Unverified Commit accb40f9 authored by Guoxin's avatar Guoxin Committed by GitHub
Browse files

compression benchmark (#2742)

parent d0a9b106
# Comparison of Filter Pruning Algorithms
To provide an initial insight into the performance of various filter pruning algorithms,
we conduct extensive experiments with various pruning algorithms on some benchmark models and datasets.
We present the experiment result in this document.
In addition, we provide friendly instructions on the re-implementation of these experiments to facilitate further contributions to this effort.
## Experiment Setting
The experiments are performed with the following pruners/datasets/models:
* Models: [VGG16, ResNet18, ResNet50](https://github.com/microsoft/nni/tree/master/examples/model_compress/models/cifar10)
* Datasets: CIFAR-10
* Pruners:
- These pruners are included:
- Pruners with scheduling : `SimulatedAnnealing Pruner`, `NetAdapt Pruner`, `AutoCompress Pruner`.
Given the overal sparsity requirement, these pruners can automatically generate a sparsity distribution among different layers.
- One-shot pruners: `L1Filter Pruner`, `L2Filter Pruner`, `FPGM Pruner`.
The sparsity of each layer is set the same as the overall sparsity in this experiment.
- Only **filter pruning** performances are compared here.
For the pruners with scheduling, `L1Filter Pruner` is used as the base algorithm. That is to say, after the sparsities distribution is decided by the scheduling algorithm, `L1Filter Pruner` is used to performn real pruning.
- All the pruners listed above are implemented in [nni](https://github.com/microsoft/nni/tree/master/docs/en_US/Compressor/Overview.md).
## Experiment Result
For each dataset/model/pruner combination, we prune the model to different levels by setting a series of target sparsities for the pruner.
Here we plot both **Number of Weights - Performances** curve and **FLOPs - Performance** curve.
As a reference, we also plot the result declared in the paper [AutoCompress: An Automatic DNN Structured Pruning Framework for Ultra-High Compression Rates](http://arxiv.org/abs/1907.03141) for models VGG16 and ResNet18 on CIFAR-10.
The experiment result are shown in the following figures:
CIFAR-10, VGG16:
![](../../../examples/model_compress/comparison_of_pruners/img/performance_comparison_vgg16.png)
CIFAR-10, ResNet18:
![](../../../examples/model_compress/comparison_of_pruners/img/performance_comparison_resnet18.png)
CIFAR-10, ResNet50:
![](../../../examples/model_compress/comparison_of_pruners/img/performance_comparison_resnet50.png)
## Analysis
From the experiment result, we get the following conclusions:
* Given the constraint on the number of parameters, the pruners with scheduling ( `AutoCompress Pruner` , `SimualatedAnnealing Pruner` ) performs better than the others when the constraint is strict. However, they have no such advantage in FLOPs/Performances comparison since only number of parameters constraint is considered in the optimization process;
* The basic algorithms `L1Filter Pruner` , `L2Filter Pruner` , `FPGM Pruner` performs very similarly in these experiments;
* `NetAdapt Pruner` can not achieve very high compression rate. This is caused by its mechanism that it prunes only one layer each pruning iteration. This leads to un-acceptable complexity if the sparsity per iteration is much lower than the overall sparisity constraint.
## Experiments Reproduction
### Implementation Details
* The experiment results are all collected with the default configuration of the pruners in nni, which means that when we call a pruner class in nni, we don't change any default class arguments.
* Both FLOPs and the number of parameters are counted with [Model FLOPs/Parameters Counter](https://github.com/microsoft/nni/blob/master/docs/en_US/Compressor/CompressionUtils.md#model-flopsparameters-counter) after [model speed up](https://github.com/microsoft/nni/blob/master/docs/en_US/Compressor/ModelSpeedup.md). This avoids potential issues of counting them of masked models.
* The experiment code can be found [here]( https://github.com/microsoft/nni/tree/master/examples/model_compress/auto_pruners_torch.py).
### Experiment Result Rendering
* If you follow the practice in the [example]( https://github.com/microsoft/nni/tree/master/examples/model_compress/auto_pruners_torch.py), for every single pruning experiment, the experiment result will be saved in JSON format as follows:
``` json
{
"performance": {"original": 0.9298, "pruned": 0.1, "speedup": 0.1, "finetuned": 0.7746},
"params": {"original": 14987722.0, "speedup": 167089.0},
"flops": {"original": 314018314.0, "speedup": 38589922.0}
}
```
* The experiment results are saved [here](https://github.com/microsoft/nni/tree/master/examples/model_compress/experiment_data).
