backend.go 8.96 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
package ml

import (
	"bytes"
5
	"context"
Michael Yang's avatar
Michael Yang committed
6
7
	"encoding/binary"
	"fmt"
8
	"math"
Michael Yang's avatar
Michael Yang committed
9
	"slices"
Michael Yang's avatar
Michael Yang committed
10
11
12
	"strconv"
	"strings"

13
14
	"github.com/ollama/ollama/fs"
)
Michael Yang's avatar
Michael Yang committed
15
16

type Backend interface {
17
	Load(ctx context.Context, progress func(float32)) error
18
	Config() fs.Config
Michael Yang's avatar
Michael Yang committed
19
20
	Get(name string) Tensor
	NewContext() Context
21
	NewContextSize(size int) Context
Michael Yang's avatar
Michael Yang committed
22
23
}

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
// BackendCacheConfig should be implemented by backends that need special output
// from the cache to meet specific requirements. It is frequently implemented in
// conjunction with ScaledDotProductAttention.
type BackendCacheConfig interface {
	CacheConfig() CacheConfig
}

// CacheConfig controls optimizations (mostly backend-specific) that may transform
// the output the cache to work better with specific kernels.
type CacheConfig struct {
	// CachePadding specifies the multiple for the number of tokens of cache history
	// that will be returned from cache Get for k, v and mask. The capacity of the
	// cache itself will also be increased to a multiple of this size if needed.
	CachePadding int

	// PermutedV performs Permute(ctx, 1, 2, 0, 3) on v tensors stored via Put
	// and return the permuted version via Get. This uses the cache copy operation
	// to avoid a Contiguous call on the permuted tensor.
	PermutedV bool
43
44
45
46
47
48
49
50

	// MaskDType specifies the data type for generating the mask. If unset it will
	// default to DTypeF32.
	MaskDType DType

	// MaskBatchPadding specifies the multiple for the batch size dimension in the mask.
	// Any position that does not correspond to an actual token will be filled with -Inf.
	MaskBatchPadding int
51
52
}

53
54
55
56
// BackendParams controls how the backend loads and executes models
type BackendParams struct {
	// NumThreads sets the number of threads to use if running on the CPU
	NumThreads int
Michael Yang's avatar
Michael Yang committed
57

58
59
60
61
62
63
64
65
	// MainGPU is the index of the primary GPU to use
	MainGPU int

	// NumGPULayers is the number of layers to offload to GPUs
	NumGPULayers int

	// TensorSplit is the fraction of the model to offload to each GPU
	TensorSplit []float32
66
67
68

	// FlashAttention indicates that we should use a fused flash attention kernel
	FlashAttention bool
69
70
}

71
var backends = make(map[string]func(string, BackendParams) (Backend, error))
72

73
func RegisterBackend(name string, f func(string, BackendParams) (Backend, error)) {
Michael Yang's avatar
Michael Yang committed
74
75
76
77
78
79
80
	if _, ok := backends[name]; ok {
		panic("backend: backend already registered")
	}

	backends[name] = f
}

81
func NewBackend(modelPath string, params BackendParams) (Backend, error) {
Michael Yang's avatar
Michael Yang committed
82
	if backend, ok := backends["ggml"]; ok {
83
		return backend(modelPath, params)
Michael Yang's avatar
Michael Yang committed
84
85
86
87
88
89
	}

	return nil, fmt.Errorf("unsupported backend")
}

type Context interface {
90
	Empty(dtype DType, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
91
92
93
94
	Zeros(dtype DType, shape ...int) Tensor
	FromFloatSlice(s []float32, shape ...int) (Tensor, error)
	FromIntSlice(s []int32, shape ...int) (Tensor, error)

Michael Yang's avatar
arange  
Michael Yang committed
95
96
97
	// Arange creates a 1D tensor with values within an interval (start, stop] increased by step.
	Arange(start, stop, step float32, dtype DType) Tensor

98
	Forward(...Tensor) Context
99
	Compute(...Tensor)
100
101
102
103
104
105
106

	// Reserve is analogous to Compute but rather than executing a
	// graph, simply preallocates memory. Typically called with a
	// worst case graph to ensure all resources are available for
	// for future inference.
	Reserve() error

107
	MaxGraphNodes() int
108
	Close()
109

110
111
	// Input returns a context appropriate for creating tensors that are
	// inputs to the model (which includes things like output locations)
112
113
114
115
	Input() Context

