"torchvision/vscode:/vscode.git/clone" did not exist on "6e5599e4a51281acde1a16ce7a1e853ff9f246ac"
README.md 24.6 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
<div align="center">
zhangwenwei's avatar
zhangwenwei committed
2
  <img src="resources/mmdet3d-logo.png" width="600"/>
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
  <div>&nbsp;</div>
  <div align="center">
    <b><font size="5">OpenMMLab website</font></b>
    <sup>
      <a href="https://openmmlab.com">
        <i><font size="4">HOT</font></i>
      </a>
    </sup>
    &nbsp;&nbsp;&nbsp;&nbsp;
    <b><font size="5">OpenMMLab platform</font></b>
    <sup>
      <a href="https://platform.openmmlab.com">
        <i><font size="4">TRY IT OUT</font></i>
      </a>
    </sup>
  </div>
  <div>&nbsp;</div>
zhangwenwei's avatar
zhangwenwei committed
20

Xiang Xu's avatar
Xiang Xu committed
21
[![PyPI](https://img.shields.io/pypi/v/mmdet3d)](https://pypi.org/project/mmdet3d)
Jingwei Zhang's avatar
Jingwei Zhang committed
22
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/en/latest/)
Wenwei Zhang's avatar
Wenwei Zhang committed
23
[![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions)
Xiang Xu's avatar
Xiang Xu committed
24
25
26
27
28
29
30
31
32
33
34
[![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d)
[![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/main/LICENSE)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/issues)
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/issues)

[📘Documentation](https://mmdetection3d.readthedocs.io/en/latest/) |
[🛠️Installation](https://mmdetection3d.readthedocs.io/en/latest/get_started.html) |
[👀Model Zoo](https://mmdetection3d.readthedocs.io/en/latest/model_zoo.html) |
[🆕Update News](https://mmdetection3d.readthedocs.io/en/latest/notes/changelog.html) |
[🚀Ongoing Projects](https://github.com/open-mmlab/mmdetection3d/projects) |
[🤔Reporting Issues](https://github.com/open-mmlab/mmdetection3d/issues/new/choose)
Wenwei Zhang's avatar
Wenwei Zhang committed
35

36
37
</div>

Xiang Xu's avatar
Xiang Xu committed
38
39
40
41
<div align="center">

English | [简体中文](README_zh-CN.md)

42
43
44
45
</div>

<div align="center">
  <a href="https://openmmlab.medium.com/" style="text-decoration:none;">
46
    <img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a>
47
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
48
  <a href="https://discord.com/channels/1037617289144569886/1046608014234370059" style="text-decoration:none;">
49
50
51
52
53
54
55
    <img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
56
57
58
59
60
61
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://space.bilibili.com/1293512903" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
62
63
</div>

zhangwenwei's avatar
zhangwenwei committed
64
65
## Introduction

Xiang Xu's avatar
Xiang Xu committed
66
MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the [OpenMMLab](https://openmmlab.com/) project.
67

68
The main branch works with **PyTorch 1.8+**.
zhangwenwei's avatar
zhangwenwei committed
69

zhangwenwei's avatar
zhangwenwei committed
70
![demo image](resources/mmdet3d_outdoor_demo.gif)
zhangwenwei's avatar
zhangwenwei committed
71

Xiang Xu's avatar
Xiang Xu committed
72
73
<details open>
<summary>Major features</summary>
zhangwenwei's avatar
zhangwenwei committed
74

zhangwenwei's avatar
zhangwenwei committed
75
- **Support multi-modality/single-modality detectors out of box**
zhangwenwei's avatar
zhangwenwei committed
76

77
  It directly supports multi-modality/single-modality detectors including MVXNet, VoteNet, PointPillars, etc.
zhangwenwei's avatar
zhangwenwei committed
78

zhangwenwei's avatar
zhangwenwei committed
79
- **Support indoor/outdoor 3D detection out of box**
zhangwenwei's avatar
zhangwenwei committed
80

