README.md 19.8 KB
Newer Older
1
<p align="center">
2
<img src="docs/img/nni_logo.png" width="300"/>
3
4
5
</p>

-----------
6

7
[![MIT licensed](https://img.shields.io/badge/license-MIT-brightgreen.svg)](LICENSE)
Yuge Zhang's avatar
Yuge Zhang committed
8
[![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration-test-local?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=17&branchName=master)
Gems Guo's avatar
Gems Guo committed
9
10
11
[![Issues](https://img.shields.io/github/issues-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen)
[![Bugs](https://img.shields.io/github/issues/Microsoft/nni/bug.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
[![Pull Requests](https://img.shields.io/github/issues-pr-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/pulls?q=is%3Apr+is%3Aopen)
The Gitter Badger's avatar
The Gitter Badger committed
12
[![Version](https://img.shields.io/github/release/Microsoft/nni.svg)](https://github.com/Microsoft/nni/releases) [![Join the chat at https://gitter.im/Microsoft/nni](https://badges.gitter.im/Microsoft/nni.svg)](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
Yan Ni's avatar
Yan Ni committed
13
[![Documentation Status](https://readthedocs.org/projects/nni/badge/?version=latest)](https://nni.readthedocs.io/en/latest/?badge=latest)
Microsoft Open Source's avatar
Microsoft Open Source committed
14

15
[简体中文](README_zh_CN.md)
Chi Song's avatar
Chi Song committed
16

17
**NNI (Neural Network Intelligence)** is a lightweight but powerful toolkit to help users **automate** <a href="docs/en_US/FeatureEngineering/Overview.md">Feature Engineering</a>, <a href="docs/en_US/NAS/Overview.md">Neural Architecture Search</a>, <a href="docs/en_US/Tuner/BuiltinTuner.md">Hyperparameter Tuning</a> and <a href="docs/en_US/Compressor/Overview.md">Model Compression</a>.
18

19
20
21
22
23
24
25
26
The tool manages automated machine learning (AutoML) experiments, **dispatches and runs** experiments' trial jobs generated by tuning algorithms to search the best neural architecture and/or hyper-parameters in **different training environments** like <a href="docs/en_US/TrainingService/LocalMode.md">Local Machine</a>, <a href="docs/en_US/TrainingService/RemoteMachineMode.md">Remote Servers</a>, <a href="docs/en_US/TrainingService/PaiMode.md">OpenPAI</a>, <a href="docs/en_US/TrainingService/KubeflowMode.md">Kubeflow</a>, <a href="docs/en_US/TrainingService/FrameworkControllerMode.md">FrameworkController on K8S (AKS etc.)</a> and other cloud options.

## **Who should consider using NNI**

* Those who want to **try different AutoML algorithms** in their training code/model.
* Those who want to run AutoML trial jobs **in different environments** to speed up search.
* Researchers and data scientists who want to easily **implement and experiement new AutoML algorithms**, may it be: hyperparameter tuning algorithm, neural architect search algorithm or model compression algorithm.
* ML Platform owners who want to **support AutoML in their platform**.
27

28
### **NNI v1.3 has been released! &nbsp;<a href="#nni-released-reminder"><img width="48" src="docs/img/release_icon.png"></a>**
29

30
31
32
33
34
## **NNI capabilities in a glance**
NNI provides CommandLine Tool as well as an user friendly WebUI to manage training experiements. With the extensible API, you can customize your own AutoML algorithms and training services. To make it easy for new users, NNI also provides a set of build-in stat-of-the-art AutoML algorithms and out of box support for popular training platforms. 

Within the following table, we summarized the current NNI capabilities, we are gradually adding new capabilities and we'd love to have your contribution.

