auto_pruners_torch.py 18.5 KB
Newer Older
Guoxin's avatar
Guoxin committed
1
2
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
3

Guoxin's avatar
Guoxin committed
4
'''
5
6
Example for supported automatic pruning algorithms.
In this example, we present the usage of automatic pruners (NetAdapt, AutoCompressPruner). L1, L2, FPGM pruners are also executed for comparison purpose.
Guoxin's avatar
Guoxin committed
7
8
9
10
11
12
13
'''

import argparse
import os
import json
import torch
from torch.optim.lr_scheduler import StepLR, MultiStepLR
Guoxin's avatar
Guoxin committed
14
from torchvision import datasets, transforms
Guoxin's avatar
Guoxin committed
15

liuzhe-lz's avatar
liuzhe-lz committed
16
17
18
19
from nni.algorithms.compression.pytorch.pruning import L1FilterPruner, L2FilterPruner, FPGMPruner
from nni.algorithms.compression.pytorch.pruning import SimulatedAnnealingPruner, ADMMPruner, NetAdaptPruner, AutoCompressPruner
from nni.compression.pytorch import ModelSpeedup
from nni.compression.pytorch.utils.counter import count_flops_params
Guoxin's avatar
Guoxin committed
20

21
22
23
24
25
import sys
sys.path.append('../models')
from mnist.lenet import LeNet
from cifar10.vgg import VGG
from cifar10.resnet import ResNet18, ResNet50
Guoxin's avatar
Guoxin committed
26

Guoxin's avatar
Guoxin committed
27
def get_data(dataset, data_dir, batch_size, test_batch_size):
Guoxin's avatar
Guoxin committed
28
29
30
31
32
33
    '''
    get data
    '''
    kwargs = {'num_workers': 1, 'pin_memory': True} if torch.cuda.is_available() else {
    }

Guoxin's avatar
Guoxin committed
34
    if dataset == 'mnist':
Guoxin's avatar
Guoxin committed
35
        train_loader = torch.utils.data.DataLoader(
Guoxin's avatar
Guoxin committed
36
            datasets.MNIST(data_dir, train=True, download=True,
Guoxin's avatar
Guoxin committed
37
38
39
40
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ])),
Guoxin's avatar
Guoxin committed
41
            batch_size=batch_size, shuffle=True, **kwargs)
Guoxin's avatar
Guoxin committed
42
        val_loader = torch.utils.data.DataLoader(
Guoxin's avatar
Guoxin committed
43
            datasets.MNIST(data_dir, train=False,
Guoxin's avatar
Guoxin committed
44
45
46
47
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ])),
Guoxin's avatar
Guoxin committed
48
            batch_size=test_batch_size, shuffle=True, **kwargs)
Guoxin's avatar
Guoxin committed
49
        criterion = torch.nn.NLLLoss()
Guoxin's avatar
Guoxin committed
50
    elif dataset == 'cifar10':
Guoxin's avatar
Guoxin committed
51
52
53
        normalize = transforms.Normalize(
            (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
        train_loader = torch.utils.data.DataLoader(
Guoxin's avatar
Guoxin committed
54
            datasets.CIFAR10(data_dir, train=True, transform=transforms.Compose([
Guoxin's avatar
Guoxin committed
55
56
57
58
59
                transforms.RandomHorizontalFlip(),
                transforms.RandomCrop(32, 4),
                transforms.ToTensor(),
                normalize,
            ]), download=True),
Guoxin's avatar
Guoxin committed
60
            batch_size=batch_size, shuffle=True, **kwargs)
Guoxin's avatar
Guoxin committed
61
62

        val_loader = torch.utils.data.DataLoader(
Guoxin's avatar
Guoxin committed
63
            datasets.CIFAR10(data_dir, train=False, transform=transforms.Compose([
Guoxin's avatar
Guoxin committed
64
65
66
                transforms.ToTensor(),
                normalize,
            ])),
Guoxin's avatar
Guoxin committed
67
            batch_size=batch_size, shuffle=False, **kwargs)
Guoxin's avatar
Guoxin committed
68
69
70
71
        criterion = torch.nn.CrossEntropyLoss()
    return train_loader, val_loader, criterion


