dv_second_secfpn_6x8_80e_kitti-3d-car.py 5.63 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# model settings
voxel_size = [0.05, 0.05, 0.1]
point_cloud_range = [0, -40, -3, 70.4, 40, 1]  # velodyne coordinates, x, y, z

model = dict(
    type='DynamicVoxelNet',
    voxel_layer=dict(
        max_num_points=-1,  # max_points_per_voxel
        point_cloud_range=point_cloud_range,
        voxel_size=voxel_size,
        max_voxels=(-1, -1),  # (training, testing) max_coxels
    ),
    voxel_encoder=dict(
        type='DynamicVFEV3',
        num_input_features=4,
        voxel_size=voxel_size,
        point_cloud_range=point_cloud_range),
    middle_encoder=dict(
        type='SparseEncoder',
        in_channels=4,
wuyuefeng's avatar
wuyuefeng committed
21
22
        sparse_shape=[41, 1600, 1408],
        order=('conv', 'norm', 'act')),
zhangwenwei's avatar
zhangwenwei committed
23
24
25
26
27
    backbone=dict(
        type='SECOND',
        in_channels=256,
        layer_nums=[5, 5],
        layer_strides=[1, 2],
zhangwenwei's avatar
zhangwenwei committed
28
        out_channels=[128, 256],
zhangwenwei's avatar
zhangwenwei committed
29
30
31
32
33
    ),
    neck=dict(
        type='SECONDFPN',
        in_channels=[128, 256],
        upsample_strides=[1, 2],
zhangwenwei's avatar
zhangwenwei committed
34
        out_channels=[256, 256],
zhangwenwei's avatar
zhangwenwei committed
35
36
    ),
    bbox_head=dict(
zhangwenwei's avatar
zhangwenwei committed
37
38
        type='Anchor3DHead',
        num_classes=1,
zhangwenwei's avatar
zhangwenwei committed
39
40
41
        in_channels=512,
        feat_channels=512,
        use_direction_classifier=True,
42
43
44
45
46
47
48
        anchor_generator=dict(
            type='Anchor3DRangeGenerator',
            ranges=[[0, -40.0, -1.78, 70.4, 40.0, -1.78]],
            strides=[2],
            sizes=[[1.6, 3.9, 1.56]],
            rotations=[0, 1.57],
            reshape_out=True),
zhangwenwei's avatar
zhangwenwei committed
49
        diff_rad_by_sin=True,
50
        bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
zhangwenwei's avatar
zhangwenwei committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
        loss_dir=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2),
    ),
)
# model training and testing settings
train_cfg = dict(
    assigner=dict(
        type='MaxIoUAssigner',
zhangwenwei's avatar
zhangwenwei committed
66
        iou_calculator=dict(type='BboxOverlapsNearest3D'),
zhangwenwei's avatar
zhangwenwei committed
67
68
69
70
71
72
73
74
75
76
77
78
79
        pos_iou_thr=0.6,
        neg_iou_thr=0.45,
        min_pos_iou=0.45,
        ignore_iof_thr=-1),
    allowed_border=0,
    pos_weight=-1,
    debug=False)
test_cfg = dict(
    use_rotate_nms=True,
    nms_across_levels=False,
    nms_thr=0.01,
    score_thr=0.3,
    min_bbox_size=0,
zhangwenwei's avatar
zhangwenwei committed
80
81
    nms_pre=100,
    max_num=50)
zhangwenwei's avatar
zhangwenwei committed
82
83
84
85
86
87
88
89

# dataset settings
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Car']
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
input_modality = dict(
zww's avatar
zww committed
90
91
    use_lidar=False,
    use_lidar_reduced=True,
zhangwenwei's avatar
zhangwenwei committed
92
93
    use_depth=False,
    use_lidar_intensity=True,
zhangwenwei's avatar
zhangwenwei committed
94
    use_camera=True,
zhangwenwei's avatar
zhangwenwei committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
)
db_sampler = dict(
    root_path=data_root,
    info_path=data_root + 'kitti_dbinfos_train.pkl',
    rate=1.0,
    use_road_plane=False,
    object_rot_range=[0.0, 0.0],
    prepare=dict(
        filter_by_difficulty=[-1],
        filter_by_min_points=dict(Car=5),
    ),
    sample_groups=dict(Car=15),
)
train_pipeline = [
    dict(type='ObjectSample', db_sampler=db_sampler),
    dict(
        type='ObjectNoise',
        num_try=100,
        loc_noise_std=[1.0, 1.0, 0.5],
        global_rot_range=[0.0, 0.0],
        rot_uniform_noise=[-0.78539816, 0.78539816]),
116
    dict(type='RandomFlip3D', flip_ratio=0.5),
zhangwenwei's avatar
zhangwenwei committed
117
118
119
120
121
122
123
124
    dict(
        type='GlobalRotScale',
        rot_uniform_noise=[-0.78539816, 0.78539816],
        scaling_uniform_noise=[0.95, 1.05]),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
zhangwenwei's avatar
zhangwenwei committed
125
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']),
zhangwenwei's avatar
zhangwenwei committed
126
127
128
129
130
131
132
]
test_pipeline = [
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(
        type='DefaultFormatBundle3D',
        class_names=class_names,
        with_label=False),
zhangwenwei's avatar
zhangwenwei committed
133
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d']),
zhangwenwei's avatar
zhangwenwei committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
]

data = dict(
    samples_per_gpu=6,
    workers_per_gpu=4,
    train=dict(
        type=dataset_type,
        root_path=data_root,
        ann_file=data_root + 'kitti_infos_train.pkl',
        split='training',
        training=True,
        pipeline=train_pipeline,
        modality=input_modality,
        class_names=class_names,
        with_label=True),
    val=dict(
        type=dataset_type,
        root_path=data_root,
        ann_file=data_root + 'kitti_infos_val.pkl',
        split='training',
        pipeline=test_pipeline,
        modality=input_modality,
        class_names=class_names,
        with_label=True),
    test=dict(
        type=dataset_type,
        root_path=data_root,
        ann_file=data_root + 'kitti_infos_val.pkl',
        split='testing',
        pipeline=test_pipeline,
        modality=input_modality,
        class_names=class_names,
        with_label=True))
# optimizer
lr = 0.0018  # max learning rate
optimizer = dict(type='AdamW', lr=lr, betas=(0.95, 0.99), weight_decay=0.01)
optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2))
lr_config = dict(
    policy='cyclic',
zhangwenwei's avatar
zhangwenwei committed
173
    target_ratio=(10, 1e-4),
zhangwenwei's avatar
zhangwenwei committed
174
175
176
177
178
    cyclic_times=1,
    step_ratio_up=0.4,
)
momentum_config = dict(
    policy='cyclic',
zhangwenwei's avatar
zhangwenwei committed
179
    target_ratio=(0.85 / 0.95, 1),
zhangwenwei's avatar
zhangwenwei committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    cyclic_times=1,
    step_ratio_up=0.4,
)
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
# runtime settings
total_epochs = 80
zhangwenwei's avatar
zhangwenwei committed
194
dist_params = dict(backend='nccl')
zhangwenwei's avatar
zhangwenwei committed
195
196
197
198
199
log_level = 'INFO'
work_dir = './work_dirs/sec_secfpn_80e'
load_from = None
resume_from = None
workflow = [('train', 1)]