dv_second_secfpn_6x8_80e_kitti-3d-car.py 5.7 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# model settings
voxel_size = [0.05, 0.05, 0.1]
point_cloud_range = [0, -40, -3, 70.4, 40, 1]  # velodyne coordinates, x, y, z

model = dict(
    type='DynamicVoxelNet',
    voxel_layer=dict(
        max_num_points=-1,  # max_points_per_voxel
        point_cloud_range=point_cloud_range,
        voxel_size=voxel_size,
        max_voxels=(-1, -1),  # (training, testing) max_coxels
    ),
    voxel_encoder=dict(
        type='DynamicVFEV3',
        num_input_features=4,
        voxel_size=voxel_size,
        point_cloud_range=point_cloud_range),
    middle_encoder=dict(
        type='SparseEncoder',
        in_channels=4,
        output_shape=[41, 1600, 1408],  # checked from PointCloud3D
        pre_act=False,
    ),
    backbone=dict(
        type='SECOND',
        in_channels=256,
        layer_nums=[5, 5],
        layer_strides=[1, 2],
        num_filters=[128, 256],
    ),
    neck=dict(
        type='SECONDFPN',
        in_channels=[128, 256],
        upsample_strides=[1, 2],
        num_upsample_filters=[256, 256],
    ),
    bbox_head=dict(
        type='SECONDHead',
        class_name=['Car'],
        in_channels=512,
        feat_channels=512,
        use_direction_classifier=True,
        encode_bg_as_zeros=True,
        anchor_range=[0, -40.0, -1.78, 70.4, 40.0, -1.78],
        anchor_strides=[2],
        anchor_sizes=[[1.6, 3.9, 1.56]],
        anchor_rotations=[0, 1.57],
        diff_rad_by_sin=True,
zhangwenwei's avatar
zhangwenwei committed
49
        bbox_coder=dict(type='Residual3DBoxCoder', ),
zhangwenwei's avatar
zhangwenwei committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
        loss_dir=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2),
    ),
)
# model training and testing settings
train_cfg = dict(
    assigner=dict(
        type='MaxIoUAssigner',
zhangwenwei's avatar
zhangwenwei committed
65
        iou_calculator=dict(type='BboxOverlapsNearest3D'),
zhangwenwei's avatar
zhangwenwei committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        pos_iou_thr=0.6,
        neg_iou_thr=0.45,
        min_pos_iou=0.45,
        ignore_iof_thr=-1),
    allowed_border=0,
    pos_weight=-1,
    debug=False)
test_cfg = dict(
    use_rotate_nms=True,
    nms_across_levels=False,
    nms_thr=0.01,
    score_thr=0.3,
    min_bbox_size=0,
    post_center_limit_range=[0, -40, -3, 70.4, 40, 0.0],
    # soft-nms is also supported for rcnn testing
    # e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
)

# dataset settings
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Car']
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
input_modality = dict(
    use_lidar=True,
    use_depth=False,
    use_lidar_intensity=True,
    use_camera=False,
)
db_sampler = dict(
    root_path=data_root,
    info_path=data_root + 'kitti_dbinfos_train.pkl',
    rate=1.0,
    use_road_plane=False,
    object_rot_range=[0.0, 0.0],
    prepare=dict(
        filter_by_difficulty=[-1],
        filter_by_min_points=dict(Car=5),
    ),
    sample_groups=dict(Car=15),
)
train_pipeline = [
    dict(type='ObjectSample', db_sampler=db_sampler),
    dict(
        type='ObjectNoise',
        num_try=100,
        loc_noise_std=[1.0, 1.0, 0.5],
        global_rot_range=[0.0, 0.0],
        rot_uniform_noise=[-0.78539816, 0.78539816]),
    dict(type='PointsRandomFlip', flip_ratio=0.5),
    dict(
        type='GlobalRotScale',
        rot_uniform_noise=[-0.78539816, 0.78539816],
        scaling_uniform_noise=[0.95, 1.05]),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(
        type='DefaultFormatBundle3D',
        class_names=class_names,
        with_label=False),
    dict(type='Collect3D', keys=['points', 'gt_bboxes']),
]

data = dict(
    samples_per_gpu=6,
    workers_per_gpu=4,
    train=dict(
        type=dataset_type,
        root_path=data_root,
        ann_file=data_root + 'kitti_infos_train.pkl',
        split='training',
        training=True,
        pipeline=train_pipeline,
        modality=input_modality,
        class_names=class_names,
        with_label=True),
    val=dict(
        type=dataset_type,
        root_path=data_root,
        ann_file=data_root + 'kitti_infos_val.pkl',
        split='training',
        pipeline=test_pipeline,
        modality=input_modality,
        class_names=class_names,
        with_label=True),
    test=dict(
        type=dataset_type,
        root_path=data_root,
        ann_file=data_root + 'kitti_infos_val.pkl',
        split='testing',
        pipeline=test_pipeline,
        modality=input_modality,
        class_names=class_names,
        with_label=True))
# optimizer
lr = 0.0018  # max learning rate
optimizer = dict(type='AdamW', lr=lr, betas=(0.95, 0.99), weight_decay=0.01)
optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2))
lr_config = dict(
    policy='cyclic',
    target_ratio=[10, 1e-4],
    cyclic_times=1,
    step_ratio_up=0.4,
)
momentum_config = dict(
    policy='cyclic',
    target_ratio=[0.85 / 0.95, 1],
    cyclic_times=1,
    step_ratio_up=0.4,
)
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
# runtime settings
total_epochs = 80
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/sec_secfpn_80e'
load_from = None
resume_from = None
workflow = [('train', 1)]