You can refer to [analyze](https://github.com/microsoft/nni/tree/master/examples/model_compress/experiment_data/analyze.py) to plot new performance comparison figures.
## Contribution
### TODO Items
* Pruners constrained by FLOPS/latency
* More pruning algorithms/datasets/models
### Issues
For algorithm implementation & experiment issues, please [create an issue](https://github.com/microsoft/nni/issues/new/).
...@@ -8,4 +8,5 @@ Performance comparison and analysis can help users decide a proper algorithm (e. ...@@ -8,4 +8,5 @@ Performance comparison and analysis can help users decide a proper algorithm (e.
:maxdepth: 1 :maxdepth: 1
Neural Architecture Search Comparison <NasComparison> Neural Architecture Search Comparison <NasComparison>
Hyper-parameter Tuning Algorithm Comparsion <HpoComparison> Hyper-parameter Tuning Algorithm Comparsion <HpoComparison>
\ No newline at end of file Model Compression Algorithm Comparsion <ModelCompressionComparison>
\ No newline at end of file
...@@ -42,6 +42,7 @@ Pruning algorithms compress the original network by removing redundant weights o ...@@ -42,6 +42,7 @@ Pruning algorithms compress the original network by removing redundant weights o
| [SimulatedAnnealing Pruner](https://nni.readthedocs.io/en/latest/Compressor/Pruner.html#simulatedannealing-pruner) | Automatic pruning with a guided heuristic search method, Simulated Annealing algorithm [Reference Paper](https://arxiv.org/abs/1907.03141) | | [SimulatedAnnealing Pruner](https://nni.readthedocs.io/en/latest/Compressor/Pruner.html#simulatedannealing-pruner) | Automatic pruning with a guided heuristic search method, Simulated Annealing algorithm [Reference Paper](https://arxiv.org/abs/1907.03141) |
| [AutoCompress Pruner](https://nni.readthedocs.io/en/latest/Compressor/Pruner.html#autocompress-pruner) | Automatic pruning by iteratively call SimulatedAnnealing Pruner and ADMM Pruner [Reference Paper](https://arxiv.org/abs/1907.03141) | | [AutoCompress Pruner](https://nni.readthedocs.io/en/latest/Compressor/Pruner.html#autocompress-pruner) | Automatic pruning by iteratively call SimulatedAnnealing Pruner and ADMM Pruner [Reference Paper](https://arxiv.org/abs/1907.03141) |
You can refer to this [benchmark](https://github.com/microsoft/nni/tree/master/docs/en_US/Benchmark.md) for the performance of these pruners on some benchmark problems.
### Quantization Algorithms ### Quantization Algorithms
......
import argparse
import json
import matplotlib.pyplot as plt
def plot_performance_comparison(args):
# reference data, performance of the original model and the performance declared in the AutoCompress Paper
references = {
'original':{
'cifar10':{
'vgg16':{
'performance': 0.9298,
'params':14987722.0,
'flops':314018314.0
},
'resnet18':{
'performance': 0.9433,
'params':11173962.0,
'flops':556651530.0
},
'resnet50':{
'performance': 0.9488,
'params':23520842.0,
'flops':1304694794.0
}
}
},
'AutoCompressPruner':{
'cifar10':{
'vgg16':{
'performance': 0.9321,
'params':52.2, # times
'flops':8.8
},
'resnet18':{
'performance': 0.9381,
'params':54.2, # times
'flops':12.2
}
}
}
}
markers = ['v', '^', '<', '1', '2', '3', '4', '8', '*', '+', 'o']
with open('cifar10/comparison_result_{}.json'.format(args.model), 'r') as jsonfile:
