README.md 19.8 KB
Newer Older
1
<p align="center">
2
<img src="docs/img/nni_logo.png" width="300"/>
3
4
5
</p>

-----------
6

7
[![MIT licensed](https://img.shields.io/badge/license-MIT-brightgreen.svg)](LICENSE)
Yuge Zhang's avatar
Yuge Zhang committed
8
[![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration-test-local?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=17&branchName=master)
Gems Guo's avatar
Gems Guo committed
9
10
11
[![Issues](https://img.shields.io/github/issues-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen)
[![Bugs](https://img.shields.io/github/issues/Microsoft/nni/bug.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
[![Pull Requests](https://img.shields.io/github/issues-pr-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/pulls?q=is%3Apr+is%3Aopen)
The Gitter Badger's avatar
The Gitter Badger committed
12
[![Version](https://img.shields.io/github/release/Microsoft/nni.svg)](https://github.com/Microsoft/nni/releases) [![Join the chat at https://gitter.im/Microsoft/nni](https://badges.gitter.im/Microsoft/nni.svg)](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
Yan Ni's avatar
Yan Ni committed
13
[![Documentation Status](https://readthedocs.org/projects/nni/badge/?version=latest)](https://nni.readthedocs.io/en/latest/?badge=latest)
Microsoft Open Source's avatar
Microsoft Open Source committed
14

15
[简体中文](README_zh_CN.md)
Chi Song's avatar
Chi Song committed
16

17
**NNI (Neural Network Intelligence)** is a lightweight but powerful toolkit to help users **automate** <a href="docs/en_US/FeatureEngineering/Overview.md">Feature Engineering</a>, <a href="docs/en_US/NAS/Overview.md">Neural Architecture Search</a>, <a href="docs/en_US/Tuner/BuiltinTuner.md">Hyperparameter Tuning</a> and <a href="docs/en_US/Compressor/Overview.md">Model Compression</a>.
18

19
20
21
22
23
24
25
26
The tool manages automated machine learning (AutoML) experiments, **dispatches and runs** experiments' trial jobs generated by tuning algorithms to search the best neural architecture and/or hyper-parameters in **different training environments** like <a href="docs/en_US/TrainingService/LocalMode.md">Local Machine</a>, <a href="docs/en_US/TrainingService/RemoteMachineMode.md">Remote Servers</a>, <a href="docs/en_US/TrainingService/PaiMode.md">OpenPAI</a>, <a href="docs/en_US/TrainingService/KubeflowMode.md">Kubeflow</a>, <a href="docs/en_US/TrainingService/FrameworkControllerMode.md">FrameworkController on K8S (AKS etc.)</a> and other cloud options.

## **Who should consider using NNI**

* Those who want to **try different AutoML algorithms** in their training code/model.
* Those who want to run AutoML trial jobs **in different environments** to speed up search.
* Researchers and data scientists who want to easily **implement and experiement new AutoML algorithms**, may it be: hyperparameter tuning algorithm, neural architect search algorithm or model compression algorithm.
* ML Platform owners who want to **support AutoML in their platform**.
27

28
### **NNI v1.3 has been released! &nbsp;<a href="#nni-released-reminder"><img width="48" src="docs/img/release_icon.png"></a>**
29

30
31
32
33
34
## **NNI capabilities in a glance**
NNI provides CommandLine Tool as well as an user friendly WebUI to manage training experiements. With the extensible API, you can customize your own AutoML algorithms and training services. To make it easy for new users, NNI also provides a set of build-in stat-of-the-art AutoML algorithms and out of box support for popular training platforms. 

Within the following table, we summarized the current NNI capabilities, we are gradually adding new capabilities and we'd love to have your contribution.

