README.md 18.8 KB
Newer Older
1
<p align="center">
2
<img src="docs/img/nni_logo.png" width="300"/>
3
4
5
</p>

-----------
6

7
[![MIT licensed](https://img.shields.io/badge/license-MIT-brightgreen.svg)](LICENSE)
8
[![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/Microsoft.nni)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=6)
Gems Guo's avatar
Gems Guo committed
9
10
11
[![Issues](https://img.shields.io/github/issues-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen)
[![Bugs](https://img.shields.io/github/issues/Microsoft/nni/bug.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
[![Pull Requests](https://img.shields.io/github/issues-pr-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/pulls?q=is%3Apr+is%3Aopen)
The Gitter Badger's avatar
The Gitter Badger committed
12
[![Version](https://img.shields.io/github/release/Microsoft/nni.svg)](https://github.com/Microsoft/nni/releases) [![Join the chat at https://gitter.im/Microsoft/nni](https://badges.gitter.im/Microsoft/nni.svg)](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
Yan Ni's avatar
Yan Ni committed
13
[![Documentation Status](https://readthedocs.org/projects/nni/badge/?version=latest)](https://nni.readthedocs.io/en/latest/?badge=latest)
Microsoft Open Source's avatar
Microsoft Open Source committed
14

15
[简体中文](README_zh_CN.md)
Chi Song's avatar
Chi Song committed
16

Scarlett Li's avatar
Scarlett Li committed
17
**NNI (Neural Network Intelligence)** is an efficient and automatic toolkit to help users design and search neural network architecture, tune machine learning model's parameters or complex system's parameters. The tool manages automated machine learning (AutoML) experiments, dispatches and runs experiments' trial jobs generated by tuning algorithms to search the best neural architecture and/or hyper-parameters in different environments like local machine, remote servers and cloud.
18

19

chicm-ms's avatar
chicm-ms committed
20
### **NNI v1.2 has been released! &nbsp;<a href="#nni-released-reminder"><img width="48" src="docs/img/release_icon.png"></a>**
21

QuanluZhang's avatar
QuanluZhang committed
22
<p align="center">
Lijiao's avatar
Lijiao committed
23
  <a href="#nni-has-been-released"><img src="docs/img/overview.svg" /></a>
QuanluZhang's avatar
QuanluZhang committed
24
</p>
25

