"src/targets/gpu/vscode:/vscode.git/clone" did not exist on "a4f8d30b6ab00179b2e83b95c7e4a34335a5fd62"
auto_pruners_torch.py 18.5 KB
Newer Older
Guoxin's avatar
Guoxin committed
1
2
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
3

Guoxin's avatar
Guoxin committed
4
'''
5
6
Example for supported automatic pruning algorithms.
In this example, we present the usage of automatic pruners (NetAdapt, AutoCompressPruner). L1, L2, FPGM pruners are also executed for comparison purpose.
Guoxin's avatar
Guoxin committed
7
8
9
10
'''

import argparse
import os
11
import sys
Guoxin's avatar
Guoxin committed
12
13
14
import json
import torch
from torch.optim.lr_scheduler import StepLR, MultiStepLR
Guoxin's avatar
Guoxin committed
15
from torchvision import datasets, transforms
Guoxin's avatar
Guoxin committed
16

liuzhe-lz's avatar
liuzhe-lz committed
17
18
19
20
from nni.algorithms.compression.pytorch.pruning import L1FilterPruner, L2FilterPruner, FPGMPruner
from nni.algorithms.compression.pytorch.pruning import SimulatedAnnealingPruner, ADMMPruner, NetAdaptPruner, AutoCompressPruner
from nni.compression.pytorch import ModelSpeedup
from nni.compression.pytorch.utils.counter import count_flops_params
Guoxin's avatar
Guoxin committed
21

22
23
from pathlib import Path
sys.path.append(str(Path(__file__).absolute().parents[1] / 'models'))
24
25
26
from mnist.lenet import LeNet
from cifar10.vgg import VGG
from cifar10.resnet import ResNet18, ResNet50
Guoxin's avatar
Guoxin committed
27

28

Guoxin's avatar
Guoxin committed
29
def get_data(dataset, data_dir, batch_size, test_batch_size):
Guoxin's avatar
Guoxin committed
30
31
32
33
34
35
    '''
    get data
    '''
    kwargs = {'num_workers': 1, 'pin_memory': True} if torch.cuda.is_available() else {
    }

Guoxin's avatar
Guoxin committed
36
    if dataset == 'mnist':
Guoxin's avatar
Guoxin committed
37
        train_loader = torch.utils.data.DataLoader(
Guoxin's avatar
Guoxin committed
38
            datasets.MNIST(data_dir, train=True, download=True,
Guoxin's avatar
Guoxin committed
39
40
41
42
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ])),
Guoxin's avatar
Guoxin committed
43
            batch_size=batch_size, shuffle=True, **kwargs)
Guoxin's avatar
Guoxin committed
44
        val_loader = torch.utils.data.DataLoader(
Guoxin's avatar
Guoxin committed
45
            datasets.MNIST(data_dir, train=False,
Guoxin's avatar
Guoxin committed
46
47
48
49
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ])),
Guoxin's avatar
Guoxin committed
50
            batch_size=test_batch_size, shuffle=True, **kwargs)
Guoxin's avatar
Guoxin committed
51
        criterion = torch.nn.NLLLoss()
Guoxin's avatar
Guoxin committed
52
    elif dataset == 'cifar10':
Guoxin's avatar
Guoxin committed
53
54
55
        normalize = transforms.Normalize(
            (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
        train_loader = torch.utils.data.DataLoader(
Guoxin's avatar
Guoxin committed
56
            datasets.CIFAR10(data_dir, train=True, transform=transforms.Compose([
Guoxin's avatar
Guoxin committed
57
58
59
60
61
                transforms.RandomHorizontalFlip(),
                transforms.RandomCrop(32, 4),
                transforms.ToTensor(),
                normalize,
            ]), download=True),
Guoxin's avatar
Guoxin committed
62
            batch_size=batch_size, shuffle=True, **kwargs)
Guoxin's avatar
Guoxin committed
63
64

        val_loader = torch.utils.data.DataLoader(
Guoxin's avatar
Guoxin committed
65
            datasets.CIFAR10(data_dir, train=False, transform=transforms.Compose([
Guoxin's avatar
Guoxin committed
66
67
68
                transforms.ToTensor(),
                normalize,
            ])),
Guoxin's avatar
Guoxin committed
69
            batch_size=batch_size, shuffle=False, **kwargs)
Guoxin's avatar
Guoxin committed
70
71
72
73
        criterion = torch.nn.CrossEntropyLoss()
    return train_loader, val_loader, criterion