	// Layer returns a context appropriate for creating intermediate tensors
	Layer(int) Context
Michael Yang's avatar
Michael Yang committed
116
117
118
}

type Tensor interface {
119
120
	Dim(n int) int
	Stride(n int) int
Michael Yang's avatar
Michael Yang committed
121

122
	Shape() []int
Michael Yang's avatar
Michael Yang committed
123
124
125
126
127
	DType() DType

	Bytes() []byte
	Floats() []float32

128
	Neg(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
129
130
	Add(ctx Context, t2 Tensor) Tensor
	Mul(ctx Context, t2 Tensor) Tensor
131
132
	Div(ctx Context, t2 Tensor) Tensor

Michael Yang's avatar
Michael Yang committed
133
	Mulmat(ctx Context, t2 Tensor) Tensor
134
	MulmatFullPrec(ctx Context, t2 Tensor) Tensor
Michael Yang's avatar
llama4  
Michael Yang committed
135
	MulmatID(ctx Context, t2, ids Tensor) Tensor
Michael Yang's avatar
Michael Yang committed
136
137
138
139
140

	Softmax(ctx Context) Tensor
	LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
	RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
	Scale(ctx Context, s float64) Tensor
141
	SumRows(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
142

Michael Yang's avatar
Michael Yang committed
143
	AvgPool2D(ctx Context, k, s int, p float32) Tensor
Michael Yang's avatar
Michael Yang committed
144
	Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Michael Yang's avatar
Michael Yang committed
145

146
	IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Michael Yang's avatar
Michael Yang committed
147

148
149
	Sin(ctx Context) Tensor
	Cos(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
150
151
152
	Tanh(ctx Context) Tensor
	GELU(ctx Context) Tensor
	SILU(ctx Context) Tensor
Michael Yang's avatar
llama4  
Michael Yang committed
153
	Sigmoid(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
154

155
	Reshape(ctx Context, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
156
157
158
	View(ctx Context, offset int, shape ...int) Tensor
	Permute(ctx Context, shape ...int) Tensor
	Contiguous(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
159
	Set(ctx Context, t2 Tensor, offset int, strides ...int) Tensor
Michael Yang's avatar
Michael Yang committed
160

161
	Pad(ctx Context, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
162
163

	Stack(ctx Context, dim int, s ...Tensor) Tensor
164
165
166

	// Repeat repeats the tensor n times along dimension dim
	Repeat(ctx Context, dim, n int) Tensor
Michael Yang's avatar
Michael Yang committed
167
168
169
	Concat(ctx Context, t2 Tensor, dim int) Tensor
	Rows(ctx Context, t2 Tensor) Tensor
	Copy(ctx Context, t2 Tensor) Tensor
170
	Duplicate(ctx Context) Tensor
Michael Yang's avatar
llama4  
Michael Yang committed
171
172

	TopK(ctx Context, k int) Tensor
173
	Argsort(ctx Context) Tensor
Michael Yang's avatar
Michael Yang committed
174
175
}

176
177
178
179
// ScaledDotProductAttention implements a fused attention
// operation equivalent to following code on a tensor named
// query:
//
180
181
182
183
// query = query.Permute(ctx, 0, 2, 1, 3)
// key = key.Permute(ctx, 0, 2, 1, 3)
// value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
//
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
// kq := key.MulmatFullPrec(ctx, query)
//
// kq = kq.Scale(ctx, scale)
//
//	if mask != nil {
//		kq = kq.Add(ctx, mask)
//	}
//
// kq = kq.Softmax(ctx)
//
// kqv := value.Mulmat(ctx, kq)
// return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
type ScaledDotProductAttention interface {
	ScaledDotProductAttention(ctx Context, key, value, mask Tensor, scale float64) Tensor
}

Michael Yang's avatar
Michael Yang committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
type number interface {
	~int | ~int8 | ~int16 | ~int32 | ~int64 |
		~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 |
		~float32 | ~float64 |
		~complex64 | ~complex128
}

func mul[T number](s ...T) T {
	p := T(1)
	for _, v := range s {
		p *= v
	}

	return p
}

216
type DumpOptions func(*dumpOptions)
Michael Yang's avatar
Michael Yang committed
217

218
219
220
221
222
// DumpWithPrecision sets the number of decimal places to print. Applies to float32 and float64.
func DumpWithPrecision(n int) DumpOptions {
	return func(opts *dumpOptions) {
		opts.Precision = n
	}
Michael Yang's avatar
Michael Yang committed
223
224
}