QuanluZhang's avatar
QuanluZhang committed
26
27
<table>
  <tbody>
28
    <tr align="center" valign="bottom">
29
30
    <td>
      </td>
QuanluZhang's avatar
QuanluZhang committed
31
      <td>
32
        <b>Frameworks & Libraries</b>
33
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
34
35
      </td>
      <td>
36
        <b>Algorithms</b>
37
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
38
39
      </td>
      <td>
Gems's avatar
Gems committed
40
        <b>Training Services</b>
41
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
42
43
      </td>
    </tr>
44
    </tr>
QuanluZhang's avatar
QuanluZhang committed
45
    <tr valign="top">
46
47
48
    <td align="center" valign="middle">
    <b>Built-in</b>
      </td>
QuanluZhang's avatar
QuanluZhang committed
49
      <td>
50
      <ul><li><b>Supported Frameworks</b></li>
51
52
53
        <ul>
          <li>PyTorch</li>
          <li>Keras</li>
54
          <li>TensorFlow</li>
55
56
          <li>MXNet</li>
          <li>Caffe2</li>
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
          <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
        </ul>
        </ul>
      <ul>
        <li><b>Supported Libraries</b></li>
          <ul>
           <li>Scikit-learn</li>
           <li>XGBoost</li>
           <li>LightGBM</li>
           <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
          </ul>
      </ul>
        <ul>
        <li><b>Examples</b></li>
         <ul>
Guoxin's avatar
Guoxin committed
72
           <li><a href="examples/trials/mnist-pytorch">MNIST-pytorch</li></a>
73
           <li><a href="examples/trials/mnist-tfv1">MNIST-tensorflow</li></a>
74
75
76
77
78
79
           <li><a href="examples/trials/mnist-keras">MNIST-keras</li></a>
           <li><a href="docs/en_US/TrialExample/GbdtExample.md">Auto-gbdt</a></li>
           <li><a href="docs/en_US/TrialExample/Cifar10Examples.md">Cifar10-pytorch</li></a>
           <li><a href="docs/en_US/TrialExample/SklearnExamples.md">Scikit-learn</a></li>
              <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
          </ul>
QuanluZhang's avatar
QuanluZhang committed
80
81
        </ul>
      </td>
82
      <td align="left" >
83
        <a href="docs/en_US/Tuner/BuiltinTuner.md">Tuner</a>
QuanluZhang's avatar
QuanluZhang committed
84
        <ul>
85
          <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Random">Random Search</a></li>
86
          <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Evolution">Naïve Evolution</a></li>
87
88
89
90
91
92
93
94
95
          <li><a href="docs/en_US/Tuner/BuiltinTuner.md#TPE">TPE</a></li>
          <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Anneal">Anneal</a></li>
          <li><a href="docs/en_US/Tuner/BuiltinTuner.md#SMAC">SMAC</a></li>
          <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Batch">Batch</a></li>
          <li><a href="docs/en_US/Tuner/BuiltinTuner.md#GridSearch">Grid Search</a></li>
          <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Hyperband">Hyperband</a></li>
          <li><a href="docs/en_US/Tuner/BuiltinTuner.md#MetisTuner">Metis Tuner</a></li>
          <li><a href="docs/en_US/Tuner/BuiltinTuner.md#BOHB">BOHB</a></li>
          <li><a href="docs/en_US/Tuner/BuiltinTuner.md#GPTuner">GP Tuner</a></li>
96
          <li><a href="docs/en_US/Tuner/BuiltinTuner.md#PPOTuner">PPO Tuner</a></li>
97
          <li><a href="docs/en_US/Tuner/BuiltinTuner.md#NetworkMorphism">Network Morphism</a></li>
98
        </ul>
99
          <a href="docs/en_US/Assessor/BuiltinAssessor.md">Assessor</a>
100
101
102
          <ul>
          <li><a href="docs/en_US/Assessor/BuiltinAssessor.md#Medianstop">Median Stop</a></li>
          <li><a href="docs/en_US/Assessor/BuiltinAssessor.md#Curvefitting">Curve Fitting</a></li>   
103
          </ul>
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
          <a href="docs/en_US/NAS/Overview.md">NAS (Beta)</a>
          <ul>
          <li><a href="docs/en_US/NAS/Overview.md#enas">ENAS</a></li>
          <li><a href="docs/en_US/NAS/Overview.md#darts">DARTS</a></li>
          <li><a href="docs/en_US/NAS/Overview.md#p-darts">P-DARTS</a></li>
          </ul>
          <a href="docs/en_US/Compressor/Overview.md">Model Compression (Beta)</a>
          <ul>
          <li><a href="docs/en_US/Compressor/Pruner.md#agp-pruner">AGP Pruner</a></li>
          <li><a href="docs/en_US/Compressor/Pruner.md#slim-pruner">Slim Pruner</a></li>
          <li><a href="docs/en_US/Compressor/Pruner.md#fpgm-pruner">FPGM Pruner</a></li>
          <li><a href="docs/en_US/Compressor/Quantizer.md#qat-quantizer">QAT Quantizer</a></li>
          <li><a href="docs/en_US/Compressor/Quantizer.md#dorefa-quantizer">DoReFa Quantizer</a></li>
          <li><a href="docs/en_US/Compressor/Overview.md">More...</a></li>
          </ul>
          <a href="docs/en_US/FeatureEngineering/Overview.md">Feature Engineering (Beta)</a>
          <ul>
          <li><a href="docs/en_US/FeatureEngineering/GradientFeatureSelector.md">GradientFeatureSelector</a></li>
          <li><a href="docs/en_US/FeatureEngineering/GBDTSelector.md">GBDTSelector</a></li>
          </ul>
QuanluZhang's avatar
QuanluZhang committed
124
125
126
      </td>
      <td>
      <ul>
127
128
129
130
131
132
133
        <li><a href="docs/en_US/TrainingService/LocalMode.md">Local Machine</a></li>
        <li><a href="docs/en_US/TrainingService/RemoteMachineMode.md">Remote Servers</a></li>
        <li><b>Kubernetes based services</b></li>
            <ul><li><a href="docs/en_US/TrainingService/PaiMode.md">OpenPAI</a></li>
            <li><a href="docs/en_US/TrainingService/KubeflowMode.md">Kubeflow</a></li>
            <li><a href="docs/en_US/TrainingService/FrameworkControllerMode.md">FrameworkController on K8S (AKS etc.)</a></li>
            </ul>
QuanluZhang's avatar
QuanluZhang committed
134
135
      </ul>
      </td>
136
    </tr> 
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
      <tr align="center" valign="bottom">
      </td>
      </tr>
      <tr valign="top">
       <td valign="middle">
    <b>References</b>
      </td>
     <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/en_US/sdk_reference.rst">Python API</a></li>
        <li><a href="docs/en_US/Tutorial/AnnotationSpec.md">NNI Annotation</a></li>
         <li><a href="docs/en_US/Tutorial/Installation.md">Supported OS</a></li>
      </ul>
      </td>
       <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/en_US/Tuner/CustomizeTuner.md">CustomizeTuner</a></li>
        <li><a href="docs/en_US/Assessor/CustomizeAssessor.md">CustomizeAssessor</a></li>
      </ul>
      </td>
        <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/en_US/TrainingService/SupportTrainingService.md">Support TrainingService</li>
        <li><a href="docs/en_US/TrainingService/HowToImplementTrainingService.md">Implement TrainingService</a></li>
      </ul>
      </td>     
    </tr> 
QuanluZhang's avatar
QuanluZhang committed
164
165
  </tbody>
</table>
166
167