Xiang Xu's avatar
Xiang Xu committed
81
  It directly supports popular indoor and outdoor 3D detection datasets, including ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, and KITTI. For nuScenes dataset, we also support [nuImages dataset](https://github.com/open-mmlab/mmdetection3d/tree/main/configs/nuimages).
zhangwenwei's avatar
zhangwenwei committed
82

zhangwenwei's avatar
zhangwenwei committed
83
- **Natural integration with 2D detection**
84

VVsssssk's avatar
VVsssssk committed
85
  All the about **300+ models, methods of 40+ papers**, and modules supported in [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/model_zoo.md) can be trained or used in this codebase.
zhangwenwei's avatar
zhangwenwei committed
86

zhangwenwei's avatar
zhangwenwei committed
87
- **High efficiency**
zhangwenwei's avatar
zhangwenwei committed
88

89
  It trains faster than other codebases. The main results are as below. Details can be found in [benchmark.md](./docs/en/notes/benchmarks.md). We compare the number of samples trained per second (the higher, the better). The models that are not supported by other codebases are marked by `✗`.
zhangwenwei's avatar
zhangwenwei committed
90

91
92
  |       Methods       | MMDetection3D | [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) | [votenet](https://github.com/facebookresearch/votenet) | [Det3D](https://github.com/poodarchu/Det3D) |
  | :-----------------: | :-----------: | :--------------------------------------------------: | :----------------------------------------------------: | :-----------------------------------------: |
93
94
95
96
97
  |       VoteNet       |      358      |                          ✗                           |                           77                           |                      ✗                      |
  |  PointPillars-car   |      141      |                          ✗                           |                           ✗                            |                     140                     |
  | PointPillars-3class |      107      |                          44                          |                           ✗                            |                      ✗                      |
  |       SECOND        |      40       |                          30                          |                           ✗                            |                      ✗                      |
  |       Part-A2       |      17       |                          14                          |                           ✗                            |                      ✗                      |
Wenwei Zhang's avatar
Wenwei Zhang committed
98

Xiang Xu's avatar
Xiang Xu committed
99
100
</details>

Wenwei Zhang's avatar
Wenwei Zhang committed
101
Like [MMDetection](https://github.com/open-mmlab/mmdetection) and [MMCV](https://github.com/open-mmlab/mmcv), MMDetection3D can also be used as a library to support different projects on top of it.
zhangwenwei's avatar
zhangwenwei committed
102

Xiang Xu's avatar
Xiang Xu committed
103
## What's New
zhangwenwei's avatar
zhangwenwei committed
104

Xiang Xu's avatar
Xiang Xu committed
105
106
107
### Highlight

**We have renamed the branch `1.1` to `main` and switched the default branch from `master` to `main`. We encourage users to migrate to the latest version, though it comes with some cost. Please refer to [Migration Guide](docs/en/migration.md) for more details.**
zhangwenwei's avatar
zhangwenwei committed
108

Sun Jiahao's avatar
Sun Jiahao committed
109
110
111
112
113
114
115
We have constructed a comprehensive LiDAR semantic segmentation benchmark on SemanticKITTI, including Cylinder3D, MinkUNet and SPVCNN methods. Noteworthy, the improved MinkUNetv2 can achieve 70.3 mIoU on the validation set of SemanticKITTI. We have also supported the training of BEVFusion and an occupancy prediction method, TPVFomrer, in our `projects`. More new features about 3D perception are on the way. Please stay tuned!