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
// DumpWithThreshold sets the threshold for printing the entire tensor. If the number of elements
// is less than or equal to this value, the entire tensor will be printed. Otherwise, only the
// beginning and end of each dimension will be printed.
func DumpWithThreshold(n int) DumpOptions {
	return func(opts *dumpOptions) {
		opts.Threshold = n
	}
}

// DumpWithEdgeItems sets the number of elements to print at the beginning and end of each dimension.
func DumpWithEdgeItems(n int) DumpOptions {
	return func(opts *dumpOptions) {
		opts.EdgeItems = n
	}
}

type dumpOptions struct {
	Precision, Threshold, EdgeItems int
}

func Dump(ctx Context, t Tensor, optsFuncs ...DumpOptions) string {
	opts := dumpOptions{Precision: 4, Threshold: 1000, EdgeItems: 3}
	for _, optsFunc := range optsFuncs {
		optsFunc(&opts)
	}

	if mul(t.Shape()...) <= opts.Threshold {
		opts.EdgeItems = math.MaxInt
Michael Yang's avatar
Michael Yang committed
253
254
255
256
	}

	switch t.DType() {
	case DTypeF32:
257
258
		return dump[[]float32](ctx, t, opts.EdgeItems, func(f float32) string {
			return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
Jesse Gross's avatar
Jesse Gross committed
259
		})
260
	case DTypeF16, DTypeQ80, DTypeQ40:
261
		f32 := ctx.Input().Empty(DTypeF32, t.Shape()...)
Jesse Gross's avatar
Jesse Gross committed
262
		f32 = t.Copy(ctx, f32)
263
264
		return dump[[]float32](ctx, f32, opts.EdgeItems, func(f float32) string {
			return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
Michael Yang's avatar
Michael Yang committed
265
266
		})
	case DTypeI32:
267
		return dump[[]int32](ctx, t, opts.EdgeItems, func(i int32) string {
Michael Yang's avatar
Michael Yang committed
268
269
270
271
272
273
274
			return strconv.FormatInt(int64(i), 10)
		})
	default:
		return "<unsupported>"
	}
}

Jesse Gross's avatar
Jesse Gross committed
275
276
func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string {
	if t.Bytes() == nil {
277
		ctx.Forward(t).Compute(t)
Michael Yang's avatar
Michael Yang committed
278
279
280
281
282
283
284
285
	}

	s := make(S, mul(t.Shape()...))
	if err := binary.Read(bytes.NewBuffer(t.Bytes()), binary.LittleEndian, &s); err != nil {
		panic(err)
	}

	shape := t.Shape()
Michael Yang's avatar
Michael Yang committed
286
	slices.Reverse(shape)
Michael Yang's avatar
Michael Yang committed
287
288

	var sb strings.Builder
289
290
	var f func([]int, int)
	f = func(dims []int, stride int) {
Michael Yang's avatar
Michael Yang committed
291
		prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
Michael Yang's avatar
Michael Yang committed
292
293
		sb.WriteString("[")
		defer func() { sb.WriteString("]") }()
294
		for i := 0; i < dims[0]; i++ {
Michael Yang's avatar
Michael Yang committed
295
			if i >= items && i < dims[0]-items {
Michael Yang's avatar
Michael Yang committed
296
				sb.WriteString("..., ")
Michael Yang's avatar
Michael Yang committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
				// skip to next printable element
				skip := dims[0] - 2*items
				if len(dims) > 1 {
					stride += mul(append(dims[1:], skip)...)
					fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix)
				}
				i += skip - 1
			} else if len(dims) > 1 {
				f(dims[1:], stride)
				stride += mul(dims[1:]...)
				if i < dims[0]-1 {
					fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
				}
			} else {
Michael Yang's avatar
Michael Yang committed
311
312
313
314
315
316
				text := fn(s[stride+i])
				if len(text) > 0 && text[0] != '-' {
					sb.WriteString(" ")
				}

				sb.WriteString(text)
Michael Yang's avatar
Michael Yang committed
317
				if i < dims[0]-1 {
Michael Yang's avatar
Michael Yang committed
318
					sb.WriteString(", ")
Michael Yang's avatar
Michael Yang committed
319
320
321
322
323
324
325
326
327
328
329
330
				}
			}
		}
	}
	f(shape, 0)

	return sb.String()
}

type DType int

const (
Jesse Gross's avatar
Jesse Gross committed
331
332
333
	DTypeOther DType = iota
	DTypeF32
	DTypeF16
334
335
	DTypeQ80
	DTypeQ40
Michael Yang's avatar
Michael Yang committed
336
337
	DTypeI32
)