QuanluZhang's avatar
QuanluZhang committed
168

169
170


171
## **Who should consider using NNI**
Chi Song's avatar
Chi Song committed
172

Irene Tenison's avatar
Irene Tenison committed
173
174
175
176
* Those who want to try different AutoML algorithms in their training code (model) at their local machine.
* Those who want to run AutoML trial jobs in different environments to speed up search (e.g. remote servers and cloud).
* Researchers and data scientists who want to implement their own AutoML algorithms and compare it with other algorithms.
* ML Platform owners who want to support AutoML in their platform.
177

178
## Related Projects
Chi Song's avatar
Chi Song committed
179

180
Targeting at openness and advancing state-of-art technology, [Microsoft Research (MSR)](https://www.microsoft.com/en-us/research/group/systems-research-group-asia/) had also released few other open source projects.
Chi Song's avatar
Chi Song committed
181

182
183
184
* [OpenPAI](https://github.com/Microsoft/pai) : an open source platform that provides complete AI model training and resource management capabilities, it is easy to extend and supports on-premise, cloud and hybrid environments in various scale.
* [FrameworkController](https://github.com/Microsoft/frameworkcontroller) : an open source general-purpose Kubernetes Pod Controller that orchestrate all kinds of applications on Kubernetes by a single controller.
* [MMdnn](https://github.com/Microsoft/MMdnn) : A comprehensive, cross-framework solution to convert, visualize and diagnose deep neural network models. The "MM" in MMdnn stands for model management and "dnn" is an acronym for deep neural network.
Scarlett Li's avatar
Scarlett Li committed
185
186
* [SPTAG](https://github.com/Microsoft/SPTAG) : Space Partition Tree And Graph (SPTAG) is an open source library for large scale vector approximate nearest neighbor search scenario.

187
188
We encourage researchers and students leverage these projects to accelerate the AI development and research.