QuanluZhang's avatar
QuanluZhang committed
35
<p align="center">
Lijiao's avatar
Lijiao committed
36
  <a href="#nni-has-been-released"><img src="docs/img/overview.svg" /></a>
QuanluZhang's avatar
QuanluZhang committed
37
</p>
38

QuanluZhang's avatar
QuanluZhang committed
39
40
<table>
  <tbody>
41
    <tr align="center" valign="bottom">
42
43
    <td>
      </td>
QuanluZhang's avatar
QuanluZhang committed
44
      <td>
45
        <b>Frameworks & Libraries</b>
46
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
47
48
      </td>
      <td>
49
        <b>Algorithms</b>
50
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
51
52
      </td>
      <td>
Gems's avatar
Gems committed
53
        <b>Training Services</b>
54
        <img src="docs/img/bar.png"/>
QuanluZhang's avatar
QuanluZhang committed
55
56
      </td>
    </tr>
57
    </tr>
QuanluZhang's avatar
QuanluZhang committed
58
    <tr valign="top">
59
60
61
    <td align="center" valign="middle">
    <b>Built-in</b>
      </td>
QuanluZhang's avatar
QuanluZhang committed
62
      <td>
63
      <ul><li><b>Supported Frameworks</b></li>
64
65
66
        <ul>
          <li>PyTorch</li>
          <li>Keras</li>
67
          <li>TensorFlow</li>
68
69
          <li>MXNet</li>
          <li>Caffe2</li>
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
          <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
        </ul>
        </ul>
      <ul>
        <li><b>Supported Libraries</b></li>
          <ul>
           <li>Scikit-learn</li>
           <li>XGBoost</li>
           <li>LightGBM</li>
           <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
          </ul>
      </ul>
        <ul>
        <li><b>Examples</b></li>
         <ul>
Guoxin's avatar
Guoxin committed
85
           <li><a href="examples/trials/mnist-pytorch">MNIST-pytorch</li></a>
86
           <li><a href="examples/trials/mnist-tfv1">MNIST-tensorflow</li></a>
87
88
89
90
91
92
           <li><a href="examples/trials/mnist-keras">MNIST-keras</li></a>
           <li><a href="docs/en_US/TrialExample/GbdtExample.md">Auto-gbdt</a></li>
           <li><a href="docs/en_US/TrialExample/Cifar10Examples.md">Cifar10-pytorch</li></a>
           <li><a href="docs/en_US/TrialExample/SklearnExamples.md">Scikit-learn</a></li>
              <a href="docs/en_US/SupportedFramework_Library.md">More...</a><br/>
          </ul>
QuanluZhang's avatar
QuanluZhang committed
93
94
        </ul>
      </td>
95
      <td align="left" >
96
        <a href="docs/en_US/Tuner/BuiltinTuner.md">Hyperparameter Tuning</a>
QuanluZhang's avatar
QuanluZhang committed
97
        <ul>
98
          <b>Exhaustive search</b>
99
          <ul>
100
101
102
103
104
105
106
107
108
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Random">Random Search</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#GridSearch">Grid Search</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Batch">Batch</a></li>
            </ul>
          <b>Heuristic search</b>
          <ul>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Evolution">Naïve Evolution</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Anneal">Anneal</a></li>  
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#Hyperband">Hyperband</a></li>
109
          </ul>
110
111
112
113
114
115
116
117
118
119
120
121
122
123
          <b>Bayesian optimization</b>
            <ul>
              <li><a href="docs/en_US/Tuner/BuiltinTuner.md#BOHB">BOHB</a></li>  
              <li><a href="docs/en_US/Tuner/BuiltinTuner.md#TPE">TPE</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#SMAC">SMAC</a></li> 
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#MetisTuner">Metis Tuner</a></li>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#GPTuner">GP Tuner</a> </li>
            </ul>  
          <b>RL Based</b>
          <ul>
            <li><a href="docs/en_US/Tuner/BuiltinTuner.md#PPOTuner">PPO Tuner</a> </li>
          </ul>
        </ul>
          <a href="docs/en_US/NAS/Overview.md">Neural Architecture Search</a>
124
125
126
127
128
          <ul>                        
            <ul>
              <li><a href="docs/en_US/NAS/Overview.md#enas">ENAS</a></li>
              <li><a href="docs/en_US/NAS/Overview.md#darts">DARTS</a></li>
              <li><a href="docs/en_US/NAS/Overview.md#p-darts">P-DARTS</a></li>
129
              <li><a href="docs/en_US/NAS/Overview.md#cdarts">CDARTS</a></li>
130
131
              <li><a href="docs/en_US/Tuner/BuiltinTuner.md#NetworkMorphism">Network Morphism</a> </li>
            </ul>    
132
          </ul>
133
          <a href="docs/en_US/Compressor/Overview.md">Model Compression</a>
134
          <ul>
135
136
137
138
139
140
141
142
143
144
145
            <b>Pruning</b>
            <ul>
              <li><a href="docs/en_US/Compressor/Pruner.md#agp-pruner">AGP Pruner</a></li>
              <li><a href="docs/en_US/Compressor/Pruner.md#slim-pruner">Slim Pruner</a></li>
              <li><a href="docs/en_US/Compressor/Pruner.md#fpgm-pruner">FPGM Pruner</a></li>
            </ul>
            <b>Quantization</b>
            <ul>
              <li><a href="docs/en_US/Compressor/Quantizer.md#qat-quantizer">QAT Quantizer</a></li>
              <li><a href="docs/en_US/Compressor/Quantizer.md#dorefa-quantizer">DoReFa Quantizer</a></li>
            </ul>
146
147
148
149
150
151
          </ul>
          <a href="docs/en_US/FeatureEngineering/Overview.md">Feature Engineering (Beta)</a>
          <ul>
          <li><a href="docs/en_US/FeatureEngineering/GradientFeatureSelector.md">GradientFeatureSelector</a></li>
          <li><a href="docs/en_US/FeatureEngineering/GBDTSelector.md">GBDTSelector</a></li>
          </ul>
152
153
154
155
156
          <a href="docs/en_US/Assessor/BuiltinAssessor.md">Early Stop Algorithms</a>
          <ul>
          <li><a href="docs/en_US/Assessor/BuiltinAssessor.md#Medianstop">Median Stop</a></li>
          <li><a href="docs/en_US/Assessor/BuiltinAssessor.md#Curvefitting">Curve Fitting</a></li>   
          </ul>
QuanluZhang's avatar
QuanluZhang committed
157
158
159
      </td>
      <td>
      <ul>
160
161
162
163
164
165
166
        <li><a href="docs/en_US/TrainingService/LocalMode.md">Local Machine</a></li>
        <li><a href="docs/en_US/TrainingService/RemoteMachineMode.md">Remote Servers</a></li>
        <li><b>Kubernetes based services</b></li>
            <ul><li><a href="docs/en_US/TrainingService/PaiMode.md">OpenPAI</a></li>
            <li><a href="docs/en_US/TrainingService/KubeflowMode.md">Kubeflow</a></li>
            <li><a href="docs/en_US/TrainingService/FrameworkControllerMode.md">FrameworkController on K8S (AKS etc.)</a></li>
            </ul>
QuanluZhang's avatar
QuanluZhang committed
167
168
      </ul>
      </td>
169
    </tr> 
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
      <tr align="center" valign="bottom">
      </td>
      </tr>
      <tr valign="top">
       <td valign="middle">
    <b>References</b>
      </td>
     <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/en_US/sdk_reference.rst">Python API</a></li>
        <li><a href="docs/en_US/Tutorial/AnnotationSpec.md">NNI Annotation</a></li>
         <li><a href="docs/en_US/Tutorial/Installation.md">Supported OS</a></li>
      </ul>
      </td>
       <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/en_US/Tuner/CustomizeTuner.md">CustomizeTuner</a></li>
        <li><a href="docs/en_US/Assessor/CustomizeAssessor.md">CustomizeAssessor</a></li>
      </ul>
      </td>
        <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/en_US/TrainingService/SupportTrainingService.md">Support TrainingService</li>
        <li><a href="docs/en_US/TrainingService/HowToImplementTrainingService.md">Implement TrainingService</a></li>
      </ul>
      </td>     
    </tr> 
QuanluZhang's avatar
QuanluZhang committed
197
198
  </tbody>
</table>
199

Scarlett Li's avatar
Scarlett Li committed
200
## **Install & Verify**
Chi Song's avatar
Chi Song committed
201

202
**Install through pip**
Chi Song's avatar
Chi Song committed
203

204
* We support Linux, MacOS and Windows (local, remote and pai mode) in current stage, Ubuntu 16.04 or higher, MacOS 10.14.1 along with Windows 10.1809 are tested and supported. Simply run the following `pip install` in an environment that has `python >= 3.5`.
Zejun Lin's avatar
Zejun Lin committed
205

206
Linux and MacOS
Chi Song's avatar
Chi Song committed
207

Zejun Lin's avatar
Zejun Lin committed
208
```bash
Chi Song's avatar
Chi Song committed
209
python3 -m pip install --upgrade nni
210
```
Chi Song's avatar
Chi Song committed
211

212
Windows
Chi Song's avatar
Chi Song committed
213

214
```bash
Chi Song's avatar
Chi Song committed
215
python -m pip install --upgrade nni
216
```
Chi Song's avatar
Chi Song committed
217

Zejun Lin's avatar
Zejun Lin committed
218
219
220
Note:

* `--user` can be added if you want to install NNI in your home directory, which does not require any special privileges.
221
* Currently NNI on Windows support local, remote and pai mode. Anaconda or Miniconda is highly recommended to install NNI on Windows.
222
* If there is any error like `Segmentation fault`, please refer to [FAQ](docs/en_US/Tutorial/FAQ.md)
Gems Guo's avatar
Gems Guo committed
223
224

**Install through source code**
Chi Song's avatar
Chi Song committed
225

226
* We support Linux (Ubuntu 16.04 or higher), MacOS (10.14.1) and Windows (10.1809) in our current stage.
227
228

Linux and MacOS
Chi Song's avatar
Chi Song committed
229

Gems Guo's avatar
Gems Guo committed
230
* Run the following commands in an environment that has `python >= 3.5`, `git` and `wget`.
Chi Song's avatar
Chi Song committed
231
232

```bash
233
    git clone -b v1.3 https://github.com/Microsoft/nni.git
Chi Song's avatar
Chi Song committed
234
235
    cd nni
    source install.sh
236
```
Chi Song's avatar
Chi Song committed
237

238
Windows
Chi Song's avatar
Chi Song committed
239
240
241

* Run the following commands in an environment that has `python >=3.5`, `git` and `PowerShell`

242
```bash
243
  git clone -b v1.3 https://github.com/Microsoft/nni.git
244
  cd nni
245
  powershell -ExecutionPolicy Bypass -file install.ps1
246
```
247

248
For the system requirements of NNI, please refer to [Install NNI](docs/en_US/Tutorial/Installation.md)
Chi Song's avatar
Chi Song committed
249

250
For NNI on Windows, please refer to [NNI on Windows](docs/en_US/Tutorial/NniOnWindows.md)
251

Chi Song's avatar
Chi Song committed
252
253
**Verify install**

Yuge Zhang's avatar
Yuge Zhang committed
254
The following example is an experiment built on TensorFlow. Make sure you have **TensorFlow 1.x installed** before running it. Note that **currently Tensorflow 2.0 is NOT supported**.
Chi Song's avatar
Chi Song committed
255
256
257
258

* Download the examples via clone the source code.

```bash
259
    git clone -b v1.3 https://github.com/Microsoft/nni.git
Gems Guo's avatar
Gems Guo committed
260
```
Chi Song's avatar
Chi Song committed
261

262
Linux and MacOS
Chi Song's avatar
Chi Song committed
263
264
265

* Run the MNIST example.

266
```bash
267
    nnictl create --config nni/examples/trials/mnist-tfv1/config.yml
268
```
Chi Song's avatar
Chi Song committed
269

270
Windows
Chi Song's avatar
Chi Song committed
271
272
273

* Run the MNIST example.

274
```bash
275
    nnictl create --config nni\examples\trials\mnist-tfv1\config_windows.yml
276
```
Chi Song's avatar
Chi Song committed
277

278
* Wait for the message `INFO: Successfully started experiment!` in the command line. This message indicates that your experiment has been successfully started. You can explore the experiment using the `Web UI url`.
279

Chi Song's avatar
Chi Song committed
280
```text
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
INFO: Starting restful server...
INFO: Successfully started Restful server!
INFO: Setting local config...
INFO: Successfully set local config!
INFO: Starting experiment...
INFO: Successfully started experiment!
-----------------------------------------------------------------------
The experiment id is egchD4qy
The Web UI urls are: http://223.255.255.1:8080   http://127.0.0.1:8080
-----------------------------------------------------------------------

You can use these commands to get more information about the experiment
-----------------------------------------------------------------------
         commands                       description
1. nnictl experiment show        show the information of experiments
2. nnictl trial ls               list all of trial jobs
SparkSnail's avatar
SparkSnail committed
297
298
299
300
301
302
3. nnictl top                    monitor the status of running experiments
4. nnictl log stderr             show stderr log content
5. nnictl log stdout             show stdout log content
6. nnictl stop                   stop an experiment
7. nnictl trial kill             kill a trial job by id
8. nnictl --help                 get help information about nnictl
303
-----------------------------------------------------------------------
Scarlett Li's avatar
Scarlett Li committed
304
```
Scarlett Li's avatar
Scarlett Li committed
305

306
* Open the `Web UI url` in your browser, you can view detail information of the experiment and all the submitted trial jobs as shown below. [Here](docs/en_US/Tutorial/WebUI.md) are more Web UI pages.
307
308
309
310
311
312

<table style="border: none">
    <th><img src="./docs/img/webui_overview_page.png" alt="drawing" width="395"/></th>
    <th><img src="./docs/img/webui_trialdetail_page.png" alt="drawing" width="410"/></th>
</table>

Scarlett Li's avatar
Scarlett Li committed
313
## **Documentation**
314
315
316
* To learn about what's NNI, read the [NNI Overview](https://nni.readthedocs.io/en/latest/Overview.html). 
* To get yourself familiar with how to use NNI, read the [documentation](https://nni.readthedocs.io/en/latest/index.html). 
* To get started and install NNI on your system, please refer to [Install NNI](docs/en_US/Tutorial/Installation.md).
Chi Song's avatar
Chi Song committed
317

318
319
## **Contributing**
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.
320

321
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
Scarlett Li's avatar
Scarlett Li committed
322

323
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the Code of [Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact opencode@microsoft.com with any additional questions or comments.
324

325
326
After getting familiar with contribution agreements, you are ready to create your first PR =), follow the NNI developer tutorials to get start:
* We recommend new contributors to start with ['good first issue'](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) or ['help-wanted'](https://github.com/microsoft/nni/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22), these issues are simple and easy to start.
327
* [NNI developer environment installation tutorial](docs/en_US/Tutorial/SetupNniDeveloperEnvironment.md)
328
* [How to debug](docs/en_US/Tutorial/HowToDebug.md)
329
* [Customize your own Tuner](docs/en_US/Tuner/CustomizeTuner.md)
330
* [Implement customized TrainingService](docs/en_US/TrainingService/HowToImplementTrainingService.md)
331
332
* [Implement a new NAS trainer on NNI](https://github.com/microsoft/nni/blob/master/docs/en_US/NAS/NasInterface.md#implement-a-new-nas-trainer-on-nni)
* [Customize your own Advisor](docs/en_US/Tuner/CustomizeAdvisor.md)
333

rabbit008's avatar
rabbit008 committed
334
335
## **External Repositories and References**
With authors' permission, we listed a set of NNI usage examples and relevant articles.
336
337
338
* ### **External Repositories** ###
   * Run [ENAS](examples/tuners/enas_nni/README.md) with NNI
   * Run [Neural Network Architecture Search](examples/trials/nas_cifar10/README.md) with NNI 
339
   * [Automatic Feature Engineering](examples/feature_engineering/auto-feature-engineering/README.md) with NNI 
340
   * [Hyperparameter Tuning for Matrix Factorization](https://github.com/microsoft/recommenders/blob/master/notebooks/04_model_select_and_optimize/nni_surprise_svd.ipynb) with NNI
QuanluZhang's avatar
QuanluZhang committed
341
   * [scikit-nni](https://github.com/ksachdeva/scikit-nni) Hyper-parameter search for scikit-learn pipelines using NNI
342
343
344
345
346
347
348
349

* ### **Relevant Articles** ###
  
  * [Hyper Parameter Optimization Comparison](docs/en_US/CommunitySharings/HpoComparision.md)
  * [Neural Architecture Search Comparison](docs/en_US/CommunitySharings/NasComparision.md)
  * [Parallelizing a Sequential Algorithm TPE](docs/en_US/CommunitySharings/ParallelizingTpeSearch.md)
  * [Automatically tuning SVD with NNI](docs/en_US/CommunitySharings/RecommendersSvd.md)
  * [Automatically tuning SPTAG with NNI](docs/en_US/CommunitySharings/SptagAutoTune.md)
QuanluZhang's avatar
QuanluZhang committed
350
  * [Find thy hyper-parameters for scikit-learn pipelines using Microsoft NNI](https://towardsdatascience.com/find-thy-hyper-parameters-for-scikit-learn-pipelines-using-microsoft-nni-f1015b1224c1)
351
  * **Blog (in Chinese)** - [AutoML tools (Advisor, NNI and Google Vizier) comparison](http://gaocegege.com/Blog/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/katib-new#%E6%80%BB%E7%BB%93%E4%B8%8E%E5%88%86%E6%9E%90) by [@gaocegege](https://github.com/gaocegege) - 总结与分析 section of design and implementation of kubeflow/katib
Scarlett Li's avatar
Scarlett Li committed
352
  * **Blog (in Chinese)** - [A summary of NNI new capabilities in 2019](https://mp.weixin.qq.com/s/7_KRT-rRojQbNuJzkjFMuA) by @squirrelsc
353
354

## **Feedback**
355
* Discuss on the NNI [Gitter](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) in NNI.
356
* [File an issue](https://github.com/microsoft/nni/issues/new/choose) on GitHub.
357
* Ask a question with NNI tags on [Stack Overflow](https://stackoverflow.com/questions/tagged/nni?sort=Newest&edited=true).
Chi Song's avatar
Chi Song committed
358

359
360
361
362
363
364
365
366
367
## Related Projects
Targeting at openness and advancing state-of-art technology, [Microsoft Research (MSR)](https://www.microsoft.com/en-us/research/group/systems-research-group-asia/) had also released few other open source projects.

* [OpenPAI](https://github.com/Microsoft/pai) : an open source platform that provides complete AI model training and resource management capabilities, it is easy to extend and supports on-premise, cloud and hybrid environments in various scale.
* [FrameworkController](https://github.com/Microsoft/frameworkcontroller) : an open source general-purpose Kubernetes Pod Controller that orchestrate all kinds of applications on Kubernetes by a single controller.
* [MMdnn](https://github.com/Microsoft/MMdnn) : A comprehensive, cross-framework solution to convert, visualize and diagnose deep neural network models. The "MM" in MMdnn stands for model management and "dnn" is an acronym for deep neural network.
* [SPTAG](https://github.com/Microsoft/SPTAG) : Space Partition Tree And Graph (SPTAG) is an open source library for large scale vector approximate nearest neighbor search scenario.

We encourage researchers and students leverage these projects to accelerate the AI development and research.
Microsoft Open Source's avatar
Microsoft Open Source committed
368

Chi Song's avatar
Chi Song committed
369
370
## **License**

371
The entire codebase is under [MIT license](LICENSE)
372