74
def train(args, model, device, train_loader, criterion, optimizer, epoch):
Guoxin's avatar
Guoxin committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(model, device, criterion, val_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in val_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            # sum up batch loss
            test_loss += criterion(output, target).item()
            # get the index of the max log-probability
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(val_loader.dataset)
    accuracy = correct / len(val_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
        test_loss, correct, len(val_loader.dataset), 100. * accuracy))

    return accuracy


Guoxin's avatar
Guoxin committed
112
def get_trained_model_optimizer(args, device, train_loader, val_loader, criterion):
Guoxin's avatar
Guoxin committed
113
114
    if args.model == 'LeNet':
        model = LeNet().to(device)
Guoxin's avatar
Guoxin committed
115
116
117
118
119
120
        if args.load_pretrained_model:
            model.load_state_dict(torch.load(args.pretrained_model_dir))
            optimizer = torch.optim.Adadelta(model.parameters(), lr=1e-4)
        else:
            optimizer = torch.optim.Adadelta(model.parameters(), lr=1)
            scheduler = StepLR(optimizer, step_size=1, gamma=0.7)
Guoxin's avatar
Guoxin committed
121
122
    elif args.model == 'vgg16':
        model = VGG(depth=16).to(device)
Guoxin's avatar
Guoxin committed
123
124
125
126
127
128
129
        if args.load_pretrained_model:
            model.load_state_dict(torch.load(args.pretrained_model_dir))
            optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9, weight_decay=5e-4)
        else:
            optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.pretrain_epochs*0.5), int(args.pretrain_epochs*0.75)], gamma=0.1)
Guoxin's avatar
Guoxin committed
130
    elif args.model == 'resnet18':
Guoxin's avatar
Guoxin committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        model = ResNet18().to(device)
        if args.load_pretrained_model:
            model.load_state_dict(torch.load(args.pretrained_model_dir))
            optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9, weight_decay=5e-4)
        else:
            optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.pretrain_epochs*0.5), int(args.pretrain_epochs*0.75)], gamma=0.1)
    elif args.model == 'resnet50':
        model = ResNet50().to(device)
        if args.load_pretrained_model:
            model.load_state_dict(torch.load(args.pretrained_model_dir))
            optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9, weight_decay=5e-4)
        else:
            optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.pretrain_epochs*0.5), int(args.pretrain_epochs*0.75)], gamma=0.1)
    else:
        raise ValueError("model not recognized")

    if not args.load_pretrained_model:
        best_acc = 0
        best_epoch = 0
Guoxin's avatar
Guoxin committed
154
        for epoch in range(args.pretrain_epochs):
Guoxin's avatar
Guoxin committed
155
            train(args, model, device, train_loader, criterion, optimizer, epoch)
Guoxin's avatar
Guoxin committed
156
            scheduler.step()
Guoxin's avatar
Guoxin committed
157
158
159
160
161
162
163
164
165
166
167
            acc = test(model, device, criterion, val_loader)
            if acc > best_acc:
                best_acc = acc
                best_epoch = epoch
                state_dict = model.state_dict()
        model.load_state_dict(state_dict)
        print('Best acc:', best_acc)
        print('Best epoch:', best_epoch)

        if args.save_model:
            torch.save(state_dict, os.path.join(args.experiment_data_dir, 'model_trained.pth'))
168
            print('Model trained saved to %s' % args.experiment_data_dir)
Guoxin's avatar
Guoxin committed
169
170
171
172
173
174

    return model, optimizer


def get_dummy_input(args, device):
    if args.dataset == 'mnist':
Guoxin's avatar
Guoxin committed
175
        dummy_input = torch.randn([args.test_batch_size, 1, 28, 28]).to(device)
Guoxin's avatar
Guoxin committed
176
    elif args.dataset in ['cifar10', 'imagenet']:
Guoxin's avatar
Guoxin committed
177
        dummy_input = torch.randn([args.test_batch_size, 3, 32, 32]).to(device)
Guoxin's avatar
Guoxin committed
178
179
180
    return dummy_input


Guoxin's avatar
Guoxin committed
181
182
183
184
185
186
187
188
189
190
def get_input_size(dataset):
    if dataset == 'mnist':
        input_size = (1, 1, 28, 28)
    elif dataset == 'cifar10':
        input_size = (1, 3, 32, 32)
    elif dataset == 'imagenet':
        input_size = (1, 3, 256, 256)
    return input_size