Scarlett Li's avatar
Scarlett Li committed
189
## **Install & Verify**
Chi Song's avatar
Chi Song committed
190

191
**Install through pip**
Chi Song's avatar
Chi Song committed
192

193
* We support Linux, MacOS and Windows (local, remote and pai mode) in current stage, Ubuntu 16.04 or higher, MacOS 10.14.1 along with Windows 10.1809 are tested and supported. Simply run the following `pip install` in an environment that has `python >= 3.5`.
Zejun Lin's avatar
Zejun Lin committed
194

195
Linux and MacOS
Chi Song's avatar
Chi Song committed
196

Zejun Lin's avatar
Zejun Lin committed
197
```bash
Chi Song's avatar
Chi Song committed
198
python3 -m pip install --upgrade nni
199
```
Chi Song's avatar
Chi Song committed
200

201
Windows
Chi Song's avatar
Chi Song committed
202

203
```bash
Chi Song's avatar
Chi Song committed
204
python -m pip install --upgrade nni
205
```
Chi Song's avatar
Chi Song committed
206

Zejun Lin's avatar
Zejun Lin committed
207
208
209
Note:

* `--user` can be added if you want to install NNI in your home directory, which does not require any special privileges.
210
* Currently NNI on Windows support local, remote and pai mode. Anaconda or Miniconda is highly recommended to install NNI on Windows.
211
* If there is any error like `Segmentation fault`, please refer to [FAQ](docs/en_US/Tutorial/FAQ.md)
Gems Guo's avatar
Gems Guo committed
212
213

**Install through source code**
Chi Song's avatar
Chi Song committed
214

215
* We support Linux (Ubuntu 16.04 or higher), MacOS (10.14.1) and Windows (10.1809) in our current stage.
216
217

Linux and MacOS
Chi Song's avatar
Chi Song committed
218

Gems Guo's avatar
Gems Guo committed
219
* Run the following commands in an environment that has `python >= 3.5`, `git` and `wget`.
Chi Song's avatar
Chi Song committed
220
221

```bash
chicm-ms's avatar
chicm-ms committed
222
    git clone -b v1.2 https://github.com/Microsoft/nni.git
Chi Song's avatar
Chi Song committed
223
224
    cd nni
    source install.sh
225
```
Chi Song's avatar
Chi Song committed
226

227
Windows
Chi Song's avatar
Chi Song committed
228
229
230

* Run the following commands in an environment that has `python >=3.5`, `git` and `PowerShell`

231
```bash
chicm-ms's avatar
chicm-ms committed
232
  git clone -b v1.2 https://github.com/Microsoft/nni.git
233
  cd nni
234
  powershell -ExecutionPolicy Bypass -file install.ps1
235
```
236

237
For the system requirements of NNI, please refer to [Install NNI](docs/en_US/Tutorial/Installation.md)
Chi Song's avatar
Chi Song committed
238

239
For NNI on Windows, please refer to [NNI on Windows](docs/en_US/Tutorial/NniOnWindows.md)
240

Chi Song's avatar
Chi Song committed
241
242
**Verify install**

Yuge Zhang's avatar
Yuge Zhang committed
243
The following example is an experiment built on TensorFlow. Make sure you have **TensorFlow 1.x installed** before running it. Note that **currently Tensorflow 2.0 is NOT supported**.
Chi Song's avatar
Chi Song committed
244
245
246
247

* Download the examples via clone the source code.

```bash
chicm-ms's avatar
chicm-ms committed
248
    git clone -b v1.2 https://github.com/Microsoft/nni.git
Gems Guo's avatar
Gems Guo committed
249
```
Chi Song's avatar
Chi Song committed
250

251
Linux and MacOS
Chi Song's avatar
Chi Song committed
252
253
254

* Run the MNIST example.

255
```bash
256
    nnictl create --config nni/examples/trials/mnist-tfv1/config.yml
257
```
Chi Song's avatar
Chi Song committed
258

259
Windows
Chi Song's avatar
Chi Song committed
260
261
262

* Run the MNIST example.

263
```bash
264
    nnictl create --config nni\examples\trials\mnist-tfv1\config_windows.yml
265
```
Chi Song's avatar
Chi Song committed
266

267
* Wait for the message `INFO: Successfully started experiment!` in the command line. This message indicates that your experiment has been successfully started. You can explore the experiment using the `Web UI url`.
268