**v1.2.0** was released in 4/7/2023

- Support [New Config Type](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta) in `mmdet3d/config`
- Support the inference of [DSVT](<(https://arxiv.org/abs/2301.06051)>) in `projects`
- Support downloading datasets from [OpenDataLab](https://opendatalab.com/) using `mim`
Xiang Xu's avatar
Xiang Xu committed
116
117
118
119
120
121
122
123

**v1.1.1** was released in 30/5/2023:

- Support [TPVFormer](https://arxiv.org/pdf/2302.07817.pdf) in `projects`
- Support the training of BEVFusion in `projects`
- Support lidar-based 3D semantic segmentation benchmark

## Installation
zhangwenwei's avatar
zhangwenwei committed
124

Xiang Xu's avatar
Xiang Xu committed
125
Please refer to [Installation](https://mmdetection3d.readthedocs.io/en/latest/get_started.html) for installation instructions.
Tai-Wang's avatar
Tai-Wang committed
126

Xiang Xu's avatar
Xiang Xu committed
127
## Getting Started
zhangwenwei's avatar
zhangwenwei committed
128

Xiang Xu's avatar
Xiang Xu committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
For detailed user guides and advanced guides, please refer to our [documentation](https://mmdetection3d.readthedocs.io/en/latest/):

<details>
<summary>User Guides</summary>

- [Train & Test](https://mmdetection3d.readthedocs.io/en/latest/user_guides/index.html#train-test)
  - [Learn about Configs](https://mmdetection3d.readthedocs.io/en/latest/user_guides/config.html)
  - [Coordinate System](https://mmdetection3d.readthedocs.io/en/latest/user_guides/coord_sys_tutorial.html)
  - [Dataset Preparation](https://mmdetection3d.readthedocs.io/en/latest/user_guides/dataset_prepare.html)
  - [Customize Data Pipelines](https://mmdetection3d.readthedocs.io/en/latest/user_guides/data_pipeline.html)
  - [Test and Train on Standard Datasets](https://mmdetection3d.readthedocs.io/en/latest/user_guides/train_test.html)
  - [Inference](https://mmdetection3d.readthedocs.io/en/latest/user_guides/inference.html)
  - [Train with Customized Datasets](https://mmdetection3d.readthedocs.io/en/latest/user_guides/new_data_model.html)
- [Useful Tools](https://mmdetection3d.readthedocs.io/en/latest/user_guides/index.html#useful-tools)

</details>

<details>
<summary>Advanced Guides</summary>

- [Datasets](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/index.html#datasets)
  - [KITTI Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/kitti.html)
  - [NuScenes Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/nuscenes.html)
  - [Lyft Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/lyft.html)
  - [Waymo Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/waymo.html)
  - [SUN RGB-D Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/sunrgbd.html)
  - [ScanNet Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/scannet.html)
  - [S3DIS Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/s3dis.html)
  - [SemanticKITTI Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/semantickitti.html)
- [Supported Tasks](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/index.html#supported-tasks)
  - [LiDAR-Based 3D Detection](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/supported_tasks/lidar_det3d.html)
  - [Vision-Based 3D Detection](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/supported_tasks/vision_det3d.html)
  - [LiDAR-Based 3D Semantic Segmentation](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/supported_tasks/lidar_sem_seg3d.html)
- [Customization](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/index.html#customization)
  - [Customize Datasets](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/customize_dataset.html)
  - [Customize Models](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/customize_models.html)
  - [Customize Runtime Settings](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/customize_runtime.html)

</details>

## Overview of Benchmark and Model Zoo
zhangwenwei's avatar
zhangwenwei committed
170

Wenhao Wu's avatar
Wenhao Wu committed
171
Results and models are available in the [model zoo](docs/en/model_zoo.md).
zhangwenwei's avatar
zhangwenwei committed
172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
<div align="center">
  <b>Components</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Heads</b>
      </td>
      <td>
        <b>Features</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
      <ul>
        <li><a href="configs/pointnet2">PointNet (CVPR'2017)</a></li>
        <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
        <li><a href="configs/regnet">RegNet (CVPR'2020)</a></li>
        <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        <li>DLA (CVPR'2018)</li>
197
        <li>MinkResNet (CVPR'2019)</li>
198
        <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
199
        <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/free_anchor">FreeAnchor (NeurIPS'2019)</a></li>
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/dynamic_voxelization">Dynamic Voxelization (CoRL'2019)</a></li>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>

