"git@developer.sourcefind.cn:OpenDAS/ollama.git" did not exist on "0560b28a8d3a366f94e3996f59cc0774cb7d0e2a"
Commit 4073acf7 authored by zhangwenwei's avatar zhangwenwei
Browse files

Fix target mean/std bugs

parent 4040dbda
...@@ -128,7 +128,7 @@ train_pipeline = [ ...@@ -128,7 +128,7 @@ train_pipeline = [
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'), dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names), dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'gt_bboxes', 'gt_labels']), dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']),
] ]
test_pipeline = [ test_pipeline = [
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
...@@ -136,7 +136,7 @@ test_pipeline = [ ...@@ -136,7 +136,7 @@ test_pipeline = [
type='DefaultFormatBundle3D', type='DefaultFormatBundle3D',
class_names=class_names, class_names=class_names,
with_label=False), with_label=False),
dict(type='Collect3D', keys=['points', 'gt_bboxes']), dict(type='Collect3D', keys=['points', 'gt_bboxes_3d']),
] ]
data = dict( data = dict(
...@@ -177,13 +177,13 @@ optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) ...@@ -177,13 +177,13 @@ optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy # learning policy
lr_config = dict( lr_config = dict(
policy='cyclic', policy='cyclic',
target_ratio=[10, 1e-4], target_ratio=(10, 1e-4),
cyclic_times=1, cyclic_times=1,
step_ratio_up=0.4, step_ratio_up=0.4,
) )
momentum_config = dict( momentum_config = dict(
policy='cyclic', policy='cyclic',
target_ratio=[0.85 / 0.95, 1], target_ratio=(0.85 / 0.95, 1),
cyclic_times=1, cyclic_times=1,
step_ratio_up=0.4, step_ratio_up=0.4,
) )
......
...@@ -94,7 +94,7 @@ input_modality = dict( ...@@ -94,7 +94,7 @@ input_modality = dict(
use_lidar=True, use_lidar=True,
use_depth=False, use_depth=False,
use_lidar_intensity=True, use_lidar_intensity=True,
use_camera=False, use_camera=True,
) )
db_sampler = dict( db_sampler = dict(
root_path=data_root, root_path=data_root,
...@@ -125,7 +125,7 @@ train_pipeline = [ ...@@ -125,7 +125,7 @@ train_pipeline = [
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'), dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names), dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'gt_bboxes', 'gt_labels']), dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']),
] ]
test_pipeline = [ test_pipeline = [
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
...@@ -133,7 +133,7 @@ test_pipeline = [ ...@@ -133,7 +133,7 @@ test_pipeline = [
type='DefaultFormatBundle3D', type='DefaultFormatBundle3D',
class_names=class_names, class_names=class_names,
with_label=False), with_label=False),
dict(type='Collect3D', keys=['points', 'gt_bboxes']), dict(type='Collect3D', keys=['points', 'gt_bboxes_3d']),
] ]
data = dict( data = dict(
...@@ -173,13 +173,13 @@ optimizer = dict(type='AdamW', lr=lr, betas=(0.95, 0.99), weight_decay=0.01) ...@@ -173,13 +173,13 @@ optimizer = dict(type='AdamW', lr=lr, betas=(0.95, 0.99), weight_decay=0.01)
optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2)) optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2))
lr_config = dict( lr_config = dict(
policy='cyclic', policy='cyclic',
target_ratio=[10, 1e-4], target_ratio=(10, 1e-4),
cyclic_times=1, cyclic_times=1,
step_ratio_up=0.4, step_ratio_up=0.4,
) )
momentum_config = dict( momentum_config = dict(
policy='cyclic', policy='cyclic',
target_ratio=[0.85 / 0.95, 1], target_ratio=(0.85 / 0.95, 1),
cyclic_times=1, cyclic_times=1,
step_ratio_up=0.4, step_ratio_up=0.4,
) )
......