Guoxin's avatar
Guoxin committed
191
192
193
194
def main(args):
    # prepare dataset
    torch.manual_seed(0)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
Guoxin's avatar
Guoxin committed
195
196
    train_loader, val_loader, criterion = get_data(args.dataset, args.data_dir, args.batch_size, args.test_batch_size)
    model, optimizer = get_trained_model_optimizer(args, device, train_loader, val_loader, criterion)
Guoxin's avatar
Guoxin committed
197
198
199
200
201

    def short_term_fine_tuner(model, epochs=1):
        for epoch in range(epochs):
            train(args, model, device, train_loader, criterion, optimizer, epoch)

202
203
    def trainer(model, optimizer, criterion, epoch):
        return train(args, model, device, train_loader, criterion, optimizer, epoch=epoch)
Guoxin's avatar
Guoxin committed
204
205
206
207
208

    def evaluator(model):
        return test(model, device, criterion, val_loader)

    # used to save the performance of the original & pruned & finetuned models
Guoxin's avatar
Guoxin committed
209
210
    result = {'flops': {}, 'params': {}, 'performance':{}}

211
    flops, params, _ = count_flops_params(model, get_input_size(args.dataset))
Guoxin's avatar
Guoxin committed
212
213
    result['flops']['original'] = flops
    result['params']['original'] = params
Guoxin's avatar
Guoxin committed
214
215
216

    evaluation_result = evaluator(model)
    print('Evaluation result (original model): %s' % evaluation_result)
Guoxin's avatar
Guoxin committed
217
    result['performance']['original'] = evaluation_result
Guoxin's avatar
Guoxin committed
218
219

    # module types to prune, only "Conv2d" supported for channel pruning
220
    if args.base_algo in ['l1', 'l2', 'fpgm']:
Guoxin's avatar
Guoxin committed
221
222
223
224
225
226
227
228
229
230
231
        op_types = ['Conv2d']
    elif args.base_algo == 'level':
        op_types = ['default']

    config_list = [{
        'sparsity': args.sparsity,
        'op_types': op_types
    }]
    dummy_input = get_dummy_input(args, device)
    if args.pruner == 'L1FilterPruner':
        pruner = L1FilterPruner(model, config_list)
Guoxin's avatar
Guoxin committed
232
233
234
235
    elif args.pruner == 'L2FilterPruner':
        pruner = L2FilterPruner(model, config_list)
    elif args.pruner == 'FPGMPruner':
        pruner = FPGMPruner(model, config_list)
Guoxin's avatar
Guoxin committed
236
237
238
239
240
241
    elif args.pruner == 'NetAdaptPruner':
        pruner = NetAdaptPruner(model, config_list, short_term_fine_tuner=short_term_fine_tuner, evaluator=evaluator,
                                base_algo=args.base_algo, experiment_data_dir=args.experiment_data_dir)
    elif args.pruner == 'ADMMPruner':
        # users are free to change the config here
        if args.model == 'LeNet':
242
            if args.base_algo in ['l1', 'l2', 'fpgm']:
Guoxin's avatar
Guoxin committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
                config_list = [{
                    'sparsity': 0.8,
                    'op_types': ['Conv2d'],
                    'op_names': ['conv1']
                }, {
                    'sparsity': 0.92,
                    'op_types': ['Conv2d'],
                    'op_names': ['conv2']
                }]
            elif args.base_algo == 'level':
                config_list = [{
                    'sparsity': 0.8,
                    'op_names': ['conv1']
                }, {
                    'sparsity': 0.92,
                    'op_names': ['conv2']
                }, {
                    'sparsity': 0.991,
                    'op_names': ['fc1']
                }, {
                    'sparsity': 0.93,
                    'op_names': ['fc2']
                }]
        else:
            raise ValueError('Example only implemented for LeNet.')
268
        pruner = ADMMPruner(model, config_list, trainer=trainer, num_iterations=2, epochs_per_iteration=2)
Guoxin's avatar
Guoxin committed
269
270
271
272
273
274
275
276
    elif args.pruner == 'SimulatedAnnealingPruner':
        pruner = SimulatedAnnealingPruner(
            model, config_list, evaluator=evaluator, base_algo=args.base_algo,
            cool_down_rate=args.cool_down_rate, experiment_data_dir=args.experiment_data_dir)
    elif args.pruner == 'AutoCompressPruner':
        pruner = AutoCompressPruner(
            model, config_list, trainer=trainer, evaluator=evaluator, dummy_input=dummy_input,
            num_iterations=3, optimize_mode='maximize', base_algo=args.base_algo,
277
            cool_down_rate=args.cool_down_rate, admm_num_iterations=30, admm_epochs_per_iteration=5,
Guoxin's avatar
Guoxin committed
278
279
280
            experiment_data_dir=args.experiment_data_dir)
    else:
        raise ValueError(
Guoxin's avatar
Guoxin committed
281
            "Pruner not supported.")
Guoxin's avatar
Guoxin committed
282
283
284