<div align="center">
  <b>Architectures</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="middle">
      <td>
225
        <b>LiDAR-based 3D Object Detection</b>
226
227
      </td>
      <td>
228
        <b>Camera-based 3D Object Detection</b>
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
      </td>
      <td>
        <b>Multi-modal 3D Object Detection</b>
      </td>
      <td>
        <b>3D Semantic Segmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
        <li><b>Outdoor</b></li>
        <ul>
            <li><a href="configs/second">SECOND (Sensor'2018)</a></li>
            <li><a href="configs/pointpillars">PointPillars (CVPR'2019)</a></li>
            <li><a href="configs/ssn">SSN (ECCV'2020)</a></li>
            <li><a href="configs/3dssd">3DSSD (CVPR'2020)</a></li>
Tai-Wang's avatar
Tai-Wang committed
245
            <li><a href="configs/sassd">SA-SSD (CVPR'2020)</a></li>
ChaimZhu's avatar
ChaimZhu committed
246
            <li><a href="configs/point_rcnn">PointRCNN (CVPR'2019)</a></li>
247
248
            <li><a href="configs/parta2">Part-A2 (TPAMI'2020)</a></li>
            <li><a href="configs/centerpoint">CenterPoint (CVPR'2021)</a></li>
249
            <li><a href="configs/pv_rcnn">PV-RCNN (CVPR'2020)</a></li>
250
            <li><a href="projects/CenterFormer">CenterFormer (ECCV'2022)</a></li>
251
252
253
254
255
256
        </ul>
        <li><b>Indoor</b></li>
        <ul>
            <li><a href="configs/votenet">VoteNet (ICCV'2019)</a></li>
            <li><a href="configs/h3dnet">H3DNet (ECCV'2020)</a></li>
            <li><a href="configs/groupfree3d">Group-Free-3D (ICCV'2021)</a></li>
257
            <li><a href="configs/fcaf3d">FCAF3D (ECCV'2022)</a></li>
258
            <li><a href="projects/TR3D">TR3D (ArXiv'2023)</a></li>
259
260
261
262
263
264
265
266
267
268
      </ul>
      </td>
      <td>
        <li><b>Outdoor</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
          <li><a href="configs/smoke">SMOKE (CVPRW'2020)</a></li>
          <li><a href="configs/fcos3d">FCOS3D (ICCVW'2021)</a></li>
          <li><a href="configs/pgd">PGD (CoRL'2021)</a></li>
          <li><a href="configs/monoflex">MonoFlex (CVPR'2021)</a></li>
269
270
          <li><a href="projects/DETR3D">DETR3D (CoRL'2021)</a></li>
          <li><a href="projects/PETR">PETR (ECCV'2022)</a></li>
271
        </ul>
272
273
274
275
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
        </ul>
276
277
278
279
280
      </td>
      <td>
        <li><b>Outdoor</b></li>
        <ul>
          <li><a href="configs/mvxnet">MVXNet (ICRA'2019)</a></li>
281
          <li><a href="projects/BEVFusion">BEVFusion (ICRA'2023)</a></li>
282
283
284
285
286
287
288
        </ul>
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/imvotenet">ImVoteNet (CVPR'2020)</a></li>
        </ul>
      </td>
      <td>
289
290
        <li><b>Outdoor</b></li>
        <ul>
291
          <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
292
          <li><a href="configs/spvcnn">SPVCNN (ECCV'2020)</a></li>
293
          <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
294
          <li><a href="projects/TPVFormer">TPVFormer (CVPR'2023)</a></li>
295
        </ul>
296
297
298
299
300
301
302
303
304
305
306
307
308
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
          <li><a href="configs/paconv">PAConv (CVPR'2021)</a></li>
          <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        </ul>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>
309

