auto_pruners_torch.py 19.7 KB
Newer Older
Guoxin's avatar
Guoxin committed
1
2
3
4
5
6
7
8
9
10
11
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
'''
Examples for automatic pruners
'''

import argparse
import os
import json
import torch
from torch.optim.lr_scheduler import StepLR, MultiStepLR
Guoxin's avatar
Guoxin committed
12
from torchvision import datasets, transforms
Guoxin's avatar
Guoxin committed
13
14
15

from models.mnist.lenet import LeNet
from models.cifar10.vgg import VGG
Guoxin's avatar
Guoxin committed
16
from models.cifar10.resnet import ResNet18, ResNet50
liuzhe-lz's avatar
liuzhe-lz committed
17
18
19
20
from nni.algorithms.compression.pytorch.pruning import L1FilterPruner, L2FilterPruner, FPGMPruner
from nni.algorithms.compression.pytorch.pruning import SimulatedAnnealingPruner, ADMMPruner, NetAdaptPruner, AutoCompressPruner
from nni.compression.pytorch import ModelSpeedup
from nni.compression.pytorch.utils.counter import count_flops_params
Guoxin's avatar
Guoxin committed
21
22


Guoxin's avatar
Guoxin committed
23
def get_data(dataset, data_dir, batch_size, test_batch_size):
Guoxin's avatar
Guoxin committed
24
25
26
27
28
29
    '''
    get data
    '''
    kwargs = {'num_workers': 1, 'pin_memory': True} if torch.cuda.is_available() else {
    }

Guoxin's avatar
Guoxin committed
30
    if dataset == 'mnist':
Guoxin's avatar
Guoxin committed
31
        train_loader = torch.utils.data.DataLoader(
Guoxin's avatar
Guoxin committed
32
            datasets.MNIST(data_dir, train=True, download=True,
Guoxin's avatar
Guoxin committed
33
34
35
36
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ])),
Guoxin's avatar
Guoxin committed
37
            batch_size=batch_size, shuffle=True, **kwargs)
Guoxin's avatar
Guoxin committed
38
        val_loader = torch.utils.data.DataLoader(
Guoxin's avatar
Guoxin committed
39
            datasets.MNIST(data_dir, train=False,
Guoxin's avatar
Guoxin committed
40
41
42
43
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ])),
Guoxin's avatar
Guoxin committed
44
            batch_size=test_batch_size, shuffle=True, **kwargs)
Guoxin's avatar
Guoxin committed
45
        criterion = torch.nn.NLLLoss()
Guoxin's avatar
Guoxin committed
46
    elif dataset == 'cifar10':
Guoxin's avatar
Guoxin committed
47
48
49
        normalize = transforms.Normalize(
            (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
        train_loader = torch.utils.data.DataLoader(
Guoxin's avatar
Guoxin committed
50
            datasets.CIFAR10(data_dir, train=True, transform=transforms.Compose([
Guoxin's avatar
Guoxin committed
51
52
53
54
55
                transforms.RandomHorizontalFlip(),
                transforms.RandomCrop(32, 4),
                transforms.ToTensor(),
                normalize,
            ]), download=True),
Guoxin's avatar
Guoxin committed
56
            batch_size=batch_size, shuffle=True, **kwargs)
Guoxin's avatar
Guoxin committed
57
58

        val_loader = torch.utils.data.DataLoader(
Guoxin's avatar
Guoxin committed
59
            datasets.CIFAR10(data_dir, train=False, transform=transforms.Compose([
Guoxin's avatar
Guoxin committed
60
61
62
                transforms.ToTensor(),
                normalize,
            ])),
Guoxin's avatar
Guoxin committed
63
            batch_size=batch_size, shuffle=False, **kwargs)
Guoxin's avatar
Guoxin committed
64
        criterion = torch.nn.CrossEntropyLoss()
Guoxin's avatar
Guoxin committed
65
    elif dataset == 'imagenet':
Guoxin's avatar
Guoxin committed
66
67
68
        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                         std=[0.229, 0.224, 0.225])
        train_loader = torch.utils.data.DataLoader(
Guoxin's avatar
Guoxin committed
69
            datasets.ImageFolder(os.path.join(data_dir, 'train'),
Guoxin's avatar
Guoxin committed
70
71
72
73
74
75
                                 transform=transforms.Compose([
                                     transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     normalize,
                                 ])),
Guoxin's avatar
Guoxin committed
76
            batch_size=batch_size, shuffle=True, **kwargs)
Guoxin's avatar
Guoxin committed
77
78