    # Pruner.compress() returns the masked model
    # but for AutoCompressPruner, Pruner.compress() returns directly the pruned model
Guoxin's avatar
Guoxin committed
285
286
    model = pruner.compress()
    evaluation_result = evaluator(model)
Guoxin's avatar
Guoxin committed
287
    print('Evaluation result (masked model): %s' % evaluation_result)
Guoxin's avatar
Guoxin committed
288
    result['performance']['pruned'] = evaluation_result
Guoxin's avatar
Guoxin committed
289
290
291
292

    if args.save_model:
        pruner.export_model(
            os.path.join(args.experiment_data_dir, 'model_masked.pth'), os.path.join(args.experiment_data_dir, 'mask.pth'))
293
        print('Masked model saved to %s' % args.experiment_data_dir)
Guoxin's avatar
Guoxin committed
294

295
296
    # model speedup
    if args.speedup:
Guoxin's avatar
Guoxin committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        if args.pruner != 'AutoCompressPruner':
            if args.model == 'LeNet':
                model = LeNet().to(device)
            elif args.model == 'vgg16':
                model = VGG(depth=16).to(device)
            elif args.model == 'resnet18':
                model = ResNet18().to(device)
            elif args.model == 'resnet50':
                model = ResNet50().to(device)

            model.load_state_dict(torch.load(os.path.join(args.experiment_data_dir, 'model_masked.pth')))
            masks_file = os.path.join(args.experiment_data_dir, 'mask.pth')

            m_speedup = ModelSpeedup(model, dummy_input, masks_file, device)
            m_speedup.speedup_model()
            evaluation_result = evaluator(model)
313
            print('Evaluation result (speedup model): %s' % evaluation_result)
Guoxin's avatar
Guoxin committed
314
315
            result['performance']['speedup'] = evaluation_result

316
317
            torch.save(model.state_dict(), os.path.join(args.experiment_data_dir, 'model_speedup.pth'))
            print('Speedup model saved to %s' % args.experiment_data_dir)
318
        flops, params, _ = count_flops_params(model, get_input_size(args.dataset))
Guoxin's avatar
Guoxin committed
319
320
321
        result['flops']['speedup'] = flops
        result['params']['speedup'] = params

Guoxin's avatar
Guoxin committed
322
323
    if args.fine_tune:
        if args.dataset == 'mnist':
Guoxin's avatar
Guoxin committed
324
            optimizer = torch.optim.Adadelta(model.parameters(), lr=1)
Guoxin's avatar
Guoxin committed
325
            scheduler = StepLR(optimizer, step_size=1, gamma=0.7)
Guoxin's avatar
Guoxin committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
        elif args.dataset == 'cifar10' and args.model == 'vgg16':
            optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.fine_tune_epochs*0.5), int(args.fine_tune_epochs*0.75)], gamma=0.1)
        elif args.dataset == 'cifar10' and args.model == 'resnet18':
            optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.fine_tune_epochs*0.5), int(args.fine_tune_epochs*0.75)], gamma=0.1)
        elif args.dataset == 'cifar10' and args.model == 'resnet50':
            optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.fine_tune_epochs*0.5), int(args.fine_tune_epochs*0.75)], gamma=0.1)
        best_acc = 0
        for epoch in range(args.fine_tune_epochs):
            train(args, model, device, train_loader, criterion, optimizer, epoch)
            scheduler.step()
            acc = evaluator(model)
            if acc > best_acc:
                best_acc = acc
                torch.save(model.state_dict(), os.path.join(args.experiment_data_dir, 'model_fine_tuned.pth'))
Guoxin's avatar
Guoxin committed
346

