO(), level, "kv cache", "device", gpu.Name, "size", format.HumanBytes2(sum))
			total += sum
		}
	}
	if sum := sumMemory(m.CPU.Cache); sum > 0 {
		slog.Log(context.TODO(), level, "kv cache", "device", m.CPU.Name, "size", format.HumanBytes2(sum))
		total += sum
	}

	for _, gpu := range m.GPUs {
280
		if sum := gpu.Graph; sum > 0 {
Jesse Gross's avatar
Jesse Gross committed
281
282
283
284
			slog.Log(context.TODO(), level, "compute graph", "device", gpu.Name, "size", format.HumanBytes2(sum))
			total += sum
		}
	}
285
	if sum := m.CPU.Graph; sum > 0 {
Jesse Gross's avatar
Jesse Gross committed
286
287
288
289
290
291
292
293
294
		slog.Log(context.TODO(), level, "compute graph", "device", m.CPU.Name, "size", format.HumanBytes2(sum))
		total += sum
	}

	if total > 0 {
		slog.Log(context.TODO(), level, "total memory", "size", format.HumanBytes2(total))
	}
}

295
var backends = make(map[string]func(string, BackendParams) (Backend, error))
296

297
func RegisterBackend(name string, f func(string, BackendParams) (Backend, error)) {
Michael Yang's avatar
Michael Yang committed
298
299
300
301
302
303
304
	if _, ok := backends[name]; ok {
		panic("backend: backend already registered")
	}

	backends[name] = f
}

305
func NewBackend(modelPath string, params BackendParams) (Backend, error) {
Michael Yang's avatar
Michael Yang committed
306
	if backend, ok := backends["ggml"]; ok {
307
		return backend(modelPath, params)
Michael Yang's avatar
Michael Yang committed
308
309
310
311
312
313
	}

	return nil, fmt.Errorf("unsupported backend")
}

type Context interface {
314
	Empty(dtype DType, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
315
	Zeros(dtype DType, shape ...int) Tensor
316
317
	FromFloatSlice(s []float32, shape ...int) Tensor
	FromIntSlice(s []int32, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
318

Michael Yang's avatar
arange  
Michael Yang committed
319
320
321
	// Arange creates a 1D tensor with values within an interval (start, stop] increased by step.
	Arange(start, stop, step float32, dtype DType) Tensor

322
	Forward(...Tensor) Context
323
	Compute(...Tensor)
324
	ComputeWithNotify(func(), ...Tensor) // notify callback once compute has begun
325
326
327
328
329

	// Reserve is analogous to Compute but rather than executing a
	// graph, simply preallocates memory. Typically called with a
	// worst case graph to ensure all resources are available for
	// for future inference.
330
	Reserve()
331

332
	MaxGraphNodes() int
333
	Close()
334

335
336
	// Input returns a context appropriate for creating tensors that are
	// inputs to the model (which includes things like output locations)
337
338
339
340
	Input() Context

	// Layer returns a context appropriate for creating intermediate tensors
	Layer(int) Context
Michael Yang's avatar
Michael Yang committed
341
342
343
}

type Tensor interface {
344
345
	Dim(n int) int
	Stride(n int) int
Michael Yang's avatar
Michael Yang committed
346

347
	Shape() []int
Michael Yang's avatar
Michael Yang committed
348
	DType() DType
349
	Cast(ctx Context, dtype DType) Tensor
Michael Yang's avatar
Michael Yang committed
350
351
352
353

	Bytes() []byte
	Floats() []float32

354
355
	SetValueFromIntSlice(s []int32)

356
	Neg(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
357
	Add(ctx Context, t2 Tensor) Tensor
Michael Yang's avatar
Michael Yang committed
358
	Sub(ctx Context, t2 Tensor) Tensor
Michael Yang's avatar
Michael Yang committed
359
	Mul(ctx Context, t2 Tensor) Tensor
360
361
	Div(ctx Context, t2 Tensor) Tensor

Michael Yang's avatar
Michael Yang committed
362
	Mulmat(ctx Context, t2 Tensor) Tensor
363
	MulmatFullPrec(ctx Context, t2 Tensor) Tensor
Michael Yang's avatar
llama4  
Michael Yang committed
364
	MulmatID(ctx Context, t2, ids Tensor) Tensor
365
	AddID(ctx Context, t2, ids Tensor) Tensor
Michael Yang's avatar
Michael Yang committed
366
367

	Softmax(ctx Context) Tensor
368
	L2Norm(ctx Context, eps float32) Tensor
Michael Yang's avatar
Michael Yang committed
369
370
371
	LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
	RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
	Scale(ctx Context, s float64) Tensor
372
	SumRows(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
373

Michael Yang's avatar
Michael Yang committed
374
	AvgPool2D(ctx Context, k, s int, p float32) Tensor
Michael Yang's avatar
Michael Yang committed
375
	Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Michael Yang's avatar
Michael Yang committed
376

377
	IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Michael Yang's avatar
Michael Yang committed
378

379
380
	Sin(ctx Context) Tensor
	Cos(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
381
	Tanh(ctx Context) Tensor
382
383
384
	GELU(ctx Context, up ...Tensor) Tensor
	SILU(ctx Context, up ...Tensor) Tensor
	RELU(ctx Context, up ...Tensor) Tensor
Michael Yang's avatar
llama4  
Michael Yang committed
385
	Sigmoid(ctx Context) Tensor
386
387
388

	// AlphaLimitSILU is a variant of SILU that clamps the input to the range [-limit, limit]
	SILUAlphaLimit(ctx Context, up Tensor, alpha, limit float32) Tensor
Michael Yang's avatar
Michael Yang committed
389

390
	Reshape(ctx Context, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
391
392
	View(ctx Context, offset int, shape ...int) Tensor
	Permute(ctx Context, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
393
	Contiguous(ctx Context, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
394
	Set(ctx Context, t2 Tensor, offset int, strides ...int) Tensor
Michael Yang's avatar
Michael Yang committed
395

396
	Pad(ctx Context, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
397
398

	Stack(ctx Context, dim int, s ...Tensor) Tensor
399
400
401

	// Repeat repeats the tensor n times along dimension dim
	Repeat(ctx Context, dim, n int) Tensor
Michael Yang's avatar
Michael Yang committed
402
403
404
	Concat(ctx Context, t2 Tensor, dim int) Tensor
	Rows(ctx Context, t2 Tensor) Tensor
	Copy(ctx Context, t2 Tensor) Tensor
405
	Duplicate(ctx Context) Tensor
Michael Yang's avatar
llama4  
Michael Yang committed
406
407

	TopK(ctx Context, k int) Tensor
408
	Argsort(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
409
410
411
412
413
414
	Mean(ctx Context) Tensor
	Variance(ctx Context) Tensor
	Stddev(ctx Context) Tensor
	Sqr(ctx Context) Tensor
	Sqrt(ctx Context) Tensor
	Clamp(ctx Context, min, max float32) Tensor
Michael Yang's avatar
Michael Yang committed
415
416
}

417
418
419
420
// ScaledDotProductAttention implements a fused attention
// operation equivalent to following code on a tensor named
// query:
//
421
422
423
424
// query = query.Permute(ctx, 0, 2, 1, 3)
// key = key.Permute(ctx, 0, 2, 1, 3)
// value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
//
425
426
427
428
429
430
431
432
433
434
435
436
437
// kq := key.MulmatFullPrec(ctx, query)
//
// kq = kq.Scale(ctx, scale)
//
//	if mask != nil {
//		kq = kq.Add(ctx, mask)
//	}
//
// kq = kq.Softmax(ctx)
//
// kqv := value.Mulmat(ctx, kq)
// return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
type ScaledDotProductAttention interface {
438
	ScaledDotProductAttention(ctx Context, key, value, mask, sinks Tensor, scale float64) Tensor
439
440
}

Michael Yang's avatar
Michael Yang committed
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
type number interface {
	~int | ~int8 | ~int16 | ~int32 | ~int64 |
		~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 |
		~float32 | ~float64 |
		~complex64 | ~complex128
}

func mul[T number](s ...T) T {
	p := T(1)
	for _, v := range s {
		p *= v
	}

	return p
}

457
type DumpOptions func(*dumpOptions)
Michael Yang's avatar
Michael Yang committed
458

459
460
461
462
463
// DumpWithPrecision sets the number of decimal places to print. Applies to float32 and float64.
func DumpWithPrecision(n int) DumpOptions {
	return func(opts *dumpOptions) {
		opts.Precision = n
	}
Michael Yang's avatar
Michael Yang committed
464
465
}

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
// DumpWithThreshold sets the threshold for printing the entire tensor. If the number of elements
// is less than or equal to this value, the entire tensor will be printed. Otherwise, only the
// beginning and end of each dimension will be printed.
func DumpWithThreshold(n int) DumpOptions {
	return func(opts *dumpOptions) {
		opts.Threshold = n
	}
}

// DumpWithEdgeItems sets the number of elements to print at the beginning and end of each dimension.
func DumpWithEdgeItems(n int) DumpOptions {
	return func(opts *dumpOptions) {
		opts.EdgeItems = n
	}
}

type dumpOptions struct {
	Precision, Threshold, EdgeItems int
}

func Dump(ctx Context, t Tensor, optsFuncs ...DumpOptions) string {
	opts := dumpOptions{Precision: 4, Threshold: 1000, EdgeItems: 3}
	for _, optsFunc := range optsFuncs {
		optsFunc(&opts)
	}

	if mul(t.Shape()...) <= opts.Threshold {
		opts.EdgeItems = math.MaxInt
Michael Yang's avatar
Michael Yang committed
494
495
496
497
	}

	switch t.DType() {
	case DTypeF32:
498
499
		return dump[[]float32](ctx, t, opts.EdgeItems, func(f float32) string {
			return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
Jesse Gross's avatar
Jesse Gross committed
500
		})
501
	case DTypeF16, DTypeQ80, DTypeQ40:
502
		f32 := ctx.Input().Empty(DTypeF32, t.Shape()...)
Jesse Gross's avatar
Jesse Gross committed
503
		f32 = t.Copy(ctx, f32)
504
505
		return dump[[]float32](ctx, f32, opts.EdgeItems, func(f float32) string {
			return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
Michael Yang's avatar
Michael Yang committed
506
507
		})
	case DTypeI32:
508
		return dump[[]int32](ctx, t, opts.EdgeItems, func(i int32) string {
Michael Yang's avatar
Michael Yang committed
509
510
511
512
513
514
515
			return strconv.FormatInt(int64(i), 10)
		})
	default:
		return "<unsupported>"
	}
}

Jesse Gross's avatar
Jesse Gross committed
516
517
func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string {
	if t.Bytes() == nil {
518
		ctx.Forward(t).Compute(t)
Michael Yang's avatar
Michael Yang committed
519
520
521
522
523
524
525
526
	}

	s := make(S, mul(t.Shape()...))
	if err := binary.Read(bytes.NewBuffer(t.Bytes()), binary.LittleEndian, &s); err != nil {
		panic(err)
	}

	shape := t.Shape()
Michael Yang's avatar
Michael Yang committed
527
	slices.Reverse(shape)
Michael Yang's avatar
Michael Yang committed
528
529

	var sb strings.Builder
530
531
	var f func([]int, int)
	f = func(dims []int, stride int) {
Michael Yang's avatar
Michael Yang committed
532
		prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
Michael Yang's avatar
Michael Yang committed
533
534
		sb.WriteString("[")
		defer func() { sb.WriteString("]") }()
535
		for i := 0; i < dims[0]; i++ {
Michael Yang's avatar
Michael Yang committed
536
			if i >= items && i < dims[0]-items {
Michael Yang's avatar
Michael Yang committed
537
				sb.WriteString("..., ")
Michael Yang's avatar
Michael Yang committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
				// skip to next printable element
				skip := dims[0] - 2*items
				if len(dims) > 1 {
					stride += mul(append(dims[1:], skip)...)
					fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix)
				}
				i += skip - 1
			} else if len(dims) > 1 {
				f(dims[1:], stride)
				stride += mul(dims[1:]...)
				if i < dims[0]-1 {
					fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
				}
			} else {
Michael Yang's avatar
Michael Yang committed
552
553
554
555
556
557
				text := fn(s[stride+i])
				if len(text) > 0 && text[0] != '-' {
					sb.WriteString(" ")
				}

				sb.WriteString(text)
Michael Yang's avatar
Michael Yang committed
558
				if i < dims[0]-1 {
Michael Yang's avatar
Michael Yang committed
559
					sb.WriteString(", ")
Michael Yang's avatar
Michael Yang committed
560
561
562
563
564
565
566
567
568
569
570
571
				}
			}
		}
	}
	f(shape, 0)

	return sb.String()
}

type DType int

const (
Jesse Gross's avatar
Jesse Gross committed
572
573
574
	DTypeOther DType = iota
	DTypeF32
	DTypeF16
575
576
	DTypeQ80
	DTypeQ40
Michael Yang's avatar
Michael Yang committed
577
	DTypeI32
Michael Yang's avatar
Michael Yang committed
578
	DTypeMXFP4
Michael Yang's avatar
Michael Yang committed
579
)