result = json.load(jsonfile)
pruners = result.keys()
performances = {}
flops = {}
params = {}
sparsities = {}
for pruner in pruners:
performances[pruner] = [val['performance'] for val in result[pruner]]
flops[pruner] = [val['flops'] for val in result[pruner]]
params[pruner] = [val['params'] for val in result[pruner]]
sparsities[pruner] = [val['sparsity'] for val in result[pruner]]
fig, axs = plt.subplots(2, 1, figsize=(8, 10))
fig.suptitle('Channel Pruning Comparison on {}/CIFAR10'.format(args.model))
fig.subplots_adjust(hspace=0.5)
for idx, pruner in enumerate(pruners):
axs[0].scatter(params[pruner], performances[pruner], marker=markers[idx], label=pruner)
axs[1].scatter(flops[pruner], performances[pruner], marker=markers[idx], label=pruner)
# references
params_original = references['original']['cifar10'][args.model]['params']
performance_original = references['original']['cifar10'][args.model]['performance']
axs[0].plot(params_original, performance_original, 'rx', label='original model')
if args.model in ['vgg16', 'resnet18']:
axs[0].plot(params_original/references['AutoCompressPruner']['cifar10'][args.model]['params'],
references['AutoCompressPruner']['cifar10'][args.model]['performance'],
'bx', label='AutoCompress Paper')
axs[0].set_title("Performance v.s. Number of Parameters")
axs[0].set_xlabel("Number of Parameters")
axs[0].set_ylabel('Accuracy')
axs[0].legend()
# references
flops_original = references['original']['cifar10'][args.model]['flops']
performance_original = references['original']['cifar10'][args.model]['performance']
axs[1].plot(flops_original, performance_original, 'rx', label='original model')
if args.model in ['vgg16', 'resnet18']:
axs[1].plot(flops_original/references['AutoCompressPruner']['cifar10'][args.model]['flops'],
references['AutoCompressPruner']['cifar10'][args.model]['performance'],
'bx', label='AutoCompress Paper')
axs[1].set_title("Performance v.s. FLOPs")
axs[1].set_xlabel("FLOPs")
axs[1].set_ylabel('Accuracy')
axs[1].legend()
plt.savefig('img/performance_comparison_{}.png'.format(args.model))
plt.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--model', type=str, default='vgg16',
help='vgg16, resnet18 or resnet50')
args = parser.parse_args()
plot_performance_comparison(args)
{
"L1FilterPruner": [
{
"sparsity": 0.1,
"params": 9642085.0,
"flops": 496882684.0,
"performance": 0.9436
},
{
"sparsity": 0.2,
"params": 8149126.0,
"flops": 436381222.0,
"performance": 0.9472
},
{
"sparsity": 0.3,
"params": 6705269.0,
"flops": 371666312.0,
"performance": 0.9391
},
{
"sparsity": 0.4,
"params": 5335138.0,
"flops": 307050934.0,
"performance": 0.9433
},
{
"sparsity": 0.5,
"params": 3998122.0,
"flops": 237900244.0,
"performance": 0.9379
},
{
"sparsity": 0.6,
"params": 2767325.0,
"flops": 175308326.0,
"performance": 0.9326
},
{
"sparsity": 0.7,
"params": 1617817.0,
"flops": 108532198.0,
"performance": 0.928
},
{
"sparsity": 0.8,
"params": 801338.0,
"flops": 53808728.0,
"performance": 0.9145
},
{
"sparsity": 0.9,
"params": 229372.0,
"flops": 15304972.0,
"performance": 0.8858
},
{
"sparsity": 0.95,
"params": 61337.0,
"flops": 4305146.0,
"performance": 0.8441
},
{
"sparsity": 0.975,
"params": 17763.0,
"flops": 1561644.0,