Guoxin's avatar
Guoxin committed
347
    print('Evaluation result (fine tuned): %s' % best_acc)
348
    print('Fined tuned model saved to %s' % args.experiment_data_dir)
Guoxin's avatar
Guoxin committed
349
    result['performance']['finetuned'] = best_acc
Guoxin's avatar
Guoxin committed
350

Guoxin's avatar
Guoxin committed
351
    with open(os.path.join(args.experiment_data_dir, 'result.json'), 'w+') as f:
Guoxin's avatar
Guoxin committed
352
353
354
355
        json.dump(result, f)


if __name__ == '__main__':
Guoxin's avatar
Guoxin committed
356
357
358
359
    def str2bool(s):
        if isinstance(s, bool):
            return s
        if s.lower() in ('yes', 'true', 't', 'y', '1'):
Guoxin's avatar
Guoxin committed
360
            return True
Guoxin's avatar
Guoxin committed
361
        if s.lower() in ('no', 'false', 'f', 'n', '0'):
Guoxin's avatar
Guoxin committed
362
            return False
Guoxin's avatar
Guoxin committed
363
        raise argparse.ArgumentTypeError('Boolean value expected.')
Guoxin's avatar
Guoxin committed
364
365
366

    parser = argparse.ArgumentParser(description='PyTorch Example for SimulatedAnnealingPruner')

Guoxin's avatar
Guoxin committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    # dataset and model
    parser.add_argument('--dataset', type=str, default='cifar10',
                        help='dataset to use, mnist, cifar10 or imagenet')
    parser.add_argument('--data-dir', type=str, default='./data/',
                        help='dataset directory')
    parser.add_argument('--model', type=str, default='vgg16',
                        help='model to use, LeNet, vgg16, resnet18 or resnet50')
    parser.add_argument('--load-pretrained-model', type=str2bool, default=False,
                        help='whether to load pretrained model')
    parser.add_argument('--pretrained-model-dir', type=str, default='./',
                        help='path to pretrained model')
    parser.add_argument('--pretrain-epochs', type=int, default=100,
                        help='number of epochs to pretrain the model')
    parser.add_argument('--batch-size', type=int, default=64,
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=64,
                        help='input batch size for testing (default: 64)')
    parser.add_argument('--fine-tune', type=str2bool, default=True,
                        help='whether to fine-tune the pruned model')
    parser.add_argument('--fine-tune-epochs', type=int, default=5,
                        help='epochs to fine tune')
    parser.add_argument('--experiment-data-dir', type=str, default='./experiment_data',
                        help='For saving experiment data')

    # pruner
Guoxin's avatar
Guoxin committed
392
    parser.add_argument('--pruner', type=str, default='SimulatedAnnealingPruner',
Guoxin's avatar
Guoxin committed
393
                        help='pruner to use')
Guoxin's avatar
Guoxin committed
394
    parser.add_argument('--base-algo', type=str, default='l1',
395
                        help='base pruning algorithm. level, l1, l2, or fpgm')
Guoxin's avatar
Guoxin committed
396
397
    parser.add_argument('--sparsity', type=float, default=0.1,
                        help='target overall target sparsity')
Guoxin's avatar
Guoxin committed
398
399
400
401
402
403
404
    # param for SimulatedAnnealingPruner
    parser.add_argument('--cool-down-rate', type=float, default=0.9,
                        help='cool down rate')
    # param for NetAdaptPruner
    parser.add_argument('--sparsity-per-iteration', type=float, default=0.05,
                        help='sparsity_per_iteration of NetAdaptPruner')

405
406
407
    # speedup
    parser.add_argument('--speedup', type=str2bool, default=False,
                        help='Whether to speedup the pruned model')
Guoxin's avatar
Guoxin committed
408

Guoxin's avatar
Guoxin committed
409
    # others
Guoxin's avatar
Guoxin committed
410
411
412
413
    parser.add_argument('--log-interval', type=int, default=200,
                        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model', type=str2bool, default=True,
                        help='For Saving the current Model')
Guoxin's avatar
Guoxin committed
414

Guoxin's avatar
Guoxin committed
415
416
417
418
419
420
    args = parser.parse_args()

    if not os.path.exists(args.experiment_data_dir):
        os.makedirs(args.experiment_data_dir)

    main(args)