...@@ -125,7 +125,7 @@ train_pipeline = [ ...@@ -125,7 +125,7 @@ train_pipeline = [
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'), dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names), dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'gt_bboxes', 'gt_labels']), dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']),
] ]
test_pipeline = [ test_pipeline = [
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
...@@ -133,7 +133,7 @@ test_pipeline = [ ...@@ -133,7 +133,7 @@ test_pipeline = [
type='DefaultFormatBundle3D', type='DefaultFormatBundle3D',
class_names=class_names, class_names=class_names,
with_label=False), with_label=False),
dict(type='Collect3D', keys=['points', 'gt_bboxes']), dict(type='Collect3D', keys=['points', 'gt_bboxes_3d']),
] ]
data = dict( data = dict(
...@@ -178,13 +178,13 @@ optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) ...@@ -178,13 +178,13 @@ optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy # learning policy
lr_config = dict( lr_config = dict(
policy='cyclic', policy='cyclic',
target_ratio=[10, 1e-4], target_ratio=(10, 1e-4),
cyclic_times=1, cyclic_times=1,
step_ratio_up=0.4, step_ratio_up=0.4,
) )
momentum_config = dict( momentum_config = dict(
policy='cyclic', policy='cyclic',
target_ratio=[0.85 / 0.95, 1], target_ratio=(0.85 / 0.95, 1),
cyclic_times=1, cyclic_times=1,
step_ratio_up=0.4, step_ratio_up=0.4,
) )
......
...@@ -123,7 +123,7 @@ train_pipeline = [ ...@@ -123,7 +123,7 @@ train_pipeline = [
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'), dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names), dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'gt_bboxes', 'gt_labels']), dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']),
] ]
test_pipeline = [ test_pipeline = [
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
...@@ -131,7 +131,7 @@ test_pipeline = [ ...@@ -131,7 +131,7 @@ test_pipeline = [
type='DefaultFormatBundle3D', type='DefaultFormatBundle3D',
class_names=class_names, class_names=class_names,
with_label=False), with_label=False),
dict(type='Collect3D', keys=['points', 'gt_bboxes']), dict(type='Collect3D', keys=['points', 'gt_bboxes_3d']),
] ]
data = dict( data = dict(
...@@ -171,13 +171,13 @@ optimizer = dict(type='AdamW', lr=lr, betas=(0.95, 0.99), weight_decay=0.01) ...@@ -171,13 +171,13 @@ optimizer = dict(type='AdamW', lr=lr, betas=(0.95, 0.99), weight_decay=0.01)
optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2)) optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2))
lr_config = dict( lr_config = dict(
policy='cyclic', policy='cyclic',
target_ratio=[10, 1e-4], target_ratio=(10, 1e-4),
cyclic_times=1, cyclic_times=1,
step_ratio_up=0.4, step_ratio_up=0.4,
) )
momentum_config = dict( momentum_config = dict(
policy='cyclic', policy='cyclic',
target_ratio=[0.85 / 0.95, 1], target_ratio=(0.85 / 0.95, 1),
cyclic_times=1, cyclic_times=1,
step_ratio_up=0.4, step_ratio_up=0.4,
) )
......
...@@ -14,12 +14,6 @@ class Anchor3DVeloHead(SECONDHead): ...@@ -14,12 +14,6 @@ class Anchor3DVeloHead(SECONDHead):
Args: Args:
in_channels (int): Number of channels in the input feature map. in_channels (int): Number of channels in the input feature map.
feat_channels (int): Number of channels of the feature map. feat_channels (int): Number of channels of the feature map.
anchor_scales (Iterable): Anchor scales.
anchor_ratios (Iterable): Anchor aspect ratios.
anchor_strides (Iterable): Anchor strides.
anchor_base_sizes (Iterable): Anchor base sizes.
target_means (Iterable): Mean values of regression targets.
target_stds (Iterable): Std values of regression targets.
loss_cls (dict): Config of classification loss. loss_cls (dict): Config of classification loss.
loss_bbox (dict): Config of localization loss. loss_bbox (dict): Config of localization loss.