72
def train(args, model, device, train_loader, criterion, optimizer, epoch):
Guoxin's avatar
Guoxin committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(model, device, criterion, val_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in val_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            # sum up batch loss
            test_loss += criterion(output, target).item()
            # get the index of the max log-probability
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(val_loader.dataset)
    accuracy = correct / len(val_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
        test_loss, correct, len(val_loader.dataset), 100. * accuracy))

    return accuracy


Guoxin's avatar
Guoxin committed
110
def get_trained_model_optimizer(args, device, train_loader, val_loader, criterion):
Guoxin's avatar
Guoxin committed
111
112
    if args.model == 'LeNet':
        model = LeNet().to(device)
Guoxin's avatar
Guoxin committed
113
114
115
116
117
118
        if args.load_pretrained_model:
            model.load_state_dict(torch.load(args.pretrained_model_dir))
            optimizer = torch.optim.Adadelta(model.parameters(), lr=1e-4)
        else:
            optimizer = torch.optim.Adadelta(model.parameters(), lr=1)
            scheduler = StepLR(optimizer, step_size=1, gamma=0.7)
Guoxin's avatar
Guoxin committed
119
120
    elif args.model == 'vgg16':
        model = VGG(depth=16).to(device)
Guoxin's avatar
Guoxin committed
121
122
123
124
125
126
127
        if args.load_pretrained_model:
            model.load_state_dict(torch.load(args.pretrained_model_dir))
            optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9, weight_decay=5e-4)
        else:
            optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.pretrain_epochs*0.5), int(args.pretrain_epochs*0.75)], gamma=0.1)
Guoxin's avatar
Guoxin committed
128
    elif args.model == 'resnet18':
Guoxin's avatar
Guoxin committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        model = ResNet18().to(device)
        if args.load_pretrained_model:
            model.load_state_dict(torch.load(args.pretrained_model_dir))
            optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9, weight_decay=5e-4)
        else:
            optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.pretrain_epochs*0.5), int(args.pretrain_epochs*0.75)], gamma=0.1)
    elif args.model == 'resnet50':
        model = ResNet50().to(device)
        if args.load_pretrained_model:
            model.load_state_dict(torch.load(args.pretrained_model_dir))
            optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9, weight_decay=5e-4)
        else:
            optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.pretrain_epochs*0.5), int(args.pretrain_epochs*0.75)], gamma=0.1)
    else:
        raise ValueError("model not recognized")

    if not args.load_pretrained_model:
        best_acc = 0
        best_epoch = 0
Guoxin's avatar
Guoxin committed
152
        for epoch in range(args.pretrain_epochs):
Guoxin's avatar
Guoxin committed
153
            train(args, model, device, train_loader, criterion, optimizer, epoch)
Guoxin's avatar
Guoxin committed
154
            scheduler.step()
Guoxin's avatar
Guoxin committed
155
156
157
158
159
160
161
162
163
164
165
            acc = test(model, device, criterion, val_loader)
            if acc > best_acc:
                best_acc = acc
                best_epoch = epoch
                state_dict = model.state_dict()
        model.load_state_dict(state_dict)
        print('Best acc:', best_acc)
        print('Best epoch:', best_epoch)

        if args.save_model:
            torch.save(state_dict, os.path.join(args.experiment_data_dir, 'model_trained.pth'))
166
            print('Model trained saved to %s' % args.experiment_data_dir)
Guoxin's avatar
Guoxin committed
167
168
169
170
171
172

    return model, optimizer


def get_dummy_input(args, device):
    if args.dataset == 'mnist':
Guoxin's avatar
Guoxin committed
173
        dummy_input = torch.randn([args.test_batch_size, 1, 28, 28]).to(device)
Guoxin's avatar
Guoxin committed
174
    elif args.dataset in ['cifar10', 'imagenet']:
Guoxin's avatar
Guoxin committed
175
        dummy_input = torch.randn([args.test_batch_size, 3, 32, 32]).to(device)
Guoxin's avatar
Guoxin committed
176
177
178
    return dummy_input


Guoxin's avatar
Guoxin committed
179
180
181
182
183
184
185
186
187
188
def get_input_size(dataset):
    if dataset == 'mnist':
        input_size = (1, 1, 28, 28)
    elif dataset == 'cifar10':
        input_size = (1, 3, 32, 32)
    elif dataset == 'imagenet':
        input_size = (1, 3, 256, 256)
    return input_size


Guoxin's avatar
Guoxin committed
189
190
191
192
def main(args):
    # prepare dataset
    torch.manual_seed(0)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
Guoxin's avatar
Guoxin committed
193
194
    train_loader, val_loader, criterion = get_data(args.dataset, args.data_dir, args.batch_size, args.test_batch_size)
    model, optimizer = get_trained_model_optimizer(args, device, train_loader, val_loader, criterion)
Guoxin's avatar
Guoxin committed
195
196
197
198
199

    def short_term_fine_tuner(model, epochs=1):
        for epoch in range(epochs):
            train(args, model, device, train_loader, criterion, optimizer, epoch)

200
201
    def trainer(model, optimizer, criterion, epoch):
        return train(args, model, device, train_loader, criterion, optimizer, epoch=epoch)
Guoxin's avatar
Guoxin committed
202
203
204
205
206

    def evaluator(model):
        return test(model, device, criterion, val_loader)

    # used to save the performance of the original & pruned & finetuned models
Guoxin's avatar
Guoxin committed
207
208
    result = {'flops': {}, 'params': {}, 'performance':{}}

209
    flops, params, _ = count_flops_params(model, get_input_size(args.dataset))
Guoxin's avatar
Guoxin committed
210
211
    result['flops']['original'] = flops
    result['params']['original'] = params
Guoxin's avatar
Guoxin committed
212
213
214

    evaluation_result = evaluator(model)
    print('Evaluation result (original model): %s' % evaluation_result)
Guoxin's avatar
Guoxin committed
215
    result['performance']['original'] = evaluation_result
Guoxin's avatar
Guoxin committed
216
217

    # module types to prune, only "Conv2d" supported for channel pruning
218
    if args.base_algo in ['l1', 'l2', 'fpgm']:
Guoxin's avatar
Guoxin committed
219
220
221
222
223
224
225
226
227
228
229
        op_types = ['Conv2d']
    elif args.base_algo == 'level':
        op_types = ['default']

    config_list = [{
        'sparsity': args.sparsity,
        'op_types': op_types
    }]
    dummy_input = get_dummy_input(args, device)
    if args.pruner == 'L1FilterPruner':
        pruner = L1FilterPruner(model, config_list)
Guoxin's avatar
Guoxin committed
230
231
232
233
    elif args.pruner == 'L2FilterPruner':
        pruner = L2FilterPruner(model, config_list)
    elif args.pruner == 'FPGMPruner':
        pruner = FPGMPruner(model, config_list)
Guoxin's avatar
Guoxin committed
234
235
236
237
238
239
    elif args.pruner == 'NetAdaptPruner':
        pruner = NetAdaptPruner(model, config_list, short_term_fine_tuner=short_term_fine_tuner, evaluator=evaluator,
                                base_algo=args.base_algo, experiment_data_dir=args.experiment_data_dir)
    elif args.pruner == 'ADMMPruner':
        # users are free to change the config here
        if args.model == 'LeNet':
240
            if args.base_algo in ['l1', 'l2', 'fpgm']:
Guoxin's avatar
Guoxin committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
                config_list = [{
                    'sparsity': 0.8,
                    'op_types': ['Conv2d'],
                    'op_names': ['conv1']
                }, {
                    'sparsity': 0.92,
                    'op_types': ['Conv2d'],
                    'op_names': ['conv2']
                }]
            elif args.base_algo == 'level':
                config_list = [{
                    'sparsity': 0.8,
                    'op_names': ['conv1']
                }, {
                    'sparsity': 0.92,
                    'op_names': ['conv2']
                }, {
                    'sparsity': 0.991,
                    'op_names': ['fc1']
                }, {
                    'sparsity': 0.93,
                    'op_names': ['fc2']
                }]
        else:
            raise ValueError('Example only implemented for LeNet.')
266
        pruner = ADMMPruner(model, config_list, trainer=trainer, num_iterations=2, epochs_per_iteration=2)
Guoxin's avatar
Guoxin committed
267
268
269
270
271
272
273
274
    elif args.pruner == 'SimulatedAnnealingPruner':
        pruner = SimulatedAnnealingPruner(
            model, config_list, evaluator=evaluator, base_algo=args.base_algo,
            cool_down_rate=args.cool_down_rate, experiment_data_dir=args.experiment_data_dir)
    elif args.pruner == 'AutoCompressPruner':
        pruner = AutoCompressPruner(
            model, config_list, trainer=trainer, evaluator=evaluator, dummy_input=dummy_input,
            num_iterations=3, optimize_mode='maximize', base_algo=args.base_algo,
275
            cool_down_rate=args.cool_down_rate, admm_num_iterations=30, admm_epochs_per_iteration=5,
Guoxin's avatar
Guoxin committed
276
277
278
            experiment_data_dir=args.experiment_data_dir)
    else:
        raise ValueError(
Guoxin's avatar
Guoxin committed
279
            "Pruner not supported.")
Guoxin's avatar
Guoxin committed
280
281
282

