"git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "c33b8a63772b50cfbdf6e09d626852bb0e427471"
README.md 19.8 KB
Newer Older
1
<p align="center">
2
<img src="docs/img/nni_logo.png" width="300"/>
3
4
5
</p>

-----------
6

7
[![MIT licensed](https://img.shields.io/badge/license-MIT-brightgreen.svg)](LICENSE)
Yuge Zhang's avatar
Yuge Zhang committed
8
[![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration-test-local?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=17&branchName=master)
Gems Guo's avatar
Gems Guo committed
9
10
11
[![Issues](https://img.shields.io/github/issues-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen)
[![Bugs](https://img.shields.io/github/issues/Microsoft/nni/bug.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
[![Pull Requests](https://img.shields.io/github/issues-pr-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/pulls?q=is%3Apr+is%3Aopen)
The Gitter Badger's avatar
The Gitter Badger committed
12
[![Version](https://img.shields.io/github/release/Microsoft/nni.svg)](https://github.com/Microsoft/nni/releases) [![Join the chat at https://gitter.im/Microsoft/nni](https://badges.gitter.im/Microsoft/nni.svg)](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
Yan Ni's avatar
Yan Ni committed
13
[![Documentation Status](https://readthedocs.org/projects/nni/badge/?version=latest)](https://nni.readthedocs.io/en/latest/?badge=latest)
Microsoft Open Source's avatar
Microsoft Open Source committed
14

15
[简体中文](README_zh_CN.md)
Chi Song's avatar
Chi Song committed
16

17
**NNI (Neural Network Intelligence)** is a lightweight but powerful toolkit to help users **automate** <a href="docs/en_US/FeatureEngineering/Overview.md">Feature Engineering</a>, <a href="docs/en_US/NAS/Overview.md">Neural Architecture Search</a>, <a href="docs/en_US/Tuner/BuiltinTuner.md">Hyperparameter Tuning</a> and <a href="docs/en_US/Compressor/Overview.md">Model Compression</a>.
18

19
20
21
22
23
24
The tool manages automated machine learning (AutoML) experiments, **dispatches and runs** experiments' trial jobs generated by tuning algorithms to search the best neural architecture and/or hyper-parameters in **different training environments** like <a href="docs/en_US/TrainingService/LocalMode.md">Local Machine</a>, <a href="docs/en_US/TrainingService/RemoteMachineMode.md">Remote Servers</a>, <a href="docs/en_US/TrainingService/PaiMode.md">OpenPAI</a>, <a href="docs/en_US/TrainingService/KubeflowMode.md">Kubeflow</a>, <a href="docs/en_US/TrainingService/FrameworkControllerMode.md">FrameworkController on K8S (AKS etc.)</a> and other cloud options.

## **Who should consider using NNI**

* Those who want to **try different AutoML algorithms** in their training code/model.
* Those who want to run AutoML trial jobs **in different environments** to speed up search.
Scarlett Li's avatar
Scarlett Li committed
25
* Researchers and data scientists who want to easily **implement and experiment new AutoML algorithms**, may it be: hyperparameter tuning algorithm, neural architect search algorithm or model compression algorithm.
26
* ML Platform owners who want to **support AutoML in their platform**.
27

QuanluZhang's avatar
QuanluZhang committed
28
### **NNI v1.4 has been released! &nbsp;<a href="#nni-released-reminder"><img width="48" src="docs/img/release_icon.png"></a>**
29

30
## **NNI capabilities in a glance**
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
31
32

NNI provides CommandLine Tool as well as an user friendly WebUI to manage training experiments. With the extensible API, you can customize your own AutoML algorithms and training services. To make it easy for new users, NNI also provides a set of build-in stat-of-the-art AutoML algorithms and out of box support for popular training platforms.
33
34
35

Within the following table, we summarized the current NNI capabilities, we are gradually adding new capabilities and we'd love to have your contribution.

QuanluZhang's avatar
QuanluZhang committed
36
<p align="center">
Lijiao's avatar
Lijiao committed
37
  <a href="#nni-has-been-released"><img src="docs/img/overview.svg" /></a>
QuanluZhang's avatar
QuanluZhang committed
38
</p>
39

QuanluZhang's avatar
QuanluZhang committed
40
41
<table>
  <tbody>
42
    <tr align="center" valign="bottom">
43
44
    <td>
      </td>
QuanluZhang's avatar
QuanluZhang committed
45
      <td>
46
        <b>Frameworks & Libraries</b>
47
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
48
49
      </td>
      <td>
50
        <b>Algorithms</b>
51
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
52
53
      </td>
      <td>
Gems's avatar
Gems committed
54
        <b>Training Services</b>
55
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
56
57
      </td>
    </tr>
58
    </tr>
QuanluZhang's avatar
QuanluZhang committed
59
    <tr valign="top">
60
61
62
    <td align="center" valign="middle">
    <b>Built-in</b>
      </td>
QuanluZhang's avatar
QuanluZhang committed
63
      <td>
64
      <ul><li><b>Supported Frameworks</b></li>
65
66
67
        <ul>
          <li>PyTorch</li>
          <li>Keras</li>
68
          <li>TensorFlow</li>
69
70
          <li>MXNet</li>
          <li>Caffe2</li>
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
          <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
        </ul>
        </ul>
      <ul>
        <li><b>Supported Libraries</b></li>
          <ul>
           <li>Scikit-learn</li>
           <li>XGBoost</li>
           <li>LightGBM</li>
           <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
          </ul>
      </ul>
        <ul>
        <li><b>Examples</b></li>
         <ul>
Guoxin's avatar
Guoxin committed
86
           <li><a href="examples/trials/mnist-pytorch">MNIST-pytorch</li></a>
87
           <li><a href="examples/trials/mnist-tfv1">MNIST-tensorflow</li></a>
88
89
90
91
           <li><a href="examples/trials/mnist-keras">MNIST-keras</li></a>
           <li><a href="docs/en_US/TrialExample/GbdtExample.md">Auto-gbdt</a></li>
           <li><a href="docs/en_US/TrialExample/Cifar10Examples.md">Cifar10-pytorch</li></a>
           <li><a href="docs/en_US/TrialExample/SklearnExamples.md">Scikit-learn</a></li>
92
           <li><a href="docs/en_US/TrialExample/EfficientNet.md">EfficientNet</a></li>
93
94
              <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
          </ul>
QuanluZhang's avatar
QuanluZhang committed
95
96
        </ul>
      </td>
97
      <td align="left" >
98
        <a href="docs/en_US/Tuner/BuiltinTuner.md">Hyperparameter Tuning</a>
QuanluZhang's avatar
QuanluZhang committed
99
        <ul>
100
          <b>Exhaustive search</b>
101
          <ul>
102
103
104
105
106
107
108
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Random">Random Search</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#GridSearch">Grid Search</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Batch">Batch</a></li>
            </ul>
          <b>Heuristic search</b>
          <ul>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Evolution">Naïve Evolution</a></li>
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
109
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Anneal">Anneal</a></li>
110
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Hyperband">Hyperband</a></li>
111
          </ul>
112
113
          <b>Bayesian optimization</b>
            <ul>
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
114
              <li><a href="docs/en_US/Tuner/BuiltinTuner.md#BOHB">BOHB</a></li>
115
              <li><a href="docs/en_US/Tuner/BuiltinTuner.md#TPE">TPE</a></li>
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
116
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#SMAC">SMAC</a></li>
117
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#MetisTuner">Metis Tuner</a></li>
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
118
119
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#GPTuner">GP Tuner</a></li>
            </ul>
120
121
122
123
124
125
          <b>RL Based</b>
          <ul>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#PPOTuner">PPO Tuner</a> </li>
          </ul>
        </ul>
          <a href="docs/en_US/NAS/Overview.md">Neural Architecture Search</a>
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
126
          <ul>
127
            <ul>
128
129
130
131
132
133
              <li><a href="docs/en_US/NAS/ENAS.md">ENAS</a></li>
              <li><a href="docs/en_US/NAS/DARTS.md">DARTS</a></li>
              <li><a href="docs/en_US/NAS/PDARTS.md">P-DARTS</a></li>
              <li><a href="docs/en_US/NAS/CDARTS.md">CDARTS</a></li>
              <li><a href="docs/en_US/NAS/SPOS.md">SPOS</a></li>
              <li><a href="docs/en_US/NAS/Proxylessnas.md">ProxylessNAS</a></li>
134
              <li><a href="docs/en_US/Tuner/BuiltinTuner.md#NetworkMorphism">Network Morphism</a> </li>
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
135
            </ul>
136
          </ul>
137
          <a href="docs/en_US/Compressor/Overview.md">Model Compression</a>
138
          <ul>
139
140
141
142
143
144
145
146
147
148
149
            <b>Pruning</b>
            <ul>
              <li><a href="docs/en_US/Compressor/Pruner.md#agp-pruner">AGP Pruner</a></li>
              <li><a href="docs/en_US/Compressor/Pruner.md#slim-pruner">Slim Pruner</a></li>
              <li><a href="docs/en_US/Compressor/Pruner.md#fpgm-pruner">FPGM Pruner</a></li>
            </ul>
            <b>Quantization</b>
            <ul>
              <li><a href="docs/en_US/Compressor/Quantizer.md#qat-quantizer">QAT Quantizer</a></li>
              <li><a href="docs/en_US/Compressor/Quantizer.md#dorefa-quantizer">DoReFa Quantizer</a></li>
            </ul>
150
151
152
153
154
155
          </ul>
          <a href="docs/en_US/FeatureEngineering/Overview.md">Feature Engineering (Beta)</a>
          <ul>
          <li><a href="docs/en_US/FeatureEngineering/GradientFeatureSelector.md">GradientFeatureSelector</a></li>
          <li><a href="docs/en_US/FeatureEngineering/GBDTSelector.md">GBDTSelector</a></li>
          </ul>
156
157
158
          <a href="docs/en_US/Assessor/BuiltinAssessor.md">Early Stop Algorithms</a>
          <ul>
          <li><a href="docs/en_US/Assessor/BuiltinAssessor.md#Medianstop">Median Stop</a></li>
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
159
          <li><a href="docs/en_US/Assessor/BuiltinAssessor.md#Curvefitting">Curve Fitting</a></li>
160
          </ul>
QuanluZhang's avatar
QuanluZhang committed
161
162
163
      </td>
      <td>
      <ul>
164
165
166
167
168
169
170
        <li><a href="docs/en_US/TrainingService/LocalMode.md">Local Machine</a></li>
        <li><a href="docs/en_US/TrainingService/RemoteMachineMode.md">Remote Servers</a></li>
        <li><b>Kubernetes based services</b></li>
            <ul><li><a href="docs/en_US/TrainingService/PaiMode.md">OpenPAI</a></li>
            <li><a href="docs/en_US/TrainingService/KubeflowMode.md">Kubeflow</a></li>
            <li><a href="docs/en_US/TrainingService/FrameworkControllerMode.md">FrameworkController on K8S (AKS etc.)</a></li>
            </ul>
QuanluZhang's avatar
QuanluZhang committed
171
172
      </ul>
      </td>
173
    </tr>
174
175
176
177
178
179
180
181
182
      <tr align="center" valign="bottom">
      </td>
      </tr>
      <tr valign="top">
       <td valign="middle">
    <b>References</b>
      </td>
     <td style="border-top:#FF0000 solid 0px;">
      <ul>
QuanluZhang's avatar
QuanluZhang committed
183
        <li><a href="https://nni.readthedocs.io/en/latest/autotune_ref.html#trial">Python API</a></li>
184
        <li><a href="docs/en_US/Tutorial/AnnotationSpec.md">NNI Annotation</a></li>
QuanluZhang's avatar
QuanluZhang committed
185
         <li><a href="https://nni.readthedocs.io/en/latest/installation.html">Supported OS</a></li>
186
187
188
189
190
191
192
193
194
195
196
197
198
      </ul>
      </td>
       <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/en_US/Tuner/CustomizeTuner.md">CustomizeTuner</a></li>
        <li><a href="docs/en_US/Assessor/CustomizeAssessor.md">CustomizeAssessor</a></li>
      </ul>
      </td>
        <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/en_US/TrainingService/SupportTrainingService.md">Support TrainingService</li>
        <li><a href="docs/en_US/TrainingService/HowToImplementTrainingService.md">Implement TrainingService</a></li>
      </ul>
199
200
      </td>
    </tr>
QuanluZhang's avatar
QuanluZhang committed
201
202
  </tbody>
</table>
203

204
## **Installation**
Chi Song's avatar
Chi Song committed
205

206
### **Install**
Chi Song's avatar
Chi Song committed
207

208
NNI supports and is tested on Ubuntu >= 16.04, macOS >= 10.14.1, and Windows 10 >= 1809. Simply run the following `pip install` in an environment that has `python 64-bit >= 3.5`.
Zejun Lin's avatar
Zejun Lin committed
209

210
Linux or macOS
Chi Song's avatar
Chi Song committed
211

Zejun Lin's avatar
Zejun Lin committed
212
```bash
Chi Song's avatar
Chi Song committed
213
python3 -m pip install --upgrade nni
214
```
Chi Song's avatar
Chi Song committed
215

216
Windows
Chi Song's avatar
Chi Song committed
217

218
```bash
Chi Song's avatar
Chi Song committed
219
python -m pip install --upgrade nni
220
```
Chi Song's avatar
Chi Song committed
221

QuanluZhang's avatar
QuanluZhang committed
222
If you want to try latest code, please [install NNI](https://nni.readthedocs.io/en/latest/installation.html) from source code.
Chi Song's avatar
Chi Song committed
223

QuanluZhang's avatar
QuanluZhang committed
224
For detail system requirements of NNI, please refer to [here](https://nni.readthedocs.io/en/latest/Tutorial/InstallationLinux.html#system-requirements) for Linux & macOS, and [here](https://nni.readthedocs.io/en/latest/Tutorial/InstallationWin.html#system-requirements) for Windows.
225

226
Note:
Chi Song's avatar
Chi Song committed
227

228
229
* If there is any privilege issue, add `--user` to install NNI in the user directory.
* Currently NNI on Windows supports local, remote and pai mode. Anaconda or Miniconda is highly recommended to install NNI on Windows.
230
* If there is any error like `Segmentation fault`, please refer to [FAQ](docs/en_US/Tutorial/FAQ.md). For FAQ on Windows, please refer to [NNI on Windows](docs/en_US/Tutorial/InstallationWin.md#faq).
231

232
### **Verify installation**
Chi Song's avatar
Chi Song committed
233

234
The following example is built on TensorFlow 1.x. Make sure **TensorFlow 1.x is used** when running it.
Chi Song's avatar
Chi Song committed
235
236
237

* Download the examples via clone the source code.

238
  ```bash
QuanluZhang's avatar
QuanluZhang committed
239
  git clone -b v1.4 https://github.com/Microsoft/nni.git
240
  ```
Chi Song's avatar
Chi Song committed
241
242
243

* Run the MNIST example.

244
  Linux or macOS
Chi Song's avatar
Chi Song committed
245

246
247
248
  ```bash
  nnictl create --config nni/examples/trials/mnist-tfv1/config.yml
  ```
Chi Song's avatar
Chi Song committed
249

250
  Windows
Chi Song's avatar
Chi Song committed
251

252
253
254
  ```bash
  nnictl create --config nni\examples\trials\mnist-tfv1\config_windows.yml
  ```
Chi Song's avatar
Chi Song committed
255

256
* Wait for the message `INFO: Successfully started experiment!` in the command line. This message indicates that your experiment has been successfully started. You can explore the experiment using the `Web UI url`.
257

Chi Song's avatar
Chi Song committed
258
```text
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
INFO: Starting restful server...
INFO: Successfully started Restful server!
INFO: Setting local config...
INFO: Successfully set local config!
INFO: Starting experiment...
INFO: Successfully started experiment!
-----------------------------------------------------------------------
The experiment id is egchD4qy
The Web UI urls are: http://223.255.255.1:8080   http://127.0.0.1:8080
-----------------------------------------------------------------------

You can use these commands to get more information about the experiment
-----------------------------------------------------------------------
         commands                       description
1. nnictl experiment show        show the information of experiments
2. nnictl trial ls               list all of trial jobs
SparkSnail's avatar
SparkSnail committed
275
276
277
278
279
280
3. nnictl top                    monitor the status of running experiments
4. nnictl log stderr             show stderr log content
5. nnictl log stdout             show stdout log content
6. nnictl stop                   stop an experiment
7. nnictl trial kill             kill a trial job by id
8. nnictl --help                 get help information about nnictl
281
-----------------------------------------------------------------------
Scarlett Li's avatar
Scarlett Li committed
282
```
Scarlett Li's avatar
Scarlett Li committed
283

284
* Open the `Web UI url` in your browser, you can view detail information of the experiment and all the submitted trial jobs as shown below. [Here](docs/en_US/Tutorial/WebUI.md) are more Web UI pages.
285
286
287
288
289
290

<table style="border: none">
    <th><img src="./docs/img/webui_overview_page.png" alt="drawing" width="395"/></th>
    <th><img src="./docs/img/webui_trialdetail_page.png" alt="drawing" width="410"/></th>
</table>

Scarlett Li's avatar
Scarlett Li committed
291
## **Documentation**
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
292
293
294

* To learn about what's NNI, read the [NNI Overview](https://nni.readthedocs.io/en/latest/Overview.html).
* To get yourself familiar with how to use NNI, read the [documentation](https://nni.readthedocs.io/en/latest/index.html).
295
* To get started and install NNI on your system, please refer to [Install NNI](https://nni.readthedocs.io/en/latest/installation.html).
Chi Song's avatar
Chi Song committed
296

297
298
## **Contributing**
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.
299

300
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
Scarlett Li's avatar
Scarlett Li committed
301

302
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the Code of [Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact opencode@microsoft.com with any additional questions or comments.
303

304
After getting familiar with contribution agreements, you are ready to create your first PR =), follow the NNI developer tutorials to get start:
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
305

Scarlett Li's avatar
Scarlett Li committed
306
* We recommend new contributors to start with simple issues: ['good first issue'](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) or ['help-wanted'](https://github.com/microsoft/nni/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22).
307
* [NNI developer environment installation tutorial](docs/en_US/Tutorial/SetupNniDeveloperEnvironment.md)
308
* [How to debug](docs/en_US/Tutorial/HowToDebug.md)
Scarlett Li's avatar
Scarlett Li committed
309
* If you have any questions on usage, review [FAQ](https://github.com/microsoft/nni/blob/master/docs/en_US/Tutorial/FAQ.md) first, if there are no relevant issues and answers to your question, try contact NNI dev team and users in [Gitter](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) or [File an issue](https://github.com/microsoft/nni/issues/new/choose) on GitHub.
310
* [Customize your own Tuner](docs/en_US/Tuner/CustomizeTuner.md)
311
* [Implement customized TrainingService](docs/en_US/TrainingService/HowToImplementTrainingService.md)
312
* [Implement a new NAS trainer on NNI](docs/en_US/NAS/Advanced.md)
313
* [Customize your own Advisor](docs/en_US/Tuner/CustomizeAdvisor.md)
314

rabbit008's avatar
rabbit008 committed
315
316
## **External Repositories and References**
With authors' permission, we listed a set of NNI usage examples and relevant articles.
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
317

318
319
* ### **External Repositories** ###
   * Run [ENAS](examples/tuners/enas_nni/README.md) with NNI
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
320
321
   * Run [Neural Network Architecture Search](examples/trials/nas_cifar10/README.md) with NNI
   * [Automatic Feature Engineering](examples/feature_engineering/auto-feature-engineering/README.md) with NNI
322
   * [Hyperparameter Tuning for Matrix Factorization](https://github.com/microsoft/recommenders/blob/master/notebooks/04_model_select_and_optimize/nni_surprise_svd.ipynb) with NNI
QuanluZhang's avatar
QuanluZhang committed
323
   * [scikit-nni](https://github.com/ksachdeva/scikit-nni) Hyper-parameter search for scikit-learn pipelines using NNI
324
325
326
327
328
329
* ### **Relevant Articles** ###
  * [Hyper Parameter Optimization Comparison](docs/en_US/CommunitySharings/HpoComparision.md)
  * [Neural Architecture Search Comparison](docs/en_US/CommunitySharings/NasComparision.md)
  * [Parallelizing a Sequential Algorithm TPE](docs/en_US/CommunitySharings/ParallelizingTpeSearch.md)
  * [Automatically tuning SVD with NNI](docs/en_US/CommunitySharings/RecommendersSvd.md)
  * [Automatically tuning SPTAG with NNI](docs/en_US/CommunitySharings/SptagAutoTune.md)
QuanluZhang's avatar
QuanluZhang committed
330
  * [Find thy hyper-parameters for scikit-learn pipelines using Microsoft NNI](https://towardsdatascience.com/find-thy-hyper-parameters-for-scikit-learn-pipelines-using-microsoft-nni-f1015b1224c1)
331
  * **Blog (in Chinese)** - [AutoML tools (Advisor, NNI and Google Vizier) comparison](http://gaocegege.com/Blog/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/katib-new#%E6%80%BB%E7%BB%93%E4%B8%8E%E5%88%86%E6%9E%90) by [@gaocegege](https://github.com/gaocegege) - 总结与分析 section of design and implementation of kubeflow/katib
Scarlett Li's avatar
Scarlett Li committed
332
  * **Blog (in Chinese)** - [A summary of NNI new capabilities in 2019](https://mp.weixin.qq.com/s/7_KRT-rRojQbNuJzkjFMuA) by @squirrelsc
333
334

## **Feedback**
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
335

336
* Discuss on the NNI [Gitter](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) in NNI.
337
* [File an issue](https://github.com/microsoft/nni/issues/new/choose) on GitHub.
338
* Ask a question with NNI tags on [Stack Overflow](https://stackoverflow.com/questions/tagged/nni?sort=Newest&edited=true).
Chi Song's avatar
Chi Song committed
339

340
## Related Projects
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
341

342
343
344
345
346
347
348
349
Targeting at openness and advancing state-of-art technology, [Microsoft Research (MSR)](https://www.microsoft.com/en-us/research/group/systems-research-group-asia/) had also released few other open source projects.

* [OpenPAI](https://github.com/Microsoft/pai) : an open source platform that provides complete AI model training and resource management capabilities, it is easy to extend and supports on-premise, cloud and hybrid environments in various scale.
* [FrameworkController](https://github.com/Microsoft/frameworkcontroller) : an open source general-purpose Kubernetes Pod Controller that orchestrate all kinds of applications on Kubernetes by a single controller.
* [MMdnn](https://github.com/Microsoft/MMdnn) : A comprehensive, cross-framework solution to convert, visualize and diagnose deep neural network models. The "MM" in MMdnn stands for model management and "dnn" is an acronym for deep neural network.
* [SPTAG](https://github.com/Microsoft/SPTAG) : Space Partition Tree And Graph (SPTAG) is an open source library for large scale vector approximate nearest neighbor search scenario.

We encourage researchers and students leverage these projects to accelerate the AI development and research.
Microsoft Open Source's avatar
Microsoft Open Source committed
350

Chi Song's avatar
Chi Song committed
351
352
## **License**

353
The entire codebase is under [MIT license](LICENSE)