""" # noqa: W605 """ # noqa: W605
...@@ -127,9 +121,7 @@ class Anchor3DVeloHead(SECONDHead): ...@@ -127,9 +121,7 @@ class Anchor3DVeloHead(SECONDHead):
scores = scores[topk_inds, :] scores = scores[topk_inds, :]
dir_cls_score = dir_cls_score[topk_inds] dir_cls_score = dir_cls_score[topk_inds]
bboxes = self.bbox_coder.decode(anchors, bbox_pred, bboxes = self.bbox_coder.decode(anchors, bbox_pred)
self.target_means,
self.target_stds)
mlvl_bboxes.append(bboxes) mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores) mlvl_scores.append(scores)
mlvl_dir_scores.append(dir_cls_score) mlvl_dir_scores.append(dir_cls_score)
......
...@@ -19,12 +19,6 @@ class SECONDHead(nn.Module, AnchorTrainMixin): ...@@ -19,12 +19,6 @@ class SECONDHead(nn.Module, AnchorTrainMixin):
Args: Args:
in_channels (int): Number of channels in the input feature map. in_channels (int): Number of channels in the input feature map.
feat_channels (int): Number of channels of the feature map. feat_channels (int): Number of channels of the feature map.
anchor_scales (Iterable): Anchor scales.
anchor_ratios (Iterable): Anchor aspect ratios.
anchor_strides (Iterable): Anchor strides.
anchor_base_sizes (Iterable): Anchor base sizes.
target_means (Iterable): Mean values of regression targets.
target_stds (Iterable): Std values of regression targets.
loss_cls (dict): Config of classification loss. loss_cls (dict): Config of classification loss.
loss_bbox (dict): Config of localization loss. loss_bbox (dict): Config of localization loss.
""" # noqa: W605 """ # noqa: W605
...@@ -216,8 +210,6 @@ class SECONDHead(nn.Module, AnchorTrainMixin): ...@@ -216,8 +210,6 @@ class SECONDHead(nn.Module, AnchorTrainMixin):
anchor_list, anchor_list,
gt_bboxes, gt_bboxes,
input_metas, input_metas,
self.target_means,
self.target_stds,
gt_bboxes_ignore_list=gt_bboxes_ignore, gt_bboxes_ignore_list=gt_bboxes_ignore,
gt_labels_list=gt_labels, gt_labels_list=gt_labels,
num_classes=self.num_classes, num_classes=self.num_classes,
......
...@@ -11,8 +11,6 @@ class AnchorTrainMixin(object): ...@@ -11,8 +11,6 @@ class AnchorTrainMixin(object):
anchor_list, anchor_list,
gt_bboxes_list, gt_bboxes_list,
input_metas, input_metas,
target_means,
target_stds,
gt_bboxes_ignore_list=None, gt_bboxes_ignore_list=None,
gt_labels_list=None, gt_labels_list=None,
label_channels=1, label_channels=1,
...@@ -24,8 +22,6 @@ class AnchorTrainMixin(object): ...@@ -24,8 +22,6 @@ class AnchorTrainMixin(object):
anchor_list (list[list]): Multi level anchors of each image. anchor_list (list[list]): Multi level anchors of each image.
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
img_metas (list[dict]): Meta info of each image. img_metas (list[dict]): Meta info of each image.
target_means (Iterable): Mean value of regression targets.
target_stds (Iterable): Std value of regression targets.
Returns: Returns:
tuple tuple
...@@ -57,8 +53,6 @@ class AnchorTrainMixin(object): ...@@ -57,8 +53,6 @@ class AnchorTrainMixin(object):
gt_bboxes_ignore_list, gt_bboxes_ignore_list,
gt_labels_list, gt_labels_list,
input_metas, input_metas,
target_means=target_means,
target_stds=target_stds,
label_channels=label_channels, label_channels=label_channels,
num_classes=num_classes, num_classes=num_classes,
sampling=sampling) sampling=sampling)
...@@ -89,8 +83,6 @@ class AnchorTrainMixin(object): ...@@ -89,8 +83,6 @@ class AnchorTrainMixin(object):
gt_bboxes_ignore, gt_bboxes_ignore,
gt_labels, gt_labels,
input_meta, input_meta,
target_means,
target_stds,
label_channels=1, label_channels=1,
num_classes=1, num_classes=1,
sampling=True): sampling=True):
...@@ -111,13 +103,12 @@ class AnchorTrainMixin(object): ...@@ -111,13 +103,12 @@ class AnchorTrainMixin(object):
anchor_targets = self.anchor_target_single_assigner( anchor_targets = self.anchor_target_single_assigner(
assigner, current_anchors, gt_bboxes[gt_per_cls, :], assigner, current_anchors, gt_bboxes[gt_per_cls, :],
gt_bboxes_ignore, gt_labels[gt_per_cls], input_meta, gt_bboxes_ignore, gt_labels[gt_per_cls], input_meta,
target_means, target_stds, label_channels, num_classes, label_channels, num_classes, sampling)
sampling)
else: else:
anchor_targets = self.anchor_target_single_assigner( anchor_targets = self.anchor_target_single_assigner(
assigner, current_anchors, gt_bboxes, gt_bboxes_ignore, assigner, current_anchors, gt_bboxes, gt_bboxes_ignore,
gt_labels, input_meta, target_means, target_stds, gt_labels, input_meta, label_channels, num_classes,
label_channels, num_classes, sampling) sampling)
(labels, label_weights, bbox_targets, bbox_weights, (labels, label_weights, bbox_targets, bbox_weights,
dir_targets, dir_weights, pos_inds, neg_inds) = anchor_targets dir_targets, dir_weights, pos_inds, neg_inds) = anchor_targets
...@@ -156,8 +147,7 @@ class AnchorTrainMixin(object): ...@@ -156,8 +147,7 @@ class AnchorTrainMixin(object):
else: else:
return self.anchor_target_single_assigner( return self.anchor_target_single_assigner(
self.bbox_assigner, anchors, gt_bboxes, gt_bboxes_ignore, self.bbox_assigner, anchors, gt_bboxes, gt_bboxes_ignore,
gt_labels, input_meta, target_means, target_stds, gt_labels, input_meta, label_channels, num_classes, sampling)
label_channels, num_classes, sampling)
def anchor_target_single_assigner(self, def anchor_target_single_assigner(self,
bbox_assigner, bbox_assigner,
...@@ -166,8 +156,6 @@ class AnchorTrainMixin(object): ...@@ -166,8 +156,6 @@ class AnchorTrainMixin(object):
gt_bboxes_ignore, gt_bboxes_ignore,
gt_labels, gt_labels,
input_meta, input_meta,
target_means,
target_stds,
label_channels=1, label_channels=1,
num_classes=1, num_classes=1,
sampling=True): sampling=True):
......
#!/usr/bin/env bash #!/usr/bin/env bash
set -x set -x
export PYTHONPATH=`pwd`:$PYTHONPATH
PARTITION=$1 PARTITION=$1
JOB_NAME=$2 JOB_NAME=$2
...@@ -20,4 +19,4 @@ srun -p ${PARTITION} \ ...@@ -20,4 +19,4 @@ srun -p ${PARTITION} \
--ntasks-per-node=${GPUS_PER_NODE} \ --ntasks-per-node=${GPUS_PER_NODE} \
--kill-on-bad-exit=1 \ --kill-on-bad-exit=1 \
${SRUN_ARGS} \ ${SRUN_ARGS} \
python -u tools/train.py ${CONFIG} --work_dir=${WORK_DIR} --launcher="slurm" ${PY_ARGS} python -u tools/train.py ${CONFIG} --work-dir=${WORK_DIR} --launcher="slurm" ${PY_ARGS}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment