trainval.py 8.16 KB
Newer Older
Ruilong Li's avatar
Ruilong Li committed
1
2
3
4
5
6
7
import math
import time

import numpy as np
import torch
import torch.nn.functional as F
import tqdm
Ruilong Li's avatar
Ruilong Li committed
8
from datasets.nerf_synthetic import SubjectLoader, namedtuple_map
Ruilong Li's avatar
Ruilong Li committed
9
10
11
12
from radiance_fields.ngp import NGPradianceField

from nerfacc import OccupancyField, volumetric_rendering

Ruilong Li's avatar
Ruilong Li committed
13
TARGET_SAMPLE_BATCH_SIZE = 1 << 16
Ruilong Li's avatar
Ruilong Li committed
14

Ruilong Li's avatar
Ruilong Li committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# import tqdm

# device = "cuda:0"
# radiance_field = NGPradianceField(aabb=[0, 0, 0, 1, 1, 1]).to(device)
# positions = torch.rand((TARGET_SAMPLE_BATCH_SIZE, 3), device=device)
# directions = torch.rand(positions.shape, device=device)
# optimizer = torch.optim.Adam(
#     radiance_field.parameters(),
#     lr=1e-10,
#     # betas=(0.9, 0.99),
#     eps=1e-15,
#     # weight_decay=1e-6,
# )
# for _ in tqdm.tqdm(range(1000)):
#     rgbs, sigmas = radiance_field(positions, directions)
#     loss = rgbs.mean()
#     optimizer.zero_grad()
#     loss.backward()
#     optimizer.step()
# exit()

Ruilong Li's avatar
Ruilong Li committed
36
37

def render_image(radiance_field, rays, render_bkgd, render_step_size):
Ruilong Li's avatar
Ruilong Li committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    """Render the pixels of an image.

    Args:
      radiance_field: the radiance field of nerf.
      rays: a `Rays` namedtuple, the rays to be rendered.

    Returns:
      rgb: torch.tensor, rendered color image.
      depth: torch.tensor, rendered depth image.
      acc: torch.tensor, rendered accumulated weights per pixel.
    """
    rays_shape = rays.origins.shape
    if len(rays_shape) == 3:
        height, width, _ = rays_shape
        num_rays = height * width
        rays = namedtuple_map(lambda r: r.reshape([num_rays] + list(r.shape[2:])), rays)
    else:
        num_rays, _ = rays_shape
    results = []
57
    chunk = torch.iinfo(torch.int32).max if radiance_field.training else 81920
Ruilong Li's avatar
Ruilong Li committed
58
59
60
    render_est_n_samples = (
        TARGET_SAMPLE_BATCH_SIZE * 16 if radiance_field.training else None
    )
Ruilong Li's avatar
Ruilong Li committed
61
62
    for i in range(0, num_rays, chunk):
        chunk_rays = namedtuple_map(lambda r: r[i : i + chunk], rays)
Ruilong Li's avatar
Ruilong Li committed
63
        chunk_results = volumetric_rendering(
Ruilong Li's avatar
Ruilong Li committed
64
65
66
67
68
69
70
71
            query_fn=radiance_field.forward,  # {x, dir} -> {rgb, density}
            rays_o=chunk_rays.origins,
            rays_d=chunk_rays.viewdirs,
            scene_aabb=occ_field.aabb,
            scene_occ_binary=occ_field.occ_grid_binary,
            scene_resolution=occ_field.resolution,
            render_bkgd=render_bkgd,
            render_n_samples=render_n_samples,
Ruilong Li's avatar
Ruilong Li committed
72
            render_est_n_samples=render_est_n_samples,  # memory control: wrost case
Ruilong Li's avatar
Ruilong Li committed
73
            render_step_size=render_step_size,
Ruilong Li's avatar
Ruilong Li committed
74
        )
Ruilong Li's avatar
Ruilong Li committed
75
        results.append(chunk_results)
Ruilong Li's avatar
Ruilong Li committed
76
    rgb, depth, acc, counter, compact_counter = [
Ruilong Li's avatar
Ruilong Li committed
77
78
        torch.cat(r, dim=0) for r in zip(*results)
    ]
Ruilong Li's avatar
Ruilong Li committed
79
80
81
82
    return (
        rgb.view((*rays_shape[:-1], -1)),
        depth.view((*rays_shape[:-1], -1)),
        acc.view((*rays_shape[:-1], -1)),
Ruilong Li's avatar
Ruilong Li committed
83
84
        counter.sum(),
        compact_counter.sum(),
Ruilong Li's avatar
Ruilong Li committed
85
86
87
88
    )


if __name__ == "__main__":
89
    torch.manual_seed(42)
Ruilong Li's avatar
Ruilong Li committed
90
91

    device = "cuda:0"
Ruilong Li's avatar
Ruilong Li committed
92
    scene = "lego"
Ruilong Li's avatar
Ruilong Li committed
93
94
95

    # setup dataset
    train_dataset = SubjectLoader(
Ruilong Li's avatar
Ruilong Li committed
96
        subject_id=scene,
Ruilong Li's avatar
Ruilong Li committed
97
        root_fp="/home/ruilongli/data/nerf_synthetic/",
Ruilong Li's avatar
wtf  
Ruilong Li committed
98
        split="trainval",
Ruilong Li's avatar
Ruilong Li committed
99
        num_rays=1024,
Ruilong Li's avatar
Ruilong Li committed
100
    )
Ruilong Li's avatar
Ruilong Li committed
101
102
103
104

    train_dataset.images = train_dataset.images.to(device)
    train_dataset.camtoworlds = train_dataset.camtoworlds.to(device)
    train_dataset.K = train_dataset.K.to(device)
Ruilong Li's avatar
Ruilong Li committed
105
106
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
Ruilong Li's avatar
Ruilong Li committed
107
        num_workers=0,
Ruilong Li's avatar
Ruilong Li committed
108
        batch_size=None,
Ruilong Li's avatar
Ruilong Li committed
109
        # persistent_workers=True,
Ruilong Li's avatar
Ruilong Li committed
110
        shuffle=True,
Ruilong Li's avatar
Ruilong Li committed
111
    )
Ruilong Li's avatar
Ruilong Li committed
112

Ruilong Li's avatar
Ruilong Li committed
113
    test_dataset = SubjectLoader(
Ruilong Li's avatar
Ruilong Li committed
114
        subject_id=scene,
Ruilong Li's avatar
Ruilong Li committed
115
        root_fp="/home/ruilongli/data/nerf_synthetic/",
Ruilong Li's avatar
Ruilong Li committed
116
        split="test",
Ruilong Li's avatar
Ruilong Li committed
117
118
        num_rays=None,
    )
Ruilong Li's avatar
Ruilong Li committed
119
120
121
    test_dataset.images = test_dataset.images.to(device)
    test_dataset.camtoworlds = test_dataset.camtoworlds.to(device)
    test_dataset.K = test_dataset.K.to(device)
Ruilong Li's avatar
Ruilong Li committed
122
123
    test_dataloader = torch.utils.data.DataLoader(
        test_dataset,
Ruilong Li's avatar
Ruilong Li committed
124
        num_workers=0,
Ruilong Li's avatar
Ruilong Li committed
125
        batch_size=None,
Ruilong Li's avatar
Ruilong Li committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    )

    # setup the scene bounding box.
    scene_aabb = torch.tensor([-1.5, -1.5, -1.5, 1.5, 1.5, 1.5])

    # setup the scene radiance field. Assume you have a NeRF model and
    # it has following functions:
    # - query_density(): {x} -> {density}
    # - forward(): {x, dirs} -> {rgb, density}
    radiance_field = NGPradianceField(aabb=scene_aabb).to(device)

    # setup some rendering settings
    render_n_samples = 1024
    render_step_size = (
        (scene_aabb[3:] - scene_aabb[:3]).max() * math.sqrt(3) / render_n_samples
Ruilong Li's avatar
Ruilong Li committed
141
    ).item()
Ruilong Li's avatar
Ruilong Li committed
142

Ruilong Li's avatar
Ruilong Li committed
143
144
145
146
147
148
149
    optimizer = torch.optim.Adam(
        radiance_field.parameters(),
        lr=1e-2,
        # betas=(0.9, 0.99),
        eps=1e-15,
        # weight_decay=1e-6,
    )
Ruilong Li's avatar
Ruilong Li committed
150
151
152
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer, milestones=[20000, 30000], gamma=0.1
    )
Ruilong Li's avatar
Ruilong Li committed
153
154
155
156
157
158
159
160
161
162
163

    # setup occupancy field with eval function
    def occ_eval_fn(x: torch.Tensor) -> torch.Tensor:
        """Evaluate occupancy given positions.

        Args:
            x: positions with shape (N, 3).
        Returns:
            occupancy values with shape (N, 1).
        """
        density_after_activation = radiance_field.query_density(x)
Ruilong Li's avatar
Ruilong Li committed
164
        # those two are similar when density is small.
165
        # occupancy = 1.0 - torch.exp(-density_after_activation * render_step_size)
Ruilong Li's avatar
Ruilong Li committed
166
167
168
169
170
171
172
173
174
175
        occupancy = density_after_activation * render_step_size
        return occupancy

    occ_field = OccupancyField(
        occ_eval_fn=occ_eval_fn, aabb=scene_aabb, resolution=128
    ).to(device)

    # training
    step = 0
    tic = time.time()
Ruilong Li's avatar
Ruilong Li committed
176
177
    data_time = 0
    tic_data = time.time()
Ruilong Li's avatar
wtf  
Ruilong Li committed
178

Ruilong Li's avatar
Ruilong Li committed
179
    for epoch in range(10000000):
Ruilong Li's avatar
Ruilong Li committed
180
181
        for i in range(len(train_dataset)):
            data = train_dataset[i]
Ruilong Li's avatar
Ruilong Li committed
182
            data_time += time.time() - tic_data
Ruilong Li's avatar
Ruilong Li committed
183
184

            # generate rays from data and the gt pixel color
Ruilong Li's avatar
Ruilong Li committed
185
186
187
188
189
            # rays = namedtuple_map(lambda x: x.to(device), data["rays"])
            # pixels = data["pixels"].to(device)
            render_bkgd = data["color_bkgd"]
            rays = data["rays"]
            pixels = data["pixels"]
Ruilong Li's avatar
Ruilong Li committed
190

Ruilong Li's avatar
Ruilong Li committed
191
192
            # update occupancy grid
            occ_field.every_n_step(step)
Ruilong Li's avatar
wtf  
Ruilong Li committed
193

Ruilong Li's avatar
Ruilong Li committed
194
            rgb, depth, acc, counter, compact_counter = render_image(
Ruilong Li's avatar
Ruilong Li committed
195
                radiance_field, rays, render_bkgd, render_step_size
Ruilong Li's avatar
readme  
Ruilong Li committed
196
            )
Ruilong Li's avatar
Ruilong Li committed
197
198
199
200
201
            num_rays = len(pixels)
            num_rays = int(
                num_rays * (TARGET_SAMPLE_BATCH_SIZE / float(compact_counter.item()))
            )
            train_dataset.update_num_rays(num_rays)
Ruilong Li's avatar
Ruilong Li committed
202
            alive_ray_mask = acc.squeeze(-1) > 0
Ruilong Li's avatar
Ruilong Li committed
203

Ruilong Li's avatar
Ruilong Li committed
204
205
            # compute loss
            loss = F.mse_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])
Ruilong Li's avatar
Ruilong Li committed
206

Ruilong Li's avatar
Ruilong Li committed
207
208
209
210
            optimizer.zero_grad()
            (loss * 128).backward()
            optimizer.step()
            scheduler.step()
Ruilong Li's avatar
Ruilong Li committed
211

Ruilong Li's avatar
Ruilong Li committed
212
            if step % 100 == 0:
Ruilong Li's avatar
Ruilong Li committed
213
214
                elapsed_time = time.time() - tic
                print(
Ruilong Li's avatar
Ruilong Li committed
215
                    f"elapsed_time={elapsed_time:.2f}s (data={data_time:.2f}s) | {step=} | "
Ruilong Li's avatar
Ruilong Li committed
216
217
218
                    f"loss={loss:.5f} | "
                    f"alive_ray_mask={alive_ray_mask.long().sum():d} | "
                    f"counter={counter.item():d} | compact_counter={compact_counter.item():d} | num_rays={len(pixels):d} "
Ruilong Li's avatar
Ruilong Li committed
219
220
                )

Ruilong Li's avatar
Ruilong Li committed
221
222
223
224
225
226
227
228
229
230
231
232
233
            # if time.time() - tic > 300:
            if step == 35_000:
                print("training stops")
                # evaluation
                radiance_field.eval()
                psnrs = []
                with torch.no_grad():
                    for data in tqdm.tqdm(test_dataloader):
                        # generate rays from data and the gt pixel color
                        rays = namedtuple_map(lambda x: x.to(device), data["rays"])
                        pixels = data["pixels"].to(device)
                        render_bkgd = data["color_bkgd"].to(device)
                        # rendering
Ruilong Li's avatar
Ruilong Li committed
234
                        rgb, depth, acc, _, _ = render_image(
Ruilong Li's avatar
Ruilong Li committed
235
236
237
238
239
240
241
242
                            radiance_field, rays, render_bkgd, render_step_size
                        )
                        mse = F.mse_loss(rgb, pixels)
                        psnr = -10.0 * torch.log(mse) / np.log(10.0)
                        psnrs.append(psnr.item())
                psnr_avg = sum(psnrs) / len(psnrs)
                print(f"evaluation: {psnr_avg=}")
                exit()
Ruilong Li's avatar
Ruilong Li committed
243
            tic_data = time.time()
Ruilong Li's avatar
Ruilong Li committed
244

Ruilong Li's avatar
Ruilong Li committed
245
            step += 1