Chi Song's avatar
Chi Song committed
269
```text
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
INFO: Starting restful server...
INFO: Successfully started Restful server!
INFO: Setting local config...
INFO: Successfully set local config!
INFO: Starting experiment...
INFO: Successfully started experiment!
-----------------------------------------------------------------------
The experiment id is egchD4qy
The Web UI urls are: http://223.255.255.1:8080   http://127.0.0.1:8080
-----------------------------------------------------------------------

You can use these commands to get more information about the experiment
-----------------------------------------------------------------------
         commands                       description
1. nnictl experiment show        show the information of experiments
2. nnictl trial ls               list all of trial jobs
SparkSnail's avatar
SparkSnail committed
286
287
288
289
290
291
3. nnictl top                    monitor the status of running experiments
4. nnictl log stderr             show stderr log content
5. nnictl log stdout             show stdout log content
6. nnictl stop                   stop an experiment
7. nnictl trial kill             kill a trial job by id
8. nnictl --help                 get help information about nnictl
292
-----------------------------------------------------------------------
Scarlett Li's avatar
Scarlett Li committed
293
```
Scarlett Li's avatar
Scarlett Li committed
294

295
* Open the `Web UI url` in your browser, you can view detail information of the experiment and all the submitted trial jobs as shown below. [Here](docs/en_US/Tutorial/WebUI.md) are more Web UI pages.
296
297
298
299
300
301

<table style="border: none">
    <th><img src="./docs/img/webui_overview_page.png" alt="drawing" width="395"/></th>
    <th><img src="./docs/img/webui_trialdetail_page.png" alt="drawing" width="410"/></th>
</table>

Scarlett Li's avatar
Scarlett Li committed
302
## **Documentation**
303
304
Our primary documentation is at [here](https://nni.readthedocs.io/en/latest/Overview.html) and is generated from this repository.<br/>
Maybe you want to read:
Chi Song's avatar
Chi Song committed
305

Yan Ni's avatar
Yan Ni committed
306
* [NNI overview](docs/en_US/Overview.md)
307
308
* [Quick start](docs/en_US/Tutorial/QuickStart.md)
* [WebUI tutorial](docs/en_US/Tutorial/WebUI.md)
309
310
* [Contributing](docs/en_US/Tutorial/Contributing.md)

311

Scarlett Li's avatar
Scarlett Li committed
312
## **How to**
Chi Song's avatar
Chi Song committed
313

314
315
* [Install NNI](docs/en_US/Tutorial/Installation.md)
* [Use command line tool nnictl](docs/en_US/Tutorial/Nnictl.md)
316
* [Define a trial](docs/en_US/TrialExample/Trials.md)
317
* [Config an experiment](docs/en_US/Tutorial/ExperimentConfig.md)
318
319
320
321
322
* [Define search space](docs/en_US/Tutorial/SearchSpaceSpec.md)
* [choose tuner/search-algorithm](docs/en_US/Tuner/BuiltinTuner.md)
* [Use annotation](docs/en_US/TrialExample/Trials.md#nni-python-annotation)
* [Use NNIBoard](docs/en_US/Tutorial/WebUI.md)

Chi Song's avatar
Chi Song committed
323

324

Scarlett Li's avatar
Scarlett Li committed
325
## **Tutorials**
Chi Song's avatar
Chi Song committed
326

327
* [Run an experiment on local (with multiple GPUs)](docs/en_US/TrainingService/LocalMode.md)
328
329
330
331
332
* [Run an experiment on OpenPAI](docs/en_US/TrainingService/PaiMode.md)
* [Run an experiment on Kubeflow](docs/en_US/TrainingService/KubeflowMode.md)
* [Run an experiment on multiple machines](docs/en_US/TrainingService/RemoteMachineMode.md)
* [Try different tuners](docs/en_US/Tuner/BuiltinTuner.md)
* [Try different assessors](docs/en_US/Assessor/BuiltinAssessor.md)
333
* [Implement a customized tuner](docs/en_US/Tuner/CustomizeTuner.md)
334
* [Implement a customized assessor](docs/en_US/Assessor/CustomizeAssessor.md)
335
* [Implement TrainingService in NNI](docs/en_US/TrainingService/HowToImplementTrainingService.md)
336
* [Use Genetic Algorithm to find good model architectures for Reading Comprehension task](docs/en_US/TrialExample/SquadEvolutionExamples.md)
337
338
* [Advanced Neural Architecture Search](docs/en_US/AdvancedFeature/AdvancedNas.md)

Scarlett Li's avatar
Scarlett Li committed
339
340

## **Contribute**
341
This project welcomes contributions and there are many ways in which you can participate in the project, for example:
342
343
344
* Open [bug reports](https://github.com/microsoft/nni/issues/new/choose).
* Request a [new feature](https://github.com/microsoft/nni/issues/new/choose).
* Suggest or ask some questions on the [How to Debug](docs/en_US/Tutorial/HowToDebug.md) guidance document.
345
346
* Find the issues tagged with ['good first issue'](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) or ['help-wanted'](https://github.com/microsoft/nni/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22), these are simple and easy to start , we recommend new contributors to start with.