        val_loader = torch.utils.data.DataLoader(
Guoxin's avatar
Guoxin committed
79
            datasets.ImageFolder(os.path.join(data_dir, 'val'),
Guoxin's avatar
Guoxin committed
80
81
82
83
84
85
                                 transform=transforms.Compose([
                                     transforms.Resize(256),
                                     transforms.CenterCrop(224),
                                     transforms.ToTensor(),
                                     normalize,
                                 ])),
Guoxin's avatar
Guoxin committed
86
            batch_size=test_batch_size, shuffle=True, **kwargs)
Guoxin's avatar
Guoxin committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        criterion = torch.nn.CrossEntropyLoss()

    return train_loader, val_loader, criterion


def train(args, model, device, train_loader, criterion, optimizer, epoch, callback=None):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        # callback should be inserted between loss.backward() and optimizer.step()
        if callback:
            callback()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(model, device, criterion, val_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in val_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            # sum up batch loss
            test_loss += criterion(output, target).item()
            # get the index of the max log-probability
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(val_loader.dataset)
    accuracy = correct / len(val_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
        test_loss, correct, len(val_loader.dataset), 100. * accuracy))

    return accuracy


Guoxin's avatar
Guoxin committed
133
def get_trained_model_optimizer(args, device, train_loader, val_loader, criterion):
Guoxin's avatar
Guoxin committed
134
135
    if args.model == 'LeNet':
        model = LeNet().to(device)
Guoxin's avatar
Guoxin committed
136
137
138
139
140
141
        if args.load_pretrained_model:
            model.load_state_dict(torch.load(args.pretrained_model_dir))
            optimizer = torch.optim.Adadelta(model.parameters(), lr=1e-4)
        else:
            optimizer = torch.optim.Adadelta(model.parameters(), lr=1)
            scheduler = StepLR(optimizer, step_size=1, gamma=0.7)
Guoxin's avatar
Guoxin committed
142
143
    elif args.model == 'vgg16':
        model = VGG(depth=16).to(device)
Guoxin's avatar
Guoxin committed
144
145
146
147
148
149
150
        if args.load_pretrained_model:
            model.load_state_dict(torch.load(args.pretrained_model_dir))
            optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9, weight_decay=5e-4)
        else:
            optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.pretrain_epochs*0.5), int(args.pretrain_epochs*0.75)], gamma=0.1)
Guoxin's avatar
Guoxin committed
151
    elif args.model == 'resnet18':
Guoxin's avatar
Guoxin committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        model = ResNet18().to(device)
        if args.load_pretrained_model:
            model.load_state_dict(torch.load(args.pretrained_model_dir))
            optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9, weight_decay=5e-4)
        else:
            optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.pretrain_epochs*0.5), int(args.pretrain_epochs*0.75)], gamma=0.1)
    elif args.model == 'resnet50':
        model = ResNet50().to(device)
        if args.load_pretrained_model:
            model.load_state_dict(torch.load(args.pretrained_model_dir))
            optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9, weight_decay=5e-4)
        else:
            optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.pretrain_epochs*0.5), int(args.pretrain_epochs*0.75)], gamma=0.1)
    else:
        raise ValueError("model not recognized")

    if not args.load_pretrained_model:
        best_acc = 0
        best_epoch = 0
Guoxin's avatar
Guoxin committed
175
        for epoch in range(args.pretrain_epochs):
Guoxin's avatar
Guoxin committed
176
            train(args, model, device, train_loader, criterion, optimizer, epoch)
Guoxin's avatar
Guoxin committed
177
            scheduler.step()
Guoxin's avatar
Guoxin committed
178
179
180
181
182
183
184
185
186
187
188
189
            acc = test(model, device, criterion, val_loader)
            if acc > best_acc:
                best_acc = acc
                best_epoch = epoch
                state_dict = model.state_dict()
        model.load_state_dict(state_dict)
        print('Best acc:', best_acc)
        print('Best epoch:', best_epoch)

        if args.save_model:
            torch.save(state_dict, os.path.join(args.experiment_data_dir, 'model_trained.pth'))
            print('Model trained saved to %s', args.experiment_data_dir)
Guoxin's avatar
Guoxin committed
190
191
192
193
194
195

    return model, optimizer


def get_dummy_input(args, device):
    if args.dataset == 'mnist':
Guoxin's avatar
Guoxin committed
196
        dummy_input = torch.randn([args.test_batch_size, 1, 28, 28]).to(device)
Guoxin's avatar
Guoxin committed
197
    elif args.dataset in ['cifar10', 'imagenet']:
Guoxin's avatar
Guoxin committed
198
        dummy_input = torch.randn([args.test_batch_size, 3, 32, 32]).to(device)
Guoxin's avatar
Guoxin committed
199
200
201
    return dummy_input


Guoxin's avatar
Guoxin committed
202
203
204
205
206
207
208
209
210
211
def get_input_size(dataset):
    if dataset == 'mnist':
        input_size = (1, 1, 28, 28)
    elif dataset == 'cifar10':
        input_size = (1, 3, 32, 32)
    elif dataset == 'imagenet':
        input_size = (1, 3, 256, 256)
    return input_size


Guoxin's avatar
Guoxin committed
212
213
214
215
def main(args):
    # prepare dataset
    torch.manual_seed(0)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
Guoxin's avatar
Guoxin committed
216
217
    train_loader, val_loader, criterion = get_data(args.dataset, args.data_dir, args.batch_size, args.test_batch_size)
    model, optimizer = get_trained_model_optimizer(args, device, train_loader, val_loader, criterion)
Guoxin's avatar
Guoxin committed
218
219
220
221
222
223
224
225
226
227
228
229

    def short_term_fine_tuner(model, epochs=1):
        for epoch in range(epochs):
            train(args, model, device, train_loader, criterion, optimizer, epoch)

    def trainer(model, optimizer, criterion, epoch, callback):
        return train(args, model, device, train_loader, criterion, optimizer, epoch=epoch, callback=callback)

    def evaluator(model):
        return test(model, device, criterion, val_loader)

    # used to save the performance of the original & pruned & finetuned models
Guoxin's avatar
Guoxin committed
230
231
    result = {'flops': {}, 'params': {}, 'performance':{}}

232
    flops, params, _ = count_flops_params(model, get_input_size(args.dataset))
Guoxin's avatar
Guoxin committed
233
234
    result['flops']['original'] = flops
    result['params']['original'] = params
Guoxin's avatar
Guoxin committed
235
236
237

    evaluation_result = evaluator(model)
    print('Evaluation result (original model): %s' % evaluation_result)
Guoxin's avatar
Guoxin committed
238
    result['performance']['original'] = evaluation_result
Guoxin's avatar
Guoxin committed
239
240

    # module types to prune, only "Conv2d" supported for channel pruning
241
    if args.base_algo in ['l1', 'l2', 'fpgm']:
Guoxin's avatar
Guoxin committed
242
243
244
245
246
247
248
249
250
251
252
253
        op_types = ['Conv2d']
    elif args.base_algo == 'level':
        op_types = ['default']

    config_list = [{
        'sparsity': args.sparsity,
        'op_types': op_types
    }]
    dummy_input = get_dummy_input(args, device)

    if args.pruner == 'L1FilterPruner':
        pruner = L1FilterPruner(model, config_list)
Guoxin's avatar
Guoxin committed
254
255
256
257
    elif args.pruner == 'L2FilterPruner':
        pruner = L2FilterPruner(model, config_list)
    elif args.pruner == 'FPGMPruner':
        pruner = FPGMPruner(model, config_list)
Guoxin's avatar
Guoxin committed
258
259
260
261
262
263
    elif args.pruner == 'NetAdaptPruner':
        pruner = NetAdaptPruner(model, config_list, short_term_fine_tuner=short_term_fine_tuner, evaluator=evaluator,
                                base_algo=args.base_algo, experiment_data_dir=args.experiment_data_dir)
    elif args.pruner == 'ADMMPruner':
        # users are free to change the config here
        if args.model == 'LeNet':
264
            if args.base_algo in ['l1', 'l2', 'fpgm']:
Guoxin's avatar
Guoxin committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
                config_list = [{
                    'sparsity': 0.8,
                    'op_types': ['Conv2d'],
                    'op_names': ['conv1']
                }, {
                    'sparsity': 0.92,
                    'op_types': ['Conv2d'],
                    'op_names': ['conv2']
                }]
            elif args.base_algo == 'level':
                config_list = [{
                    'sparsity': 0.8,
                    'op_names': ['conv1']
                }, {
                    'sparsity': 0.92,
                    'op_names': ['conv2']
                }, {
                    'sparsity': 0.991,
                    'op_names': ['fc1']
                }, {
                    'sparsity': 0.93,
                    'op_names': ['fc2']
                }]
        else:
            raise ValueError('Example only implemented for LeNet.')
        pruner = ADMMPruner(model, config_list, trainer=trainer, num_iterations=2, training_epochs=2)
    elif args.pruner == 'SimulatedAnnealingPruner':
        pruner = SimulatedAnnealingPruner(
            model, config_list, evaluator=evaluator, base_algo=args.base_algo,
            cool_down_rate=args.cool_down_rate, experiment_data_dir=args.experiment_data_dir)
    elif args.pruner == 'AutoCompressPruner':
        pruner = AutoCompressPruner(
            model, config_list, trainer=trainer, evaluator=evaluator, dummy_input=dummy_input,
            num_iterations=3, optimize_mode='maximize', base_algo=args.base_algo,
            cool_down_rate=args.cool_down_rate, admm_num_iterations=30, admm_training_epochs=5,
            experiment_data_dir=args.experiment_data_dir)
    else:
        raise ValueError(
Guoxin's avatar
Guoxin committed
303
            "Pruner not supported.")
Guoxin's avatar
Guoxin committed
304
305
306

    # Pruner.compress() returns the masked model
    # but for AutoCompressPruner, Pruner.compress() returns directly the pruned model
Guoxin's avatar
Guoxin committed
307
308
    model = pruner.compress()
    evaluation_result = evaluator(model)
Guoxin's avatar
Guoxin committed
309
    print('Evaluation result (masked model): %s' % evaluation_result)
Guoxin's avatar
Guoxin committed
310
    result['performance']['pruned'] = evaluation_result
Guoxin's avatar
Guoxin committed
311
312
313
314
315
316

    if args.save_model:
        pruner.export_model(
            os.path.join(args.experiment_data_dir, 'model_masked.pth'), os.path.join(args.experiment_data_dir, 'mask.pth'))
        print('Masked model saved to %s', args.experiment_data_dir)

Guoxin's avatar
Guoxin committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    # model speed up
    if args.speed_up:
        if args.pruner != 'AutoCompressPruner':
            if args.model == 'LeNet':
                model = LeNet().to(device)
            elif args.model == 'vgg16':
                model = VGG(depth=16).to(device)
            elif args.model == 'resnet18':
                model = ResNet18().to(device)
            elif args.model == 'resnet50':
                model = ResNet50().to(device)

            model.load_state_dict(torch.load(os.path.join(args.experiment_data_dir, 'model_masked.pth')))
            masks_file = os.path.join(args.experiment_data_dir, 'mask.pth')

            m_speedup = ModelSpeedup(model, dummy_input, masks_file, device)
            m_speedup.speedup_model()
            evaluation_result = evaluator(model)
            print('Evaluation result (speed up model): %s' % evaluation_result)
            result['performance']['speedup'] = evaluation_result

            torch.save(model.state_dict(), os.path.join(args.experiment_data_dir, 'model_speed_up.pth'))
            print('Speed up model saved to %s', args.experiment_data_dir)
340
        flops, params, _ = count_flops_params(model, get_input_size(args.dataset))
Guoxin's avatar
Guoxin committed
341
342
343
        result['flops']['speedup'] = flops
        result['params']['speedup'] = params

Guoxin's avatar
Guoxin committed
344
345
    if args.fine_tune:
        if args.dataset == 'mnist':
Guoxin's avatar
Guoxin committed
346
            optimizer = torch.optim.Adadelta(model.parameters(), lr=1)
Guoxin's avatar
Guoxin committed
347
            scheduler = StepLR(optimizer, step_size=1, gamma=0.7)
Guoxin's avatar
Guoxin committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
        elif args.dataset == 'cifar10' and args.model == 'vgg16':
            optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.fine_tune_epochs*0.5), int(args.fine_tune_epochs*0.75)], gamma=0.1)
        elif args.dataset == 'cifar10' and args.model == 'resnet18':
            optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.fine_tune_epochs*0.5), int(args.fine_tune_epochs*0.75)], gamma=0.1)
        elif args.dataset == 'cifar10' and args.model == 'resnet50':
            optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.fine_tune_epochs*0.5), int(args.fine_tune_epochs*0.75)], gamma=0.1)
        best_acc = 0
        for epoch in range(args.fine_tune_epochs):
            train(args, model, device, train_loader, criterion, optimizer, epoch)
            scheduler.step()
            acc = evaluator(model)
            if acc > best_acc:
                best_acc = acc
                torch.save(model.state_dict(), os.path.join(args.experiment_data_dir, 'model_fine_tuned.pth'))
Guoxin's avatar
Guoxin committed
368

Guoxin's avatar
Guoxin committed
369
370
371
    print('Evaluation result (fine tuned): %s' % best_acc)
    print('Fined tuned model saved to %s', args.experiment_data_dir)
    result['performance']['finetuned'] = best_acc
Guoxin's avatar
Guoxin committed
372

Guoxin's avatar
Guoxin committed
373
    with open(os.path.join(args.experiment_data_dir, 'result.json'), 'w+') as f:
Guoxin's avatar
Guoxin committed
374
375
376
377
        json.dump(result, f)


if __name__ == '__main__':
Guoxin's avatar
Guoxin committed
378
379
380
381
    def str2bool(s):
        if isinstance(s, bool):
            return s
        if s.lower() in ('yes', 'true', 't', 'y', '1'):
Guoxin's avatar
Guoxin committed
382
            return True
Guoxin's avatar
Guoxin committed
383
        if s.lower() in ('no', 'false', 'f', 'n', '0'):
Guoxin's avatar
Guoxin committed
384
            return False
Guoxin's avatar
Guoxin committed
385
        raise argparse.ArgumentTypeError('Boolean value expected.')
Guoxin's avatar
Guoxin committed
386
387
388

    parser = argparse.ArgumentParser(description='PyTorch Example for SimulatedAnnealingPruner')

Guoxin's avatar
Guoxin committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
    # dataset and model
    parser.add_argument('--dataset', type=str, default='cifar10',
                        help='dataset to use, mnist, cifar10 or imagenet')
    parser.add_argument('--data-dir', type=str, default='./data/',
                        help='dataset directory')
    parser.add_argument('--model', type=str, default='vgg16',
                        help='model to use, LeNet, vgg16, resnet18 or resnet50')
    parser.add_argument('--load-pretrained-model', type=str2bool, default=False,
                        help='whether to load pretrained model')
    parser.add_argument('--pretrained-model-dir', type=str, default='./',
                        help='path to pretrained model')
    parser.add_argument('--pretrain-epochs', type=int, default=100,
                        help='number of epochs to pretrain the model')
    parser.add_argument('--batch-size', type=int, default=64,
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=64,
                        help='input batch size for testing (default: 64)')
    parser.add_argument('--fine-tune', type=str2bool, default=True,
                        help='whether to fine-tune the pruned model')
    parser.add_argument('--fine-tune-epochs', type=int, default=5,
                        help='epochs to fine tune')
    parser.add_argument('--experiment-data-dir', type=str, default='./experiment_data',
                        help='For saving experiment data')

    # pruner
Guoxin's avatar
Guoxin committed
414
    parser.add_argument('--pruner', type=str, default='SimulatedAnnealingPruner',
Guoxin's avatar
Guoxin committed
415
                        help='pruner to use')
Guoxin's avatar
Guoxin committed
416
    parser.add_argument('--base-algo', type=str, default='l1',
417
                        help='base pruning algorithm. level, l1, l2, or fpgm')
Guoxin's avatar
Guoxin committed
418
419
    parser.add_argument('--sparsity', type=float, default=0.1,
                        help='target overall target sparsity')
Guoxin's avatar
Guoxin committed
420
421
422
423
424
425
426
    # param for SimulatedAnnealingPruner
    parser.add_argument('--cool-down-rate', type=float, default=0.9,
                        help='cool down rate')
    # param for NetAdaptPruner
    parser.add_argument('--sparsity-per-iteration', type=float, default=0.05,
                        help='sparsity_per_iteration of NetAdaptPruner')

Guoxin's avatar
Guoxin committed
427
428
429
    # speed-up
    parser.add_argument('--speed-up', type=str2bool, default=False,
                        help='Whether to speed-up the pruned model')
Guoxin's avatar
Guoxin committed
430

Guoxin's avatar
Guoxin committed
431
    # others
Guoxin's avatar
Guoxin committed
432
433
434
435
    parser.add_argument('--log-interval', type=int, default=200,
                        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model', type=str2bool, default=True,
                        help='For Saving the current Model')
Guoxin's avatar
Guoxin committed
436

Guoxin's avatar
Guoxin committed
437
438
439
440
441
442
    args = parser.parse_args()

    if not os.path.exists(args.experiment_data_dir):
        os.makedirs(args.experiment_data_dir)

    main(args)