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|               | ResNet | VoVNet | Swin-T | PointNet++ | SECOND | DGCNN | RegNetX | DLA | MinkResNet | Cylinder3D | MinkUNet |
| :-----------: | :----: | :----: | :----: | :--------: | :----: | :---: | :-----: | :-: | :--------: | :--------: | :------: |
|    SECOND     |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| PointPillars  |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|  FreeAnchor   |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|    VoteNet    |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    H3DNet     |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     3DSSD     |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    Part-A2    |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    MVXNet     |   ✓    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  CenterPoint  |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|      SSN      |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|   ImVoteNet   |   ✓    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    FCOS3D     |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  PointNet++   |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| Group-Free-3D |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  ImVoxelNet   |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    PAConv     |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     DGCNN     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✓   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     SMOKE     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✓  |     ✗      |     ✗      |    ✗     |
|      PGD      |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|   MonoFlex    |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✓  |     ✗      |     ✗      |    ✗     |
|    SA-SSD     |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    FCAF3D     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✓      |     ✗      |    ✗     |
|    PV-RCNN    |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  Cylinder3D   |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✓      |    ✗     |
|   MinkUNet    |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✓     |
|    SPVCNN     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✓     |
|   BEVFusion   |   ✗    |   ✗    |   ✓    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| CenterFormer  |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     TR3D      |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✓      |     ✗      |    ✗     |
|    DETR3D     |   ✓    |   ✓    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     PETR      |   ✗    |   ✓    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|   TPVFormer   |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
zhangwenwei's avatar
zhangwenwei committed
344

Sun Jiahao's avatar
Sun Jiahao committed
345
**Note:** All the about **500+ models, methods of 90+ papers** in 2D detection supported by [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/model_zoo.md) can be trained or used in this codebase.
zhangwenwei's avatar
zhangwenwei committed
346

Xiang Xu's avatar
Xiang Xu committed
347
## FAQ
zhangwenwei's avatar
zhangwenwei committed
348

Xiang Xu's avatar
Xiang Xu committed
349
Please refer to [FAQ](docs/en/notes/faq.md) for frequently asked questions.
zhangwenwei's avatar
zhangwenwei committed
350

Xiang Xu's avatar
Xiang Xu committed
351
## Contributing
zhangwenwei's avatar
zhangwenwei committed
352

Xiang Xu's avatar
Xiang Xu committed
353
We appreciate all contributions to improve MMDetection3D. Please refer to [CONTRIBUTING.md](docs/en/notes/contribution_guides.md) for the contributing guideline.
VVsssssk's avatar
VVsssssk committed
354

Xiang Xu's avatar
Xiang Xu committed
355
356
357
## Acknowledgement

MMDetection3D is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new 3D detectors.
358

359
360
361
362
363
364
## Citation

If you find this project useful in your research, please consider cite:

```latex
@misc{mmdet3d2020,
Ziyi Wu's avatar
Ziyi Wu committed
365
    title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
366
367
368
369
370
371
    author={MMDetection3D Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
    year={2020}
}
```

Xiang Xu's avatar
Xiang Xu committed
372
## License
zhangwenwei's avatar
zhangwenwei committed
373

Xiang Xu's avatar
Xiang Xu committed
374
This project is released under the [Apache 2.0 license](LICENSE).
375
376
377

## Projects in OpenMMLab

VVsssssk's avatar
VVsssssk committed
378
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models.
379
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
xiangxu-0103's avatar
xiangxu-0103 committed
380
- [MMEval](https://github.com/open-mmlab/mmeval): A unified evaluation library for multiple machine learning libraries.
381
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
382
- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab pre-training toolbox and benchmark.
383
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
384
385
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
386
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark.
387
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
388
389
390
391
392
393
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
394
395
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
396
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
397
- [MMagic](https://github.com/open-mmlab/mmagic): Open**MM**Lab **A**dvanced, **G**enerative and **I**ntelligent **C**reation toolbox.
398
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
399
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.