347
348
349

Before providing your hacks, you can review the [Contributing Instruction](docs/en_US/Tutorial/Contributing.md) to get more information. In addition, we also provide you with the following documents:
* [NNI developer environment installation tutorial](docs/en_US/Tutorial/SetupNniDeveloperEnvironment.md)
350
* [How to debug](docs/en_US/Tutorial/HowToDebug.md)
351
352
353
354
* [Customize Your Own Advisor](docs/en_US/Tuner/CustomizeAdvisor.md)
* [Customize Your Own Tuner](docs/en_US/Tuner/CustomizeTuner.md)
* [Implement customized TrainingService](docs/en_US/TrainingService/HowToImplementTrainingService.md)

355

rabbit008's avatar
rabbit008 committed
356
357
## **External Repositories and References**
With authors' permission, we listed a set of NNI usage examples and relevant articles.
358
359
360
* ### **External Repositories** ###
   * Run [ENAS](examples/tuners/enas_nni/README.md) with NNI
   * Run [Neural Network Architecture Search](examples/trials/nas_cifar10/README.md) with NNI 
361
   * [Automatic Feature Engineering](examples/feature_engineering/auto-feature-engineering/README.md) with NNI 
362
   * [Hyperparameter Tuning for Matrix Factorization](https://github.com/microsoft/recommenders/blob/master/notebooks/04_model_select_and_optimize/nni_surprise_svd.ipynb) with NNI
QuanluZhang's avatar
QuanluZhang committed
363
   * [scikit-nni](https://github.com/ksachdeva/scikit-nni) Hyper-parameter search for scikit-learn pipelines using NNI
364
365
366
367
368
369
370
371

* ### **Relevant Articles** ###
  
  * [Hyper Parameter Optimization Comparison](docs/en_US/CommunitySharings/HpoComparision.md)
  * [Neural Architecture Search Comparison](docs/en_US/CommunitySharings/NasComparision.md)
  * [Parallelizing a Sequential Algorithm TPE](docs/en_US/CommunitySharings/ParallelizingTpeSearch.md)
  * [Automatically tuning SVD with NNI](docs/en_US/CommunitySharings/RecommendersSvd.md)
  * [Automatically tuning SPTAG with NNI](docs/en_US/CommunitySharings/SptagAutoTune.md)
QuanluZhang's avatar
QuanluZhang committed
372
  * [Find thy hyper-parameters for scikit-learn pipelines using Microsoft NNI](https://towardsdatascience.com/find-thy-hyper-parameters-for-scikit-learn-pipelines-using-microsoft-nni-f1015b1224c1)
373
  * **Blog (in Chinese)** - [AutoML tools (Advisor, NNI and Google Vizier) comparison](http://gaocegege.com/Blog/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/katib-new#%E6%80%BB%E7%BB%93%E4%B8%8E%E5%88%86%E6%9E%90) by [@gaocegege](https://github.com/gaocegege) - 总结与分析 section of design and implementation of kubeflow/katib
374
375

## **Feedback**
376
* Discuss on the NNI [Gitter](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) in NNI.
377
* [File an issue](https://github.com/microsoft/nni/issues/new/choose) on GitHub.
378
* Ask a question with NNI tags on [Stack Overflow](https://stackoverflow.com/questions/tagged/nni?sort=Newest&edited=true).
Chi Song's avatar
Chi Song committed
379

Microsoft Open Source's avatar
Microsoft Open Source committed
380

Chi Song's avatar
Chi Song committed
381
382
## **License**

383
The entire codebase is under [MIT license](LICENSE)
384