    # Pruner.compress() returns the masked model
    # but for AutoCompressPruner, Pruner.compress() returns directly the pruned model
Guoxin's avatar
Guoxin committed
283
284
    model = pruner.compress()
    evaluation_result = evaluator(model)
Guoxin's avatar
Guoxin committed
285
    print('Evaluation result (masked model): %s' % evaluation_result)
Guoxin's avatar
Guoxin committed
286
    result['performance']['pruned'] = evaluation_result
Guoxin's avatar
Guoxin committed
287
288
289
290

    if args.save_model:
        pruner.export_model(
            os.path.join(args.experiment_data_dir, 'model_masked.pth'), os.path.join(args.experiment_data_dir, 'mask.pth'))
291
        print('Masked model saved to %s' % args.experiment_data_dir)
Guoxin's avatar
Guoxin committed
292

Guoxin's avatar
Guoxin committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
    # model speed up
    if args.speed_up:
        if args.pruner != 'AutoCompressPruner':
            if args.model == 'LeNet':
                model = LeNet().to(device)
            elif args.model == 'vgg16':
                model = VGG(depth=16).to(device)
            elif args.model == 'resnet18':
                model = ResNet18().to(device)
            elif args.model == 'resnet50':
                model = ResNet50().to(device)

            model.load_state_dict(torch.load(os.path.join(args.experiment_data_dir, 'model_masked.pth')))
            masks_file = os.path.join(args.experiment_data_dir, 'mask.pth')

            m_speedup = ModelSpeedup(model, dummy_input, masks_file, device)
            m_speedup.speedup_model()
            evaluation_result = evaluator(model)
            print('Evaluation result (speed up model): %s' % evaluation_result)
            result['performance']['speedup'] = evaluation_result

            torch.save(model.state_dict(), os.path.join(args.experiment_data_dir, 'model_speed_up.pth'))
315
            print('Speed up model saved to %s' % args.experiment_data_dir)
316
        flops, params, _ = count_flops_params(model, get_input_size(args.dataset))
Guoxin's avatar
Guoxin committed
317
318
319
        result['flops']['speedup'] = flops
        result['params']['speedup'] = params

Guoxin's avatar
Guoxin committed
320
321
    if args.fine_tune:
        if args.dataset == 'mnist':
Guoxin's avatar
Guoxin committed
322
            optimizer = torch.optim.Adadelta(model.parameters(), lr=1)
Guoxin's avatar
Guoxin committed
323
            scheduler = StepLR(optimizer, step_size=1, gamma=0.7)
Guoxin's avatar
Guoxin committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
        elif args.dataset == 'cifar10' and args.model == 'vgg16':
            optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.fine_tune_epochs*0.5), int(args.fine_tune_epochs*0.75)], gamma=0.1)
        elif args.dataset == 'cifar10' and args.model == 'resnet18':
            optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.fine_tune_epochs*0.5), int(args.fine_tune_epochs*0.75)], gamma=0.1)
        elif args.dataset == 'cifar10' and args.model == 'resnet50':
            optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
                optimizer, milestones=[int(args.fine_tune_epochs*0.5), int(args.fine_tune_epochs*0.75)], gamma=0.1)
        best_acc = 0
        for epoch in range(args.fine_tune_epochs):
            train(args, model, device, train_loader, criterion, optimizer, epoch)
            scheduler.step()
            acc = evaluator(model)
            if acc > best_acc:
                best_acc = acc
                torch.save(model.state_dict(), os.path.join(args.experiment_data_dir, 'model_fine_tuned.pth'))
Guoxin's avatar
Guoxin committed
344

Guoxin's avatar
Guoxin committed
345
    print('Evaluation result (fine tuned): %s' % best_acc)
346
    print('Fined tuned model saved to %s' % args.experiment_data_dir)
Guoxin's avatar
Guoxin committed
347
    result['performance']['finetuned'] = best_acc
Guoxin's avatar
Guoxin committed
348

Guoxin's avatar
Guoxin committed
349
    with open(os.path.join(args.experiment_data_dir, 'result.json'), 'w+') as f:
Guoxin's avatar
Guoxin committed
350
351
352
353
        json.dump(result, f)


if __name__ == '__main__':
Guoxin's avatar
Guoxin committed
354
355
356
357
    def str2bool(s):
        if isinstance(s, bool):
            return s
        if s.lower() in ('yes', 'true', 't', 'y', '1'):
Guoxin's avatar
Guoxin committed
358
            return True
Guoxin's avatar
Guoxin committed
359
        if s.lower() in ('no', 'false', 'f', 'n', '0'):
Guoxin's avatar
Guoxin committed
360
            return False
Guoxin's avatar
Guoxin committed
361
        raise argparse.ArgumentTypeError('Boolean value expected.')
Guoxin's avatar
Guoxin committed
362
363
364

    parser = argparse.ArgumentParser(description='PyTorch Example for SimulatedAnnealingPruner')

Guoxin's avatar
Guoxin committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    # dataset and model
    parser.add_argument('--dataset', type=str, default='cifar10',
                        help='dataset to use, mnist, cifar10 or imagenet')
    parser.add_argument('--data-dir', type=str, default='./data/',
                        help='dataset directory')
    parser.add_argument('--model', type=str, default='vgg16',
                        help='model to use, LeNet, vgg16, resnet18 or resnet50')
    parser.add_argument('--load-pretrained-model', type=str2bool, default=False,
                        help='whether to load pretrained model')
    parser.add_argument('--pretrained-model-dir', type=str, default='./',
                        help='path to pretrained model')
    parser.add_argument('--pretrain-epochs', type=int, default=100,
                        help='number of epochs to pretrain the model')
    parser.add_argument('--batch-size', type=int, default=64,
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=64,
                        help='input batch size for testing (default: 64)')
    parser.add_argument('--fine-tune', type=str2bool, default=True,
                        help='whether to fine-tune the pruned model')
    parser.add_argument('--fine-tune-epochs', type=int, default=5,
                        help='epochs to fine tune')
    parser.add_argument('--experiment-data-dir', type=str, default='./experiment_data',
                        help='For saving experiment data')

    # pruner
Guoxin's avatar
Guoxin committed
390
    parser.add_argument('--pruner', type=str, default='SimulatedAnnealingPruner',
Guoxin's avatar
Guoxin committed
391
                        help='pruner to use')
Guoxin's avatar
Guoxin committed
392
    parser.add_argument('--base-algo', type=str, default='l1',
393
                        help='base pruning algorithm. level, l1, l2, or fpgm')
Guoxin's avatar
Guoxin committed
394
395
    parser.add_argument('--sparsity', type=float, default=0.1,
                        help='target overall target sparsity')
Guoxin's avatar
Guoxin committed
396
397
398
399
400
401
402
    # param for SimulatedAnnealingPruner
    parser.add_argument('--cool-down-rate', type=float, default=0.9,
                        help='cool down rate')
    # param for NetAdaptPruner
    parser.add_argument('--sparsity-per-iteration', type=float, default=0.05,
                        help='sparsity_per_iteration of NetAdaptPruner')

Guoxin's avatar
Guoxin committed
403
404
405
    # speed-up
    parser.add_argument('--speed-up', type=str2bool, default=False,
                        help='Whether to speed-up the pruned model')
Guoxin's avatar
Guoxin committed
406

Guoxin's avatar
Guoxin committed
407
    # others
Guoxin's avatar
Guoxin committed
408
409
410
411
    parser.add_argument('--log-interval', type=int, default=200,
                        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model', type=str2bool, default=True,
                        help='For Saving the current Model')
Guoxin's avatar
Guoxin committed
412

Guoxin's avatar
Guoxin committed
413
414
415
416
417
418
    args = parser.parse_args()

    if not os.path.exists(args.experiment_data_dir):
        os.makedirs(args.experiment_data_dir)

    main(args)