"performance": 0.7294
}
],
"L2FilterPruner": [
{
"sparsity": 0.1,
"params": 9680242.0,
"flops": 497492746.0,
"performance": 0.9423
},
{
"sparsity": 0.2,
"params": 8137784.0,
"flops": 436199900.0,
"performance": 0.9471
},
{
"sparsity": 0.3,
"params": 6702679.0,
"flops": 369733768.0,
"performance": 0.9415
},
{
"sparsity": 0.4,
"params": 5330426.0,
"flops": 305512736.0,
"performance": 0.9411
},
{
"sparsity": 0.5,
"params": 3961076.0,
"flops": 236467814.0,
"performance": 0.9349
},
{
"sparsity": 0.6,
"params": 2776512.0,
"flops": 175872204.0,
"performance": 0.9393
},
{
"sparsity": 0.7,
"params": 1622571.0,
"flops": 107994906.0,
"performance": 0.9295
},
{
"sparsity": 0.8,
"params": 797075.0,
"flops": 53534414.0,
"performance": 0.9187
},
{
"sparsity": 0.9,
"params": 232153.0,
"flops": 15385078.0,
"performance": 0.8838
},
{
"sparsity": 0.95,
"params": 58180.0,
"flops": 4510072.0,
"performance": 0.8396
},
{
"sparsity": 0.975,
"params": 16836.0,
"flops": 1429752.0,
"performance": 0.7482
}
],
"FPGMPruner": [
{
"sparsity": 0.1,
"params": 9705680.0,
"flops": 497899454.0,
"performance": 0.9443
},
{
"sparsity": 0.2,
"params": 8160468.0,
"flops": 436562544.0,
"performance": 0.946
},
{
"sparsity": 0.3,
"params": 6710052.0,
"flops": 367960482.0,
"performance": 0.9452
},
{
"sparsity": 0.4,
"params": 5334205.0,
"flops": 306166432.0,
"performance": 0.9412
},
{
"sparsity": 0.5,
"params": 4007259.0,
"flops": 237702210.0,
"performance": 0.9385
},
{
"sparsity": 0.6,
"params": 2782236.0,
"flops": 175813620.0,
"performance": 0.9304
},
{
"sparsity": 0.7,
"params": 1634603.0,
"flops": 108904676.0,
"performance": 0.9249
},
{
"sparsity": 0.8,
"params": 799610.0,
"flops": 53645918.0,
"performance": 0.9203
},
{
"sparsity": 0.9,
"params": 233644.0,
"flops": 15408784.0,
"performance": 0.8856
},
{
"sparsity": 0.95,
"params": 56518.0,
"flops": 4266910.0,
"performance": 0.83
},
{
"sparsity": 0.975,
"params": 17610.0,
"flops": 1441836.0,
"performance": 0.7356
}
],
"NetAdaptPruner": [
{
"sparsity": 0.1,
"params": 11173962.0,
"flops": 556651530.0,
"performance": 0.9474
},
{
"sparsity": 0.2,
"params": 10454958.0,
"flops": 545147466.0,
"performance": 0.9482
},
{
"sparsity": 0.3,
"params": 9299986.0,
"flops": 526681564.0,
"performance": 0.9469
},
{
"sparsity": 0.4,
"params": 8137618.0,
"flops": 508087276.0,
"performance": 0.9451
},
{
"sparsity": 0.5,
"params": 6267654.0,
"flops": 478185102.0,
"performance": 0.947
},
{
"sparsity": 0.6,
"params": 5277444.0,
"flops": 462341742.0,
"performance": 0.9469
},
{
"sparsity": 0.7,
"params": 4854190.0,
"flops": 455580628.0,
"performance": 0.9466
},
{
"sparsity": 0.8,
"params": 3531098.0,
"flops": 434411156.0,
"performance": 0.9472
}
],
"SimulatedAnnealingPruner": [
{
"sparsity": 0.1,
"params": 10307424.0,
"flops": 537697098.0,
"performance": 0.942
},
{
"sparsity": 0.2,
"params": 9264598.0,
"flops": 513101368.0,
"performance": 0.9456
},
{
"sparsity": 0.3,
"params": 7999316.0,
"flops": 489260738.0,
"performance": 0.946
},
{
"sparsity": 0.4,
"params": 6996176.0,
"flops": 450768626.0,
"performance": 0.9413
},
{
"sparsity": 0.5,
"params": 5412616.0,
"flops": 408698434.0,
"performance": 0.9477
},
{
"sparsity": 0.6,
"params": 5106924.0,
"flops": 391735326.0,