QuanluZhang's avatar
QuanluZhang committed
35
<p align="center">
Lijiao's avatar
Lijiao committed
36
  <a href="#nni-has-been-released"><img src="docs/img/overview.svg" /></a>
QuanluZhang's avatar
QuanluZhang committed
37
</p>
38

QuanluZhang's avatar
QuanluZhang committed
39
40
<table>
  <tbody>
41
    <tr align="center" valign="bottom">
42
43
    <td>
      </td>
QuanluZhang's avatar
QuanluZhang committed
44
      <td>
45
        <b>Frameworks & Libraries</b>
46
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
47
48
      </td>
      <td>
49
        <b>Algorithms</b>
50
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
51
52
      </td>
      <td>
Gems's avatar
Gems committed
53
        <b>Training Services</b>
54
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
55
56
      </td>
    </tr>
57
    </tr>
QuanluZhang's avatar
QuanluZhang committed
58
    <tr valign="top">
59
60
61
    <td align="center" valign="middle">
    <b>Built-in</b>
      </td>
QuanluZhang's avatar
QuanluZhang committed
62
      <td>
63
      <ul><li><b>Supported Frameworks</b></li>
64
65
66
        <ul>
          <li>PyTorch</li>
          <li>Keras</li>
67
          <li>TensorFlow</li>
68
69
          <li>MXNet</li>
          <li>Caffe2</li>
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
          <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
        </ul>
        </ul>
      <ul>
        <li><b>Supported Libraries</b></li>
          <ul>
           <li>Scikit-learn</li>
           <li>XGBoost</li>
           <li>LightGBM</li>
           <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
          </ul>
      </ul>
        <ul>
        <li><b>Examples</b></li>
         <ul>
Guoxin's avatar
Guoxin committed
85
           <li><a href="examples/trials/mnist-pytorch">MNIST-pytorch</li></a>
86
           <li><a href="examples/trials/mnist-tfv1">MNIST-tensorflow</li></a>
87
88
89
90
           <li><a href="examples/trials/mnist-keras">MNIST-keras</li></a>
           <li><a href="docs/en_US/TrialExample/GbdtExample.md">Auto-gbdt</a></li>
           <li><a href="docs/en_US/TrialExample/Cifar10Examples.md">Cifar10-pytorch</li></a>
           <li><a href="docs/en_US/TrialExample/SklearnExamples.md">Scikit-learn</a></li>
91
           <li><a href="docs/en_US/TrialExample/EfficientNet.md">EfficientNet</a></li>
92
93
              <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
          </ul>
QuanluZhang's avatar
QuanluZhang committed
94
95
        </ul>
      </td>
96
      <td align="left" >
97
        <a href="docs/en_US/Tuner/BuiltinTuner.md">Hyperparameter Tuning</a>
QuanluZhang's avatar
QuanluZhang committed
98
        <ul>
99
          <b>Exhaustive search</b>
100
          <ul>
101
102
103
104
105
106
107
108
109
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Random">Random Search</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#GridSearch">Grid Search</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Batch">Batch</a></li>
            </ul>
          <b>Heuristic search</b>
          <ul>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Evolution">Naïve Evolution</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Anneal">Anneal</a></li>  
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Hyperband">Hyperband</a></li>
110
          </ul>
111
112
113
114
115
116
117
118
119
120
121
122
123
124
          <b>Bayesian optimization</b>
            <ul>
              <li><a href="docs/en_US/Tuner/BuiltinTuner.md#BOHB">BOHB</a></li>  
              <li><a href="docs/en_US/Tuner/BuiltinTuner.md#TPE">TPE</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#SMAC">SMAC</a></li> 
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#MetisTuner">Metis Tuner</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#GPTuner">GP Tuner</a> </li>
            </ul>  
          <b>RL Based</b>
          <ul>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#PPOTuner">PPO Tuner</a> </li>
          </ul>
        </ul>
          <a href="docs/en_US/NAS/Overview.md">Neural Architecture Search</a>
125
126
127
128
129
          <ul>                        
            <ul>
              <li><a href="docs/en_US/NAS/Overview.md#enas">ENAS</a></li>
              <li><a href="docs/en_US/NAS/Overview.md#darts">DARTS</a></li>
              <li><a href="docs/en_US/NAS/Overview.md#p-darts">P-DARTS</a></li>
130
              <li><a href="docs/en_US/NAS/Overview.md#cdarts">CDARTS</a></li>
131
132
              <li><a href="docs/en_US/Tuner/BuiltinTuner.md#NetworkMorphism">Network Morphism</a> </li>
            </ul>    
133
          </ul>
134
          <a href="docs/en_US/Compressor/Overview.md">Model Compression</a>
135
          <ul>
136
137
138
139
140
141
142
143
144
145
146
            <b>Pruning</b>
            <ul>
              <li><a href="docs/en_US/Compressor/Pruner.md#agp-pruner">AGP Pruner</a></li>
              <li><a href="docs/en_US/Compressor/Pruner.md#slim-pruner">Slim Pruner</a></li>
              <li><a href="docs/en_US/Compressor/Pruner.md#fpgm-pruner">FPGM Pruner</a></li>
            </ul>
            <b>Quantization</b>
            <ul>
              <li><a href="docs/en_US/Compressor/Quantizer.md#qat-quantizer">QAT Quantizer</a></li>
              <li><a href="docs/en_US/Compressor/Quantizer.md#dorefa-quantizer">DoReFa Quantizer</a></li>
            </ul>
147
148
149
150
151
152
          </ul>
          <a href="docs/en_US/FeatureEngineering/Overview.md">Feature Engineering (Beta)</a>
          <ul>
          <li><a href="docs/en_US/FeatureEngineering/GradientFeatureSelector.md">GradientFeatureSelector</a></li>
          <li><a href="docs/en_US/FeatureEngineering/GBDTSelector.md">GBDTSelector</a></li>
          </ul>
153
154
155
156
157
          <a href="docs/en_US/Assessor/BuiltinAssessor.md">Early Stop Algorithms</a>
          <ul>
          <li><a href="docs/en_US/Assessor/BuiltinAssessor.md#Medianstop">Median Stop</a></li>
          <li><a href="docs/en_US/Assessor/BuiltinAssessor.md#Curvefitting">Curve Fitting</a></li>   
          </ul>
QuanluZhang's avatar
QuanluZhang committed
158
159
160
      </td>
      <td>
      <ul>
161
162
163
164
165
166
167
        <li><a href="docs/en_US/TrainingService/LocalMode.md">Local Machine</a></li>
        <li><a href="docs/en_US/TrainingService/RemoteMachineMode.md">Remote Servers</a></li>
        <li><b>Kubernetes based services</b></li>
            <ul><li><a href="docs/en_US/TrainingService/PaiMode.md">OpenPAI</a></li>
            <li><a href="docs/en_US/TrainingService/KubeflowMode.md">Kubeflow</a></li>
            <li><a href="docs/en_US/TrainingService/FrameworkControllerMode.md">FrameworkController on K8S (AKS etc.)</a></li>
            </ul>
QuanluZhang's avatar
QuanluZhang committed
168
169
      </ul>
      </td>
170
    </tr>
171
172
173
174
175
176
177
178
179
      <tr align="center" valign="bottom">
      </td>
      </tr>
      <tr valign="top">
       <td valign="middle">
    <b>References</b>
      </td>
     <td style="border-top:#FF0000 solid 0px;">
      <ul>
QuanluZhang's avatar
QuanluZhang committed
180
        <li><a href="https://nni.readthedocs.io/en/latest/autotune_ref.html#trial">Python API</a></li>
181
        <li><a href="docs/en_US/Tutorial/AnnotationSpec.md">NNI Annotation</a></li>
QuanluZhang's avatar
QuanluZhang committed
182
         <li><a href="https://nni.readthedocs.io/en/latest/installation.html">Supported OS</a></li>
183
184
185
186
187
188
189
190
191
192
193
194
195
      </ul>
      </td>
       <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/en_US/Tuner/CustomizeTuner.md">CustomizeTuner</a></li>
        <li><a href="docs/en_US/Assessor/CustomizeAssessor.md">CustomizeAssessor</a></li>
      </ul>
      </td>
        <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/en_US/TrainingService/SupportTrainingService.md">Support TrainingService</li>
        <li><a href="docs/en_US/TrainingService/HowToImplementTrainingService.md">Implement TrainingService</a></li>
      </ul>
196
197
      </td>
    </tr>
QuanluZhang's avatar
QuanluZhang committed
198
199
  </tbody>
</table>
200

201
## **Installation**
Chi Song's avatar
Chi Song committed
202

203
### **Install**
Chi Song's avatar
Chi Song committed
204

205
NNI supports and is tested on Ubuntu >= 16.04, macOS >= 10.14.1, and Windows 10 >= 1809. Simply run the following `pip install` in an environment that has `python 64-bit >= 3.5`.
Zejun Lin's avatar
Zejun Lin committed
206

207
Linux or macOS
Chi Song's avatar
Chi Song committed
208

Zejun Lin's avatar
Zejun Lin committed
209
```bash
Chi Song's avatar
Chi Song committed
210
python3 -m pip install --upgrade nni
211
```
Chi Song's avatar
Chi Song committed
212

213
Windows
Chi Song's avatar
Chi Song committed
214

215
```bash
Chi Song's avatar
Chi Song committed
216
python -m pip install --upgrade nni
217
```
Chi Song's avatar
Chi Song committed
218

QuanluZhang's avatar
QuanluZhang committed
219
If you want to try latest code, please [install NNI](https://nni.readthedocs.io/en/latest/installation.html) from source code.
Chi Song's avatar
Chi Song committed
220

QuanluZhang's avatar
QuanluZhang committed
221
For detail system requirements of NNI, please refer to [here](https://nni.readthedocs.io/en/latest/Tutorial/InstallationLinux.html#system-requirements) for Linux & macOS, and [here](https://nni.readthedocs.io/en/latest/Tutorial/InstallationWin.html#system-requirements) for Windows.
222

223
Note:
Chi Song's avatar
Chi Song committed
224

225
226
227
* If there is any privilege issue, add `--user` to install NNI in the user directory.
* Currently NNI on Windows supports local, remote and pai mode. Anaconda or Miniconda is highly recommended to install NNI on Windows.
* If there is any error like `Segmentation fault`, please refer to [FAQ](docs/en_US/Tutorial/FAQ.md). For FAQ on Windows, please refer to [NNI on Windows](docs/en_US/Tutorial/NniOnWindows.md).
228

229
### **Verify installation**
Chi Song's avatar
Chi Song committed
230

231
The following example is built on TensorFlow 1.x. Make sure **TensorFlow 1.x is used** when running it.
Chi Song's avatar
Chi Song committed
232
233
234

* Download the examples via clone the source code.

235
236
237
  ```bash
  git clone -b v1.3 https://github.com/Microsoft/nni.git
  ```
Chi Song's avatar
Chi Song committed
238
239
240

* Run the MNIST example.

241
  Linux or macOS
Chi Song's avatar
Chi Song committed
242

243
244
245
  ```bash
  nnictl create --config nni/examples/trials/mnist-tfv1/config.yml
  ```
Chi Song's avatar
Chi Song committed
246

247
  Windows
Chi Song's avatar
Chi Song committed
248

249
250
251
  ```bash
  nnictl create --config nni\examples\trials\mnist-tfv1\config_windows.yml
  ```
Chi Song's avatar
Chi Song committed
252

253
* Wait for the message `INFO: Successfully started experiment!` in the command line. This message indicates that your experiment has been successfully started. You can explore the experiment using the `Web UI url`.
254

Chi Song's avatar
Chi Song committed
255
```text
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
INFO: Starting restful server...
INFO: Successfully started Restful server!
INFO: Setting local config...
INFO: Successfully set local config!
INFO: Starting experiment...
INFO: Successfully started experiment!
-----------------------------------------------------------------------
The experiment id is egchD4qy
The Web UI urls are: http://223.255.255.1:8080   http://127.0.0.1:8080
-----------------------------------------------------------------------

You can use these commands to get more information about the experiment
-----------------------------------------------------------------------
         commands                       description
1. nnictl experiment show        show the information of experiments
2. nnictl trial ls               list all of trial jobs
SparkSnail's avatar
SparkSnail committed
272
273
274
275
276
277
3. nnictl top                    monitor the status of running experiments
4. nnictl log stderr             show stderr log content
5. nnictl log stdout             show stdout log content
6. nnictl stop                   stop an experiment
7. nnictl trial kill             kill a trial job by id
8. nnictl --help                 get help information about nnictl
278
-----------------------------------------------------------------------
Scarlett Li's avatar
Scarlett Li committed
279
```
Scarlett Li's avatar
Scarlett Li committed
280

281
* Open the `Web UI url` in your browser, you can view detail information of the experiment and all the submitted trial jobs as shown below. [Here](docs/en_US/Tutorial/WebUI.md) are more Web UI pages.
282
283
284
285
286
287

<table style="border: none">
    <th><img src="./docs/img/webui_overview_page.png" alt="drawing" width="395"/></th>
    <th><img src="./docs/img/webui_trialdetail_page.png" alt="drawing" width="410"/></th>
</table>

Scarlett Li's avatar
Scarlett Li committed
288
## **Documentation**
289
290
291
* To learn about what's NNI, read the [NNI Overview](https://nni.readthedocs.io/en/latest/Overview.html). 
* To get yourself familiar with how to use NNI, read the [documentation](https://nni.readthedocs.io/en/latest/index.html). 
* To get started and install NNI on your system, please refer to [Install NNI](docs/en_US/Tutorial/Installation.md).
Chi Song's avatar
Chi Song committed
292

293
294
## **Contributing**
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.
295

296
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
Scarlett Li's avatar
Scarlett Li committed
297

298
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the Code of [Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact opencode@microsoft.com with any additional questions or comments.
299

300
After getting familiar with contribution agreements, you are ready to create your first PR =), follow the NNI developer tutorials to get start:
Scarlett Li's avatar
Scarlett Li committed
301
* We recommend new contributors to start with simple issues: ['good first issue'](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) or ['help-wanted'](https://github.com/microsoft/nni/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22).
302
* [NNI developer environment installation tutorial](docs/en_US/Tutorial/SetupNniDeveloperEnvironment.md)
303
* [How to debug](docs/en_US/Tutorial/HowToDebug.md)
Scarlett Li's avatar
Scarlett Li committed
304
* If you have any questions on usage, review [FAQ](https://github.com/microsoft/nni/blob/master/docs/en_US/Tutorial/FAQ.md) first, if there are no relevant issues and answers to your question, try contact NNI dev team and users in [Gitter](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) or [File an issue](https://github.com/microsoft/nni/issues/new/choose) on GitHub.
305
* [Customize your own Tuner](docs/en_US/Tuner/CustomizeTuner.md)
306
* [Implement customized TrainingService](docs/en_US/TrainingService/HowToImplementTrainingService.md)
307
308
* [Implement a new NAS trainer on NNI](https://github.com/microsoft/nni/blob/master/docs/en_US/NAS/NasInterface.md#implement-a-new-nas-trainer-on-nni)
* [Customize your own Advisor](docs/en_US/Tuner/CustomizeAdvisor.md)
309

rabbit008's avatar
rabbit008 committed
310
311
## **External Repositories and References**
With authors' permission, we listed a set of NNI usage examples and relevant articles.
312
313
314
* ### **External Repositories** ###
   * Run [ENAS](examples/tuners/enas_nni/README.md) with NNI
   * Run [Neural Network Architecture Search](examples/trials/nas_cifar10/README.md) with NNI 
315
   * [Automatic Feature Engineering](examples/feature_engineering/auto-feature-engineering/README.md) with NNI 
316
   * [Hyperparameter Tuning for Matrix Factorization](https://github.com/microsoft/recommenders/blob/master/notebooks/04_model_select_and_optimize/nni_surprise_svd.ipynb) with NNI
QuanluZhang's avatar
QuanluZhang committed
317
   * [scikit-nni](https://github.com/ksachdeva/scikit-nni) Hyper-parameter search for scikit-learn pipelines using NNI
318
319
320
321
322
323
324
325

* ### **Relevant Articles** ###
  
  * [Hyper Parameter Optimization Comparison](docs/en_US/CommunitySharings/HpoComparision.md)
  * [Neural Architecture Search Comparison](docs/en_US/CommunitySharings/NasComparision.md)
  * [Parallelizing a Sequential Algorithm TPE](docs/en_US/CommunitySharings/ParallelizingTpeSearch.md)
  * [Automatically tuning SVD with NNI](docs/en_US/CommunitySharings/RecommendersSvd.md)
  * [Automatically tuning SPTAG with NNI](docs/en_US/CommunitySharings/SptagAutoTune.md)
QuanluZhang's avatar
QuanluZhang committed
326
  * [Find thy hyper-parameters for scikit-learn pipelines using Microsoft NNI](https://towardsdatascience.com/find-thy-hyper-parameters-for-scikit-learn-pipelines-using-microsoft-nni-f1015b1224c1)
327
  * **Blog (in Chinese)** - [AutoML tools (Advisor, NNI and Google Vizier) comparison](http://gaocegege.com/Blog/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/katib-new#%E6%80%BB%E7%BB%93%E4%B8%8E%E5%88%86%E6%9E%90) by [@gaocegege](https://github.com/gaocegege) - 总结与分析 section of design and implementation of kubeflow/katib
Scarlett Li's avatar
Scarlett Li committed
328
  * **Blog (in Chinese)** - [A summary of NNI new capabilities in 2019](https://mp.weixin.qq.com/s/7_KRT-rRojQbNuJzkjFMuA) by @squirrelsc
329
330

## **Feedback**
331
* Discuss on the NNI [Gitter](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) in NNI.
332
* [File an issue](https://github.com/microsoft/nni/issues/new/choose) on GitHub.
333
* Ask a question with NNI tags on [Stack Overflow](https://stackoverflow.com/questions/tagged/nni?sort=Newest&edited=true).
Chi Song's avatar
Chi Song committed
334

335
336
337
338
339
340
341
342
343
## Related Projects
Targeting at openness and advancing state-of-art technology, [Microsoft Research (MSR)](https://www.microsoft.com/en-us/research/group/systems-research-group-asia/) had also released few other open source projects.

* [OpenPAI](https://github.com/Microsoft/pai) : an open source platform that provides complete AI model training and resource management capabilities, it is easy to extend and supports on-premise, cloud and hybrid environments in various scale.
* [FrameworkController](https://github.com/Microsoft/frameworkcontroller) : an open source general-purpose Kubernetes Pod Controller that orchestrate all kinds of applications on Kubernetes by a single controller.
* [MMdnn](https://github.com/Microsoft/MMdnn) : A comprehensive, cross-framework solution to convert, visualize and diagnose deep neural network models. The "MM" in MMdnn stands for model management and "dnn" is an acronym for deep neural network.
* [SPTAG](https://github.com/Microsoft/SPTAG) : Space Partition Tree And Graph (SPTAG) is an open source library for large scale vector approximate nearest neighbor search scenario.

We encourage researchers and students leverage these projects to accelerate the AI development and research.
Microsoft Open Source's avatar
Microsoft Open Source committed
344

Chi Song's avatar
Chi Song committed
345
346
## **License**

347
The entire codebase is under [MIT license](LICENSE)