README.md 24.9 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
<div align="center">
zhangwenwei's avatar
zhangwenwei committed
2
  <img src="resources/mmdet3d-logo.png" width="600"/>
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
  <div>&nbsp;</div>
  <div align="center">
    <b><font size="5">OpenMMLab website</font></b>
    <sup>
      <a href="https://openmmlab.com">
        <i><font size="4">HOT</font></i>
      </a>
    </sup>
    &nbsp;&nbsp;&nbsp;&nbsp;
    <b><font size="5">OpenMMLab platform</font></b>
    <sup>
      <a href="https://platform.openmmlab.com">
        <i><font size="4">TRY IT OUT</font></i>
      </a>
    </sup>
  </div>
  <div>&nbsp;</div>
zhangwenwei's avatar
zhangwenwei committed
20

Xiang Xu's avatar
Xiang Xu committed
21
[![PyPI](https://img.shields.io/pypi/v/mmdet3d)](https://pypi.org/project/mmdet3d)
Jingwei Zhang's avatar
Jingwei Zhang committed
22
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/en/latest/)
Wenwei Zhang's avatar
Wenwei Zhang committed
23
[![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions)
Xiang Xu's avatar
Xiang Xu committed
24
25
26
27
28
29
30
31
32
33
34
[![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d)
[![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/main/LICENSE)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/issues)
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/issues)

[📘Documentation](https://mmdetection3d.readthedocs.io/en/latest/) |
[🛠️Installation](https://mmdetection3d.readthedocs.io/en/latest/get_started.html) |
[👀Model Zoo](https://mmdetection3d.readthedocs.io/en/latest/model_zoo.html) |
[🆕Update News](https://mmdetection3d.readthedocs.io/en/latest/notes/changelog.html) |
[🚀Ongoing Projects](https://github.com/open-mmlab/mmdetection3d/projects) |
[🤔Reporting Issues](https://github.com/open-mmlab/mmdetection3d/issues/new/choose)
Wenwei Zhang's avatar
Wenwei Zhang committed
35

36
37
</div>

Xiang Xu's avatar
Xiang Xu committed
38
39
40
41
<div align="center">

English | [简体中文](README_zh-CN.md)

42
43
44
45
</div>

<div align="center">
  <a href="https://openmmlab.medium.com/" style="text-decoration:none;">
46
    <img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a>
47
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
48
  <a href="https://discord.com/channels/1037617289144569886/1046608014234370059" style="text-decoration:none;">
49
50
51
52
53
54
55
    <img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
56
57
58
59
60
61
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://space.bilibili.com/1293512903" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
62
63
</div>

zhangwenwei's avatar
zhangwenwei committed
64
65
## Introduction

Xiang Xu's avatar
Xiang Xu committed
66
MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the [OpenMMLab](https://openmmlab.com/) project.
67

68
The main branch works with **PyTorch 1.8+**.
zhangwenwei's avatar
zhangwenwei committed
69

zhangwenwei's avatar
zhangwenwei committed
70
![demo image](resources/mmdet3d_outdoor_demo.gif)
zhangwenwei's avatar
zhangwenwei committed
71

Xiang Xu's avatar
Xiang Xu committed
72
73
<details open>
<summary>Major features</summary>
zhangwenwei's avatar
zhangwenwei committed
74

zhangwenwei's avatar
zhangwenwei committed
75
- **Support multi-modality/single-modality detectors out of box**
zhangwenwei's avatar
zhangwenwei committed
76

77
  It directly supports multi-modality/single-modality detectors including MVXNet, VoteNet, PointPillars, etc.
zhangwenwei's avatar
zhangwenwei committed
78

zhangwenwei's avatar
zhangwenwei committed
79
- **Support indoor/outdoor 3D detection out of box**
zhangwenwei's avatar
zhangwenwei committed
80

Xiang Xu's avatar
Xiang Xu committed
81
  It directly supports popular indoor and outdoor 3D detection datasets, including ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, and KITTI. For nuScenes dataset, we also support [nuImages dataset](https://github.com/open-mmlab/mmdetection3d/tree/main/configs/nuimages).
zhangwenwei's avatar
zhangwenwei committed
82

zhangwenwei's avatar
zhangwenwei committed
83
- **Natural integration with 2D detection**
84

VVsssssk's avatar
VVsssssk committed
85
  All the about **300+ models, methods of 40+ papers**, and modules supported in [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/model_zoo.md) can be trained or used in this codebase.
zhangwenwei's avatar
zhangwenwei committed
86

zhangwenwei's avatar
zhangwenwei committed
87
- **High efficiency**
zhangwenwei's avatar
zhangwenwei committed
88

89
  It trains faster than other codebases. The main results are as below. Details can be found in [benchmark.md](./docs/en/notes/benchmarks.md). We compare the number of samples trained per second (the higher, the better). The models that are not supported by other codebases are marked by `✗`.
zhangwenwei's avatar
zhangwenwei committed
90

91
92
  |       Methods       | MMDetection3D | [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) | [votenet](https://github.com/facebookresearch/votenet) | [Det3D](https://github.com/poodarchu/Det3D) |
  | :-----------------: | :-----------: | :--------------------------------------------------: | :----------------------------------------------------: | :-----------------------------------------: |
93
94
95
96
97
  |       VoteNet       |      358      |                          ✗                           |                           77                           |                      ✗                      |
  |  PointPillars-car   |      141      |                          ✗                           |                           ✗                            |                     140                     |
  | PointPillars-3class |      107      |                          44                          |                           ✗                            |                      ✗                      |
  |       SECOND        |      40       |                          30                          |                           ✗                            |                      ✗                      |
  |       Part-A2       |      17       |                          14                          |                           ✗                            |                      ✗                      |
Wenwei Zhang's avatar
Wenwei Zhang committed
98

Xiang Xu's avatar
Xiang Xu committed
99
100
</details>

Wenwei Zhang's avatar
Wenwei Zhang committed
101
Like [MMDetection](https://github.com/open-mmlab/mmdetection) and [MMCV](https://github.com/open-mmlab/mmcv), MMDetection3D can also be used as a library to support different projects on top of it.
zhangwenwei's avatar
zhangwenwei committed
102

Xiang Xu's avatar
Xiang Xu committed
103
## What's New
zhangwenwei's avatar
zhangwenwei committed
104

Xiang Xu's avatar
Xiang Xu committed
105
106
### Highlight

Sun Jiahao's avatar
Sun Jiahao committed
107
In version 1.4, MMDetecion3D refactors the Waymo dataset and accelerates the preprocessing, training/testing setup, and evaluation of Waymo dataset. We also extends the support for camera-based, such as Monocular and BEV, 3D object detection models on Waymo. A detailed description of the Waymo data information is provided [here](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/waymo.html).
zhangwenwei's avatar
zhangwenwei committed
108

Sun Jiahao's avatar
Sun Jiahao committed
109
110
111
112
113
114
115
Besides, in version 1.4, MMDetection3D provides [Waymo-mini](https://download.openmmlab.com/mmdetection3d/data/waymo_mmdet3d_after_1x4/waymo_mini.tar.gz) to help community users get started with Waymo and use it for quick iterative development.

**v1.4.0** was released in 8/1/2024:

- Support the training of [DSVT](<(https://arxiv.org/abs/2301.06051)>) in `projects`
- Support [Nerf-Det](https://arxiv.org/abs/2307.14620) in `projects`
- Refactor Waymo dataset
Sun Jiahao's avatar
Sun Jiahao committed
116

Sun Jiahao's avatar
Sun Jiahao committed
117
118
119
120
121
**v1.3.0** was released in 18/10/2023:

- Support [CENet](https://arxiv.org/abs/2207.12691) in `projects`
- Enhance demos with new 3D inferencers

Sun Jiahao's avatar
Sun Jiahao committed
122
123
**v1.2.0** was released in 4/7/2023

Sun Jiahao's avatar
Sun Jiahao committed
124
- Support [New Config Type](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta) in `mmdet3d/configs`
Sun Jiahao's avatar
Sun Jiahao committed
125
126
- Support the inference of [DSVT](<(https://arxiv.org/abs/2301.06051)>) in `projects`
- Support downloading datasets from [OpenDataLab](https://opendatalab.com/) using `mim`
Xiang Xu's avatar
Xiang Xu committed
127
128
129
130
131
132
133
134

**v1.1.1** was released in 30/5/2023:

- Support [TPVFormer](https://arxiv.org/pdf/2302.07817.pdf) in `projects`
- Support the training of BEVFusion in `projects`
- Support lidar-based 3D semantic segmentation benchmark

## Installation
zhangwenwei's avatar
zhangwenwei committed
135

Xiang Xu's avatar
Xiang Xu committed
136
Please refer to [Installation](https://mmdetection3d.readthedocs.io/en/latest/get_started.html) for installation instructions.
Tai-Wang's avatar
Tai-Wang committed
137

Xiang Xu's avatar
Xiang Xu committed
138
## Getting Started
zhangwenwei's avatar
zhangwenwei committed
139

Xiang Xu's avatar
Xiang Xu committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
For detailed user guides and advanced guides, please refer to our [documentation](https://mmdetection3d.readthedocs.io/en/latest/):

<details>
<summary>User Guides</summary>

- [Train & Test](https://mmdetection3d.readthedocs.io/en/latest/user_guides/index.html#train-test)
  - [Learn about Configs](https://mmdetection3d.readthedocs.io/en/latest/user_guides/config.html)
  - [Coordinate System](https://mmdetection3d.readthedocs.io/en/latest/user_guides/coord_sys_tutorial.html)
  - [Dataset Preparation](https://mmdetection3d.readthedocs.io/en/latest/user_guides/dataset_prepare.html)
  - [Customize Data Pipelines](https://mmdetection3d.readthedocs.io/en/latest/user_guides/data_pipeline.html)
  - [Test and Train on Standard Datasets](https://mmdetection3d.readthedocs.io/en/latest/user_guides/train_test.html)
  - [Inference](https://mmdetection3d.readthedocs.io/en/latest/user_guides/inference.html)
  - [Train with Customized Datasets](https://mmdetection3d.readthedocs.io/en/latest/user_guides/new_data_model.html)
- [Useful Tools](https://mmdetection3d.readthedocs.io/en/latest/user_guides/index.html#useful-tools)

</details>

<details>
<summary>Advanced Guides</summary>

- [Datasets](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/index.html#datasets)
  - [KITTI Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/kitti.html)
  - [NuScenes Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/nuscenes.html)
  - [Lyft Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/lyft.html)
  - [Waymo Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/waymo.html)
  - [SUN RGB-D Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/sunrgbd.html)
  - [ScanNet Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/scannet.html)
  - [S3DIS Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/s3dis.html)
  - [SemanticKITTI Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/semantickitti.html)
- [Supported Tasks](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/index.html#supported-tasks)
  - [LiDAR-Based 3D Detection](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/supported_tasks/lidar_det3d.html)
  - [Vision-Based 3D Detection](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/supported_tasks/vision_det3d.html)
  - [LiDAR-Based 3D Semantic Segmentation](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/supported_tasks/lidar_sem_seg3d.html)
- [Customization](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/index.html#customization)
  - [Customize Datasets](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/customize_dataset.html)
  - [Customize Models](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/customize_models.html)
  - [Customize Runtime Settings](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/customize_runtime.html)

</details>

## Overview of Benchmark and Model Zoo
zhangwenwei's avatar
zhangwenwei committed
181

Wenhao Wu's avatar
Wenhao Wu committed
182
Results and models are available in the [model zoo](docs/en/model_zoo.md).
zhangwenwei's avatar
zhangwenwei committed
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
<div align="center">
  <b>Components</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Heads</b>
      </td>
      <td>
        <b>Features</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
      <ul>
        <li><a href="configs/pointnet2">PointNet (CVPR'2017)</a></li>
        <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
        <li><a href="configs/regnet">RegNet (CVPR'2020)</a></li>
        <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        <li>DLA (CVPR'2018)</li>
208
        <li>MinkResNet (CVPR'2019)</li>
209
        <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
210
        <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/free_anchor">FreeAnchor (NeurIPS'2019)</a></li>
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/dynamic_voxelization">Dynamic Voxelization (CoRL'2019)</a></li>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>

<div align="center">
  <b>Architectures</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="middle">
      <td>
236
        <b>LiDAR-based 3D Object Detection</b>
237
238
      </td>
      <td>
239
        <b>Camera-based 3D Object Detection</b>
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
      </td>
      <td>
        <b>Multi-modal 3D Object Detection</b>
      </td>
      <td>
        <b>3D Semantic Segmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
        <li><b>Outdoor</b></li>
        <ul>
            <li><a href="configs/second">SECOND (Sensor'2018)</a></li>
            <li><a href="configs/pointpillars">PointPillars (CVPR'2019)</a></li>
            <li><a href="configs/ssn">SSN (ECCV'2020)</a></li>
            <li><a href="configs/3dssd">3DSSD (CVPR'2020)</a></li>
Tai-Wang's avatar
Tai-Wang committed
256
            <li><a href="configs/sassd">SA-SSD (CVPR'2020)</a></li>
ChaimZhu's avatar
ChaimZhu committed
257
            <li><a href="configs/point_rcnn">PointRCNN (CVPR'2019)</a></li>
258
259
            <li><a href="configs/parta2">Part-A2 (TPAMI'2020)</a></li>
            <li><a href="configs/centerpoint">CenterPoint (CVPR'2021)</a></li>
260
            <li><a href="configs/pv_rcnn">PV-RCNN (CVPR'2020)</a></li>
261
            <li><a href="projects/CenterFormer">CenterFormer (ECCV'2022)</a></li>
262
263
264
265
266
267
        </ul>
        <li><b>Indoor</b></li>
        <ul>
            <li><a href="configs/votenet">VoteNet (ICCV'2019)</a></li>
            <li><a href="configs/h3dnet">H3DNet (ECCV'2020)</a></li>
            <li><a href="configs/groupfree3d">Group-Free-3D (ICCV'2021)</a></li>
268
            <li><a href="configs/fcaf3d">FCAF3D (ECCV'2022)</a></li>
269
            <li><a href="projects/TR3D">TR3D (ArXiv'2023)</a></li>
270
271
272
273
274
275
276
277
278
279
      </ul>
      </td>
      <td>
        <li><b>Outdoor</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
          <li><a href="configs/smoke">SMOKE (CVPRW'2020)</a></li>
          <li><a href="configs/fcos3d">FCOS3D (ICCVW'2021)</a></li>
          <li><a href="configs/pgd">PGD (CoRL'2021)</a></li>
          <li><a href="configs/monoflex">MonoFlex (CVPR'2021)</a></li>
280
281
          <li><a href="projects/DETR3D">DETR3D (CoRL'2021)</a></li>
          <li><a href="projects/PETR">PETR (ECCV'2022)</a></li>
282
        </ul>
283
284
285
286
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
        </ul>
287
288
289
290
291
      </td>
      <td>
        <li><b>Outdoor</b></li>
        <ul>
          <li><a href="configs/mvxnet">MVXNet (ICRA'2019)</a></li>
292
          <li><a href="projects/BEVFusion">BEVFusion (ICRA'2023)</a></li>
293
294
295
296
297
298
299
        </ul>
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/imvotenet">ImVoteNet (CVPR'2020)</a></li>
        </ul>
      </td>
      <td>
300
301
        <li><b>Outdoor</b></li>
        <ul>
302
          <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
303
          <li><a href="configs/spvcnn">SPVCNN (ECCV'2020)</a></li>
304
          <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
305
          <li><a href="projects/TPVFormer">TPVFormer (CVPR'2023)</a></li>
306
        </ul>
307
308
309
310
311
312
313
314
315
316
317
318
319
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
          <li><a href="configs/paconv">PAConv (CVPR'2021)</a></li>
          <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        </ul>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>
320

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|               | ResNet | VoVNet | Swin-T | PointNet++ | SECOND | DGCNN | RegNetX | DLA | MinkResNet | Cylinder3D | MinkUNet |
| :-----------: | :----: | :----: | :----: | :--------: | :----: | :---: | :-----: | :-: | :--------: | :--------: | :------: |
|    SECOND     |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| PointPillars  |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|  FreeAnchor   |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|    VoteNet    |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    H3DNet     |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     3DSSD     |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    Part-A2    |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    MVXNet     |   ✓    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  CenterPoint  |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|      SSN      |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|   ImVoteNet   |   ✓    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    FCOS3D     |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  PointNet++   |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| Group-Free-3D |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  ImVoxelNet   |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    PAConv     |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     DGCNN     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✓   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     SMOKE     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✓  |     ✗      |     ✗      |    ✗     |
|      PGD      |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|   MonoFlex    |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✓  |     ✗      |     ✗      |    ✗     |
|    SA-SSD     |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    FCAF3D     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✓      |     ✗      |    ✗     |
|    PV-RCNN    |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  Cylinder3D   |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✓      |    ✗     |
|   MinkUNet    |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✓     |
|    SPVCNN     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✓     |
|   BEVFusion   |   ✗    |   ✗    |   ✓    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| CenterFormer  |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     TR3D      |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✓      |     ✗      |    ✗     |
|    DETR3D     |   ✓    |   ✓    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     PETR      |   ✗    |   ✓    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|   TPVFormer   |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
zhangwenwei's avatar
zhangwenwei committed
355

Sun Jiahao's avatar
Sun Jiahao committed
356
**Note:** All the about **500+ models, methods of 90+ papers** in 2D detection supported by [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/model_zoo.md) can be trained or used in this codebase.
zhangwenwei's avatar
zhangwenwei committed
357

Xiang Xu's avatar
Xiang Xu committed
358
## FAQ
zhangwenwei's avatar
zhangwenwei committed
359

Xiang Xu's avatar
Xiang Xu committed
360
Please refer to [FAQ](docs/en/notes/faq.md) for frequently asked questions.
zhangwenwei's avatar
zhangwenwei committed
361

Xiang Xu's avatar
Xiang Xu committed
362
## Contributing
zhangwenwei's avatar
zhangwenwei committed
363

Xiang Xu's avatar
Xiang Xu committed
364
We appreciate all contributions to improve MMDetection3D. Please refer to [CONTRIBUTING.md](docs/en/notes/contribution_guides.md) for the contributing guideline.
VVsssssk's avatar
VVsssssk committed
365

Xiang Xu's avatar
Xiang Xu committed
366
367
368
## Acknowledgement

MMDetection3D is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new 3D detectors.
369

370
371
372
373
374
375
## Citation

If you find this project useful in your research, please consider cite:

```latex
@misc{mmdet3d2020,
Ziyi Wu's avatar
Ziyi Wu committed
376
    title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
377
378
379
380
381
382
    author={MMDetection3D Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
    year={2020}
}
```

Xiang Xu's avatar
Xiang Xu committed
383
## License
zhangwenwei's avatar
zhangwenwei committed
384

Xiang Xu's avatar
Xiang Xu committed
385
This project is released under the [Apache 2.0 license](LICENSE).
386
387
388

## Projects in OpenMMLab

VVsssssk's avatar
VVsssssk committed
389
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models.
390
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
xiangxu-0103's avatar
xiangxu-0103 committed
391
- [MMEval](https://github.com/open-mmlab/mmeval): A unified evaluation library for multiple machine learning libraries.
392
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
393
- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab pre-training toolbox and benchmark.
394
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
395
396
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
397
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark.
398
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
399
400
401
402
403
404
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
405
406
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
407
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
408
- [MMagic](https://github.com/open-mmlab/mmagic): Open**MM**Lab **A**dvanced, **G**enerative and **I**ntelligent **C**reation toolbox.
409
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
410
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.