"performance": 0.9483
},
{
"sparsity": 0.7,
"params": 3032105.0,
"flops": 269777978.0,
"performance": 0.9414
},
{
"sparsity": 0.8,
"params": 2423230.0,
"flops": 294783862.0,
"performance": 0.9384
},
{
"sparsity": 0.9,
"params": 1151046.0,
"flops": 209639226.0,
"performance": 0.939
},
{
"sparsity": 0.95,
"params": 394406.0,
"flops": 108776618.0,
"performance": 0.923
},
{
"sparsity": 0.975,
"params": 250649.0,
"flops": 84645050.0,
"performance": 0.917
}
],
"AutoCompressPruner": [
{
"sparsity": 0.1,
"params": 10238286.0,
"flops": 536590794.0,
"performance": 0.9406
},
{
"sparsity": 0.2,
"params": 9272049.0,
"flops": 512333916.0,
"performance": 0.9392
},
{
"sparsity": 0.3,
"params": 8099915.0,
"flops": 485418056.0,
"performance": 0.9398
},
{
"sparsity": 0.4,
"params": 6864547.0,
"flops": 449359492.0,
"performance": 0.9406
},
{
"sparsity": 0.5,
"params": 6106994.0,
"flops": 430766432.0,
"performance": 0.9397
},
{
"sparsity": 0.6,
"params": 5338096.0,
"flops": 415085278.0,
"performance": 0.9384
},
{
"sparsity": 0.7,
"params": 3701330.0,
"flops": 351057878.0,
"performance": 0.938
},
{
"sparsity": 0.8,
"params": 2229760.0,
"flops": 269058346.0,
"performance": 0.9388
},
{
"sparsity": 0.9,
"params": 1108564.0,
"flops": 189355930.0,
"performance": 0.9348
},
{
"sparsity": 0.95,
"params": 616893.0,
"flops": 159314256.0,
"performance": 0.93
},
{
"sparsity": 0.975,
"params": 297368.0,
"flops": 113398292.0,
"performance": 0.9072
}
]
}
\ No newline at end of file
{
"L1FilterPruner": [
{
"sparsity": 0.1,
"params": 20378141.0,
"flops": 1134740738.0,
"performance": 0.9456
},
{
"sparsity": 0.2,
"params": 17286560.0,
"flops": 966734852.0,
"performance": 0.9433
},
{
"sparsity": 0.3,
"params": 14403947.0,
"flops": 807114812.0,
"performance": 0.9396
},
{
"sparsity": 0.4,
"params": 11558288.0,
"flops": 656314106.0,
"performance": 0.9402
},
{
"sparsity": 0.5,
"params": 8826728.0,
"flops": 507965924.0,
"performance": 0.9394
},
{
"sparsity": 0.6,
"params": 6319902.0,
"flops": 374211960.0,
"performance": 0.9372
},
{
"sparsity": 0.7,
"params": 4063713.0,
"flops": 246788556.0,
"performance": 0.9304
},
{
"sparsity": 0.8,
"params": 2120717.0,
"flops": 133614422.0,
"performance": 0.9269
},
{
"sparsity": 0.9,
"params": 652524.0,
"flops": 41973714.0,
"performance": 0.9081
},
{
"sparsity": 0.95,
"params": 195468.0,
"flops": 13732020.0,
"performance": 0.8723
},
{
"sparsity": 0.975,
"params": 58054.0,
"flops": 4268104.0,
"performance": 0.7941
}
],
"L2FilterPruner": [
{
"sparsity": 0.1,
"params": 20378141.0,
"flops": 1134740738.0,
"performance": 0.9442
},
{
"sparsity": 0.2,
"params": 17275244.0,
"flops": 966400928.0,
"performance": 0.9463
},
{
"sparsity": 0.3,
"params": 14415409.0,
"flops": 807710914.0,
"performance": 0.9367
},
{
"sparsity": 0.4,
"params": 11564310.0,
"flops": 656653008.0,
"performance": 0.9391
},
{
"sparsity": 0.5,
"params": 8843266.0,
"flops": 508086256.0,
"performance": 0.9381
},
{
"sparsity": 0.6,
"params": 6316815.0,
"flops": 373882614.0,
"performance": 0.9368
},
{
"sparsity": 0.7,
"params": 4054272.0,
"flops": 246477678.0,
"performance": 0.935
},
{
"sparsity": 0.8,
"params": 2129321.0,
"flops": 134527520.0,
"performance": 0.9275
},
{
"sparsity": 0.9,
"params": 667500.0,
"flops": 42927060.0,
"performance": 0.9129
},
{
"sparsity": 0.95,
"params": 192464.0,
"flops": 13669430.0,
"performance": 0.8757
},
{
"sparsity": 0.975,
"params": 58250.0,
"flops": 4365620.0,
"performance": 0.7978
}
],
"FPGMPruner": [
{
"sparsity": 0.1,
"params": 20401570.0,
"flops": 1135114552.0,
"performance": 0.9438
},
{
"sparsity": 0.2,
"params": 17321414.0,
"flops": 967137398.0,
"performance": 0.9427
},
{
"sparsity": 0.3,
"params": 14418221.0,
"flops": 807755756.0,
"performance": 0.9422
},
{
"sparsity": 0.4,
"params": 11565000.0,
"flops": 655412124.0,
"performance": 0.9403
},
{
"sparsity": 0.5,
"params": 8829840.0,
"flops": 506715294.0,
"performance": 0.9355
},
{
"sparsity": 0.6,
"params": 6308085.0,
"flops": 374231682.0,
"performance": 0.9359
},
{
"sparsity": 0.7,
"params": 4054237.0,
"flops": 246511714.0,
"performance": 0.9285
},
{
"sparsity": 0.8,
"params": 2134187.0,
"flops": 134456366.0,
"performance": 0.9275
},
{
"sparsity": 0.9,
"params": 665931.0,
"flops": 42859752.0,
"performance": 0.9083
},
{
"sparsity": 0.95,
"params": 191590.0,
"flops": 13641052.0,
"performance": 0.8762
},
{
"sparsity": 0.975,
"params": 57767.0,
"flops": 4350074.0,
"performance": 0.789
}
],
"NetAdaptPruner": [
{
"sparsity": 0.1,
"params": 22348970.0,
"flops": 1275701258.0,
"performance": 0.9404
},
{
"sparsity": 0.2,
"params": 21177162.0,
"flops": 1256952330.0,
"performance": 0.9445
},
{
"sparsity": 0.3,
"params": 18407434.0,
"flops": 1212636682.0,
"performance": 0.9433
},
{
"sparsity": 0.4,
"params": 16061284.0,
"flops": 1175098282.0,
"performance": 0.9401
}
],
"SimulatedAnnealingPruner": [
{
"sparsity": 0.1,
"params": 20551755.0,
"flops": 1230145122.0,
"performance": 0.9438
},
{
"sparsity": 0.2,
"params": 17766048.0,
"flops": 1159924128.0,
"performance": 0.9432
},
{
"sparsity": 0.3,
"params": 15105146.0,
"flops": 1094478662.0,
"performance": 0.943
},
{
"sparsity": 0.4,
"params": 12378092.0,
"flops": 1008801158.0,
"performance": 0.9398
},
{
"sparsity": 0.5,
"params": 9890487.0,
"flops": 911941770.0,
"performance": 0.9426
},
{
"sparsity": 0.6,
"params": 7638262.0,
"flops": 831218770.0,
"performance": 0.9412
},
{
"sparsity": 0.7,
"params": 5469936.0,
"flops": 691881792.0,
"performance": 0.9405
},
{
"sparsity": 0.8,
"params": 3668951.0,
"flops": 580850666.0,
"performance": 0.941
},
{
"sparsity": 0.9,
"params": 1765284.0,
"flops": 389162310.0,
"performance": 0.9294
}
],
"AutoCompressPruner": [
{
"sparsity": 0.1,
"params": 20660299.0,
"flops": 1228508590.0,
"performance": 0.9337
},
{
"sparsity": 0.2,
"params": 17940465.0,
"flops": 1152868146.0,
"performance": 0.9326
},
{
"sparsity": 0.3,
"params": 15335831.0,
"flops": 1084996094.0,
"performance": 0.9348
},
{
"sparsity": 0.4,
"params": 12821408.0,
"flops": 991305524.0,
"performance": 0.936
},
{
"sparsity": 0.5,
"params": 10695425.0,
"flops": 919638860.0,
"performance": 0.9349
},
{
"sparsity": 0.6,
"params": 8536821.0,
"flops": 802011678.0,
"performance": 0.9339
},
{
"sparsity": 0.7,
"params": 7276898.0,
"flops": 744248114.0,
"performance": 0.9337
},
{
"sparsity": 0.8,
"params": 5557721.0,
"flops": 643881710.0,
"performance": 0.9323
},
{
"sparsity": 0.9,
"params": 3925140.0,
"flops": 512545272.0,
"performance": 0.9304
},
{
"sparsity": 0.95,
"params": 2867004.0,
"flops": 365184762.0,
"performance": 0.9263
},
{
"sparsity": 0.975,
"params": 1773257.0,
"flops": 229320266.0,
"performance": 0.9175
}
]
}
\ No newline at end of file
{
"L1FilterPruner": [
{
"sparsity": 0.1,
"params": 12187336.0,
"flops": 256252606.0,
"performance": 0.9344
},
{
"sparsity": 0.2,
"params": 9660216.0,
"flops": 203049930.0,
"performance": 0.9371
},
{
"sparsity": 0.3,
"params": 7435417.0,
"flops": 155477470.0,
"performance": 0.9341
},
{
"sparsity": 0.4,
"params": 5493954.0,
"flops": 114721578.0,
"performance": 0.9317
},
{
"sparsity": 0.5,
"params": 3820010.0,
"flops": 79155722.0,
"performance": 0.9309
},
{
"sparsity": 0.6,
"params": 2478632.0,
"flops": 51618494.0,
"performance": 0.9229
},
{
"sparsity": 0.7,
"params": 1420600.0,
"flops": 29455306.0,
"performance": 0.9031
},
{
"sparsity": 0.8,
"params": 658553.0,
"flops": 13290974.0,
"performance": 0.8756
},
{
"sparsity": 0.9,
"params": 186178.0,
"flops": 3574570.0,
"performance": 0.8145
},
{
"sparsity": 0.95,
"params": 58680.0,
"flops": 1050570.0,
"performance": 0.6983
},
{
"sparsity": 0.975,
"params": 23408.0,
"flops": 329918.0,
"performance": 0.5573
}
],
"L2FilterPruner": [
{
"sparsity": 0.1,
"params": 12187336.0,
"flops": 256252606.0,
"performance": 0.9357
},
{
"sparsity": 0.2,
"params": 9660216.0,
"flops": 203049930.0,
"performance": 0.9355
},
{
"sparsity": 0.3,
"params": 7435417.0,
"flops": 155477470.0,
"performance": 0.9337
},
{
"sparsity": 0.4,
"params": 5493954.0,
"flops": 114721578.0,
"performance": 0.9308
},
{
"sparsity": 0.5,
"params": 3820010.0,
"flops": 79155722.0,
"performance": 0.9285
},
{
"sparsity": 0.6,
"params": 2478632.0,
"flops": 51618494.0,
"performance": 0.9208
},
{
"sparsity": 0.7,
"params": 1420600.0,
"flops": 29455306.0,
"performance": 0.909
},
{
"sparsity": 0.8,
"params": 658553.0,
"flops": 13290974.0,
"performance": 0.8698
},
{
"sparsity": 0.9,
"params": 186178.0,
"flops": 3574570.0,
"performance": 0.8203
},
{
"sparsity": 0.95,
"params": 58680.0,
"flops": 1050570.0,
"performance": 0.7063
},
{
"sparsity": 0.975,
"params": 23408.0,
"flops": 329918.0,
"performance": 0.5455
}
],
"FPGMPruner": [
{
"sparsity": 0.1,
"params": 12187336.0,
"flops": 256252606.0,
"performance": 0.937
},
{
"sparsity": 0.2,
"params": 9660216.0,
"flops": 203049930.0,
"performance": 0.936
},
{
"sparsity": 0.3,
"params": 7435417.0,
"flops": 155477470.0,
"performance": 0.9359
},
{
"sparsity": 0.4,
"params": 5493954.0,
"flops": 114721578.0,
"performance": 0.9302
},
{
"sparsity": 0.5,
"params": 3820010.0,
"flops": 79155722.0,
"performance": 0.9233
},
{
"sparsity": 0.6,
"params": 2478632.0,
"flops": 51618494.0,
"performance": 0.922
},
{
"sparsity": 0.7,
"params": 1420600.0,
"flops": 29455306.0,
"performance": 0.9022
},
{
"sparsity": 0.8,
"params": 658553.0,
"flops": 13290974.0,
"performance": 0.8794
},
{
"sparsity": 0.9,
"params": 186178.0,
"flops": 3574570.0,
"performance": 0.8276
},
{
"sparsity": 0.95,
"params": 58680.0,
"flops": 1050570.0,
"performance": 0.6967
},
{
"sparsity": 0.975,
"params": 23408.0,
"flops": 329918.0,
"performance": 0.3683
}
],
"NetAdaptPruner": [
{
"sparsity": 0.1,
"params": 13492098.0,
"flops": 308484330.0,
"performance": 0.9376
},
{
"sparsity": 0.2,
"params": 11998408.0,
"flops": 297641410.0,
"performance": 0.9374
},
{
"sparsity": 0.3,
"params": 10504344.0,
"flops": 281928834.0,
"performance": 0.9369
},
{
"sparsity": 0.4,
"params": 8263221.0,
"flops": 272964342.0,
"performance": 0.9382
},
{
"sparsity": 0.5,
"params": 6769885.0,
"flops": 249070966.0,
"performance": 0.9388
},
{
"sparsity": 0.6,
"params": 6022137.0,
"flops": 237106998.0,
"performance": 0.9383
},
{
"sparsity": 0.7,
"params": 4526754.0,
"flops": 222152490.0,
"performance": 0.936
},
{
"sparsity": 0.8,
"params": 3032759.0,
"flops": 162401210.0,
"performance": 0.9362
}
],
"SimulatedAnnealingPruner": [
{
"sparsity": 0.1,
"params": 12691704.0,
"flops": 301467870.0,
"performance": 0.9366
},
{
"sparsity": 0.2,
"params": 10318461.0,
"flops": 275724450.0,
"performance": 0.9362
},
{
"sparsity": 0.3,
"params": 8217127.0,
"flops": 246321046.0,
"performance": 0.9371
},
{
"sparsity": 0.4,
"params": 6458368.0,
"flops": 232948294.0,
"performance": 0.9378
},
{
"sparsity": 0.5,
"params": 4973079.0,
"flops": 217675254.0,
"performance": 0.9362
},
{
"sparsity": 0.6,
"params": 3131526.0,
"flops": 151576878.0,
"performance": 0.9347
},
{
"sparsity": 0.7,
"params": 1891036.0,
"flops": 76575574.0,
"performance": 0.9289
},
{
"sparsity": 0.8,
"params": 1170751.0,
"flops": 107532322.0,
"performance": 0.9325
},
{
"sparsity": 0.9,
"params": 365978.0,
"flops": 46241354.0,
"performance": 0.9167
},
{
"sparsity": 0.95,
"params": 167089.0,
"flops": 38589922.0,
"performance": 0.7746
},
{
"sparsity": 0.975,
"params": 96779.0,
"flops": 26838230.0,
"performance": 0.1
}
],
"AutoCompressPruner": [
{
"sparsity": 0.1,
"params": 12460277.0,
"flops": 290311730.0,
"performance": 0.9352
},
{
"sparsity": 0.2,
"params": 10138147.0,
"flops": 269180938.0,
"performance": 0.9324
},
{
"sparsity": 0.3,
"params": 8033350.0,
"flops": 241789714.0,
"performance": 0.9357
},
{
"sparsity": 0.4,
"params": 6105156.0,
"flops": 213573294.0,
"performance": 0.9367
},
{
"sparsity": 0.5,
"params": 4372604.0,
"flops": 185826362.0,
"performance": 0.9387
},
{
"sparsity": 0.6,
"params": 3029629.0,
"flops": 166285498.0,
"performance": 0.9334
},
{
"sparsity": 0.7,
"params": 1897060.0,
"flops": 134897806.0,
"performance": 0.9359
},
{
"sparsity": 0.8,
"params": 1145509.0,
"flops": 111766450.0,
"performance": 0.9334
},
{
"sparsity": 0.9,
"params": 362546.0,
"flops": 50777246.0,
"performance": 0.9261
},
{
"sparsity": 0.95,
"params": 149735.0,
"flops": 39201770.0,
"performance": 0.8924
},
{
"sparsity": 0.975,
"params": 45378.0,
"flops": 13213974.0,
"performance": 0.8193
}
]
}
\ No newline at end of file
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion *
planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 64
# this layer is different from torchvision.resnet18() since this model adopted for Cifar10
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512*block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def ResNet18():
return ResNet(BasicBlock, [2, 2, 2, 2])
def ResNet34():
return ResNet(BasicBlock, [3, 4, 6, 3])
def ResNet50():
return ResNet(Bottleneck, [3, 4, 6, 3])
def ResNet101():
return ResNet(Bottleneck, [3, 4, 23, 3])
def ResNet152():
return ResNet(Bottleneck, [3, 8, 36, 3])
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment