dv_second_secfpn_6x8_80e_kitti-3d-car.py 5.82 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# model settings
voxel_size = [0.05, 0.05, 0.1]
point_cloud_range = [0, -40, -3, 70.4, 40, 1]  # velodyne coordinates, x, y, z

model = dict(
    type='DynamicVoxelNet',
    voxel_layer=dict(
        max_num_points=-1,  # max_points_per_voxel
        point_cloud_range=point_cloud_range,
        voxel_size=voxel_size,
        max_voxels=(-1, -1),  # (training, testing) max_coxels
    ),
    voxel_encoder=dict(
        type='DynamicVFEV3',
        num_input_features=4,
        voxel_size=voxel_size,
        point_cloud_range=point_cloud_range),
    middle_encoder=dict(
        type='SparseEncoder',
        in_channels=4,
        output_shape=[41, 1600, 1408],  # checked from PointCloud3D
        pre_act=False,
    ),
    backbone=dict(
        type='SECOND',
        in_channels=256,
        layer_nums=[5, 5],
        layer_strides=[1, 2],
zhangwenwei's avatar
zhangwenwei committed
29
        out_channels=[128, 256],
zhangwenwei's avatar
zhangwenwei committed
30
31
32
33
34
    ),
    neck=dict(
        type='SECONDFPN',
        in_channels=[128, 256],
        upsample_strides=[1, 2],
zhangwenwei's avatar
zhangwenwei committed
35
        out_channels=[256, 256],
zhangwenwei's avatar
zhangwenwei committed
36
37
38
39
40
41
42
43
    ),
    bbox_head=dict(
        type='SECONDHead',
        class_name=['Car'],
        in_channels=512,
        feat_channels=512,
        use_direction_classifier=True,
        encode_bg_as_zeros=True,
44
45
46
47
48
49
50
        anchor_generator=dict(
            type='Anchor3DRangeGenerator',
            ranges=[[0, -40.0, -1.78, 70.4, 40.0, -1.78]],
            strides=[2],
            sizes=[[1.6, 3.9, 1.56]],
            rotations=[0, 1.57],
            reshape_out=True),
zhangwenwei's avatar
zhangwenwei committed
51
        diff_rad_by_sin=True,
52
        bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
zhangwenwei's avatar
zhangwenwei committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
        loss_dir=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2),
    ),
)
# model training and testing settings
train_cfg = dict(
    assigner=dict(
        type='MaxIoUAssigner',
zhangwenwei's avatar
zhangwenwei committed
68
        iou_calculator=dict(type='BboxOverlapsNearest3D'),
zhangwenwei's avatar
zhangwenwei committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        pos_iou_thr=0.6,
        neg_iou_thr=0.45,
        min_pos_iou=0.45,
        ignore_iof_thr=-1),
    allowed_border=0,
    pos_weight=-1,
    debug=False)
test_cfg = dict(
    use_rotate_nms=True,
    nms_across_levels=False,
    nms_thr=0.01,
    score_thr=0.3,
    min_bbox_size=0,
    post_center_limit_range=[0, -40, -3, 70.4, 40, 0.0],
    # soft-nms is also supported for rcnn testing
    # e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
)

# dataset settings
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Car']
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
input_modality = dict(
zww's avatar
zww committed
94
95
    use_lidar=False,
    use_lidar_reduced=True,
zhangwenwei's avatar
zhangwenwei committed
96
97
    use_depth=False,
    use_lidar_intensity=True,
zhangwenwei's avatar
zhangwenwei committed
98
    use_camera=True,
zhangwenwei's avatar
zhangwenwei committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
)
db_sampler = dict(
    root_path=data_root,
    info_path=data_root + 'kitti_dbinfos_train.pkl',
    rate=1.0,
    use_road_plane=False,
    object_rot_range=[0.0, 0.0],
    prepare=dict(
        filter_by_difficulty=[-1],
        filter_by_min_points=dict(Car=5),
    ),
    sample_groups=dict(Car=15),
)
train_pipeline = [
    dict(type='ObjectSample', db_sampler=db_sampler),
    dict(
        type='ObjectNoise',
        num_try=100,
        loc_noise_std=[1.0, 1.0, 0.5],
        global_rot_range=[0.0, 0.0],
        rot_uniform_noise=[-0.78539816, 0.78539816]),
120
    dict(type='RandomFlip3D', flip_ratio=0.5),
zhangwenwei's avatar
zhangwenwei committed
121
122
123
124
125
126
127
128
    dict(
        type='GlobalRotScale',
        rot_uniform_noise=[-0.78539816, 0.78539816],
        scaling_uniform_noise=[0.95, 1.05]),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
zhangwenwei's avatar
zhangwenwei committed
129
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']),
zhangwenwei's avatar
zhangwenwei committed
130
131
132
133
134
135
136
]
test_pipeline = [
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(
        type='DefaultFormatBundle3D',
        class_names=class_names,
        with_label=False),
zhangwenwei's avatar
zhangwenwei committed
137
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d']),
zhangwenwei's avatar
zhangwenwei committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
]

data = dict(
    samples_per_gpu=6,
    workers_per_gpu=4,
    train=dict(
        type=dataset_type,
        root_path=data_root,
        ann_file=data_root + 'kitti_infos_train.pkl',
        split='training',
        training=True,
        pipeline=train_pipeline,
        modality=input_modality,
        class_names=class_names,
        with_label=True),
    val=dict(
        type=dataset_type,
        root_path=data_root,
        ann_file=data_root + 'kitti_infos_val.pkl',
        split='training',
        pipeline=test_pipeline,
        modality=input_modality,
        class_names=class_names,
        with_label=True),
    test=dict(
        type=dataset_type,
        root_path=data_root,
        ann_file=data_root + 'kitti_infos_val.pkl',
        split='testing',
        pipeline=test_pipeline,
        modality=input_modality,
        class_names=class_names,
        with_label=True))
# optimizer
lr = 0.0018  # max learning rate
optimizer = dict(type='AdamW', lr=lr, betas=(0.95, 0.99), weight_decay=0.01)
optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2))
lr_config = dict(
    policy='cyclic',
zhangwenwei's avatar
zhangwenwei committed
177
    target_ratio=(10, 1e-4),
zhangwenwei's avatar
zhangwenwei committed
178
179
180
181
182
    cyclic_times=1,
    step_ratio_up=0.4,
)
momentum_config = dict(
    policy='cyclic',
zhangwenwei's avatar
zhangwenwei committed
183
    target_ratio=(0.85 / 0.95, 1),
zhangwenwei's avatar
zhangwenwei committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    cyclic_times=1,
    step_ratio_up=0.4,
)
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
# runtime settings
total_epochs = 80
zhangwenwei's avatar
zhangwenwei committed
198
dist_params = dict(backend='nccl')
zhangwenwei's avatar
zhangwenwei committed
199
200
201
202
203
log_level = 'INFO'
work_dir = './work_dirs/sec_secfpn_80e'
load_from = None
resume_from = None
workflow = [('train', 1)]