loading.py 27.8 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
from typing import Sequence

zhangwenwei's avatar
zhangwenwei committed
4
5
import mmcv
import numpy as np
6
from mmcv.transforms import LoadImageFromFile
7
from mmcv.transforms.base import BaseTransform
zhangwenwei's avatar
zhangwenwei committed
8

9
from mmdet3d.core.points import BasePoints, get_points_type
10
11
from mmdet3d.registry import TRANSFORMS
from mmdet.datasets.pipelines import LoadAnnotations
zhangwenwei's avatar
zhangwenwei committed
12
13


14
@TRANSFORMS.register_module()
zhangwenwei's avatar
zhangwenwei committed
15
class LoadMultiViewImageFromFiles(object):
zhangwenwei's avatar
zhangwenwei committed
16
    """Load multi channel images from a list of separate channel files.
zhangwenwei's avatar
zhangwenwei committed
17

liyinhao's avatar
liyinhao committed
18
19
20
    Expects results['img_filename'] to be a list of filenames.

    Args:
21
        to_float32 (bool, optional): Whether to convert the img to float32.
liyinhao's avatar
liyinhao committed
22
            Defaults to False.
23
24
        color_type (str, optional): Color type of the file.
            Defaults to 'unchanged'.
zhangwenwei's avatar
zhangwenwei committed
25
    """
zhangwenwei's avatar
zhangwenwei committed
26

zhangwenwei's avatar
zhangwenwei committed
27
28
29
    def __init__(self, to_float32=False, color_type='unchanged'):
        self.to_float32 = to_float32
        self.color_type = color_type
zhangwenwei's avatar
zhangwenwei committed
30
31

    def __call__(self, results):
32
33
34
35
36
37
        """Call function to load multi-view image from files.

        Args:
            results (dict): Result dict containing multi-view image filenames.

        Returns:
38
            dict: The result dict containing the multi-view image data.
39
40
41
42
43
44
45
46
47
48
                Added keys and values are described below.

                - filename (str): Multi-view image filenames.
                - img (np.ndarray): Multi-view image arrays.
                - img_shape (tuple[int]): Shape of multi-view image arrays.
                - ori_shape (tuple[int]): Shape of original image arrays.
                - pad_shape (tuple[int]): Shape of padded image arrays.
                - scale_factor (float): Scale factor.
                - img_norm_cfg (dict): Normalization configuration of images.
        """
zhangwenwei's avatar
zhangwenwei committed
49
        filename = results['img_filename']
50
        # img is of shape (h, w, c, num_views)
zhangwenwei's avatar
zhangwenwei committed
51
52
53
54
55
        img = np.stack(
            [mmcv.imread(name, self.color_type) for name in filename], axis=-1)
        if self.to_float32:
            img = img.astype(np.float32)
        results['filename'] = filename
56
        # unravel to list, see `DefaultFormatBundle` in formatting.py
57
58
        # which will transpose each image separately and then stack into array
        results['img'] = [img[..., i] for i in range(img.shape[-1])]
zhangwenwei's avatar
zhangwenwei committed
59
60
61
62
63
64
65
66
67
68
        results['img_shape'] = img.shape
        results['ori_shape'] = img.shape
        # Set initial values for default meta_keys
        results['pad_shape'] = img.shape
        results['scale_factor'] = 1.0
        num_channels = 1 if len(img.shape) < 3 else img.shape[2]
        results['img_norm_cfg'] = dict(
            mean=np.zeros(num_channels, dtype=np.float32),
            std=np.ones(num_channels, dtype=np.float32),
            to_rgb=False)
zhangwenwei's avatar
zhangwenwei committed
69
70
71
        return results

    def __repr__(self):
72
        """str: Return a string that describes the module."""
73
74
75
76
        repr_str = self.__class__.__name__
        repr_str += f'(to_float32={self.to_float32}, '
        repr_str += f"color_type='{self.color_type}')"
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
77
78


79
@TRANSFORMS.register_module()
80
81
82
83
84
class LoadImageFromFileMono3D(LoadImageFromFile):
    """Load an image from file in monocular 3D object detection. Compared to 2D
    detection, additional camera parameters need to be loaded.

    Args:
85
        kwargs (dict): Arguments are the same as those in
86
87
88
89
90
91
92
93
94
95
96
97
98
            :class:`LoadImageFromFile`.
    """

    def __call__(self, results):
        """Call functions to load image and get image meta information.

        Args:
            results (dict): Result dict from :obj:`mmdet.CustomDataset`.

        Returns:
            dict: The dict contains loaded image and meta information.
        """
        super().__call__(results)
99
        results['cam2img'] = results['img_info']['cam_intrinsic']
100
101
102
        return results


103
@TRANSFORMS.register_module()
zhangwenwei's avatar
zhangwenwei committed
104
class LoadPointsFromMultiSweeps(object):
zhangwenwei's avatar
zhangwenwei committed
105
    """Load points from multiple sweeps.
zhangwenwei's avatar
zhangwenwei committed
106

zhangwenwei's avatar
zhangwenwei committed
107
108
109
    This is usually used for nuScenes dataset to utilize previous sweeps.

    Args:
110
111
112
113
114
115
116
        sweeps_num (int, optional): Number of sweeps. Defaults to 10.
        load_dim (int, optional): Dimension number of the loaded points.
            Defaults to 5.
        use_dim (list[int], optional): Which dimension to use.
            Defaults to [0, 1, 2, 4].
        file_client_args (dict, optional): Config dict of file clients,
            refer to
zhangwenwei's avatar
zhangwenwei committed
117
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
liyinhao's avatar
liyinhao committed
118
            for more details. Defaults to dict(backend='disk').
119
        pad_empty_sweeps (bool, optional): Whether to repeat keyframe when
120
            sweeps is empty. Defaults to False.
121
        remove_close (bool, optional): Whether to remove close points.
122
            Defaults to False.
123
        test_mode (bool, optional): If `test_mode=True`, it will not
124
125
            randomly sample sweeps but select the nearest N frames.
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
126
127
128
129
130
    """

    def __init__(self,
                 sweeps_num=10,
                 load_dim=5,
131
132
133
134
135
                 use_dim=[0, 1, 2, 4],
                 file_client_args=dict(backend='disk'),
                 pad_empty_sweeps=False,
                 remove_close=False,
                 test_mode=False):
zhangwenwei's avatar
zhangwenwei committed
136
        self.load_dim = load_dim
zhangwenwei's avatar
zhangwenwei committed
137
        self.sweeps_num = sweeps_num
138
        self.use_dim = use_dim
zhangwenwei's avatar
zhangwenwei committed
139
140
        self.file_client_args = file_client_args.copy()
        self.file_client = None
141
142
143
        self.pad_empty_sweeps = pad_empty_sweeps
        self.remove_close = remove_close
        self.test_mode = test_mode
zhangwenwei's avatar
zhangwenwei committed
144
145

    def _load_points(self, pts_filename):
146
147
148
149
150
151
152
153
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
zhangwenwei's avatar
zhangwenwei committed
154
155
156
157
158
159
160
161
162
163
164
165
        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
        return points
zhangwenwei's avatar
zhangwenwei committed
166

167
168
169
170
    def _remove_close(self, points, radius=1.0):
        """Removes point too close within a certain radius from origin.

        Args:
171
            points (np.ndarray | :obj:`BasePoints`): Sweep points.
172
            radius (float, optional): Radius below which points are removed.
173
174
175
176
177
                Defaults to 1.0.

        Returns:
            np.ndarray: Points after removing.
        """
178
179
180
181
182
183
184
185
        if isinstance(points, np.ndarray):
            points_numpy = points
        elif isinstance(points, BasePoints):
            points_numpy = points.tensor.numpy()
        else:
            raise NotImplementedError
        x_filt = np.abs(points_numpy[:, 0]) < radius
        y_filt = np.abs(points_numpy[:, 1]) < radius
186
        not_close = np.logical_not(np.logical_and(x_filt, y_filt))
187
        return points[not_close]
188

zhangwenwei's avatar
zhangwenwei committed
189
    def __call__(self, results):
190
191
192
        """Call function to load multi-sweep point clouds from files.

        Args:
193
            results (dict): Result dict containing multi-sweep point cloud
194
195
196
                filenames.

        Returns:
197
            dict: The result dict containing the multi-sweep points data.
198
199
                Added key and value are described below.

200
                - points (np.ndarray | :obj:`BasePoints`): Multi-sweep point
201
                    cloud arrays.
202
        """
zhangwenwei's avatar
zhangwenwei committed
203
        points = results['points']
204
        points.tensor[:, 4] = 0
zhangwenwei's avatar
zhangwenwei committed
205
206
        sweep_points_list = [points]
        ts = results['timestamp']
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        if self.pad_empty_sweeps and len(results['sweeps']) == 0:
            for i in range(self.sweeps_num):
                if self.remove_close:
                    sweep_points_list.append(self._remove_close(points))
                else:
                    sweep_points_list.append(points)
        else:
            if len(results['sweeps']) <= self.sweeps_num:
                choices = np.arange(len(results['sweeps']))
            elif self.test_mode:
                choices = np.arange(self.sweeps_num)
            else:
                choices = np.random.choice(
                    len(results['sweeps']), self.sweeps_num, replace=False)
            for idx in choices:
                sweep = results['sweeps'][idx]
                points_sweep = self._load_points(sweep['data_path'])
                points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim)
                if self.remove_close:
                    points_sweep = self._remove_close(points_sweep)
                sweep_ts = sweep['timestamp'] / 1e6
                points_sweep[:, :3] = points_sweep[:, :3] @ sweep[
                    'sensor2lidar_rotation'].T
                points_sweep[:, :3] += sweep['sensor2lidar_translation']
                points_sweep[:, 4] = ts - sweep_ts
232
                points_sweep = points.new_point(points_sweep)
233
234
                sweep_points_list.append(points_sweep)

235
236
        points = points.cat(sweep_points_list)
        points = points[:, self.use_dim]
zhangwenwei's avatar
zhangwenwei committed
237
238
239
240
        results['points'] = points
        return results

    def __repr__(self):
241
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
242
        return f'{self.__class__.__name__}(sweeps_num={self.sweeps_num})'
wuyuefeng's avatar
wuyuefeng committed
243
244


245
@TRANSFORMS.register_module()
246
class PointSegClassMapping(BaseTransform):
wuyuefeng's avatar
wuyuefeng committed
247
248
    """Map original semantic class to valid category ids.

249
250
251
252
253
254
255
256
257
258
    Required Keys:

    - lidar_points (dict)

        - lidar_path (str)

    Added Keys:

    - points (np.float32)

wuyuefeng's avatar
wuyuefeng committed
259
260
261
262
    Map valid classes as 0~len(valid_cat_ids)-1 and
    others as len(valid_cat_ids).

    Args:
263
        valid_cat_ids (tuple[int]): A tuple of valid category.
264
265
        max_cat_id (int, optional): The max possible cat_id in input
            segmentation mask. Defaults to 40.
wuyuefeng's avatar
wuyuefeng committed
266
267
    """

268
269
270
    def __init__(self,
                 valid_cat_ids: Sequence[int],
                 max_cat_id: int = 40) -> None:
271
272
273
        assert max_cat_id >= np.max(valid_cat_ids), \
            'max_cat_id should be greater than maximum id in valid_cat_ids'

wuyuefeng's avatar
wuyuefeng committed
274
        self.valid_cat_ids = valid_cat_ids
275
276
277
278
279
280
281
282
        self.max_cat_id = int(max_cat_id)

        # build cat_id to class index mapping
        neg_cls = len(valid_cat_ids)
        self.cat_id2class = np.ones(
            self.max_cat_id + 1, dtype=np.int) * neg_cls
        for cls_idx, cat_id in enumerate(valid_cat_ids):
            self.cat_id2class[cat_id] = cls_idx
wuyuefeng's avatar
wuyuefeng committed
283

284
    def transform(self, results: dict) -> None:
285
286
287
288
289
290
        """Call function to map original semantic class to valid category ids.

        Args:
            results (dict): Result dict containing point semantic masks.

        Returns:
291
            dict: The result dict containing the mapped category ids.
292
293
294
295
                Updated key and value are described below.

                - pts_semantic_mask (np.ndarray): Mapped semantic masks.
        """
wuyuefeng's avatar
wuyuefeng committed
296
297
298
        assert 'pts_semantic_mask' in results
        pts_semantic_mask = results['pts_semantic_mask']

299
        converted_pts_sem_mask = self.cat_id2class[pts_semantic_mask]
wuyuefeng's avatar
wuyuefeng committed
300

301
        results['pts_semantic_mask'] = converted_pts_sem_mask
wuyuefeng's avatar
wuyuefeng committed
302
303
304
        return results

    def __repr__(self):
305
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
306
        repr_str = self.__class__.__name__
307
308
        repr_str += f'(valid_cat_ids={self.valid_cat_ids}, '
        repr_str += f'max_cat_id={self.max_cat_id})'
wuyuefeng's avatar
wuyuefeng committed
309
310
311
        return repr_str


312
@TRANSFORMS.register_module()
wuyuefeng's avatar
wuyuefeng committed
313
class NormalizePointsColor(object):
zhangwenwei's avatar
zhangwenwei committed
314
    """Normalize color of points.
wuyuefeng's avatar
wuyuefeng committed
315
316
317
318
319
320
321
322
323

    Args:
        color_mean (list[float]): Mean color of the point cloud.
    """

    def __init__(self, color_mean):
        self.color_mean = color_mean

    def __call__(self, results):
324
325
326
327
328
329
        """Call function to normalize color of points.

        Args:
            results (dict): Result dict containing point clouds data.

        Returns:
330
            dict: The result dict containing the normalized points.
331
332
                Updated key and value are described below.

333
                - points (:obj:`BasePoints`): Points after color normalization.
334
        """
wuyuefeng's avatar
wuyuefeng committed
335
        points = results['points']
336
        assert points.attribute_dims is not None and \
337
338
               'color' in points.attribute_dims.keys(), \
               'Expect points have color attribute'
339
340
        if self.color_mean is not None:
            points.color = points.color - \
341
                           points.color.new_tensor(self.color_mean)
342
        points.color = points.color / 255.0
wuyuefeng's avatar
wuyuefeng committed
343
344
345
346
        results['points'] = points
        return results

    def __repr__(self):
347
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
348
        repr_str = self.__class__.__name__
349
        repr_str += f'(color_mean={self.color_mean})'
wuyuefeng's avatar
wuyuefeng committed
350
351
352
        return repr_str


353
@TRANSFORMS.register_module()
jshilong's avatar
jshilong committed
354
class LoadPointsFromFile(BaseTransform):
wuyuefeng's avatar
wuyuefeng committed
355
356
    """Load Points From File.

jshilong's avatar
jshilong committed
357
358
359
360
361
362
363
364
365
    Required Keys:

    - lidar_points (dict)

        - lidar_path (str)

    Added Keys:

    - points (np.float32)
wuyuefeng's avatar
wuyuefeng committed
366
367

    Args:
368
369
370
371
372
        coord_type (str): The type of coordinates of points cloud.
            Available options includes:
            - 'LIDAR': Points in LiDAR coordinates.
            - 'DEPTH': Points in depth coordinates, usually for indoor dataset.
            - 'CAMERA': Points in camera coordinates.
373
        load_dim (int, optional): The dimension of the loaded points.
374
            Defaults to 6.
375
        use_dim (list[int], optional): Which dimensions of the points to use.
liyinhao's avatar
liyinhao committed
376
377
            Defaults to [0, 1, 2]. For KITTI dataset, set use_dim=4
            or use_dim=[0, 1, 2, 3] to use the intensity dimension.
378
379
380
381
382
383
        shift_height (bool, optional): Whether to use shifted height.
            Defaults to False.
        use_color (bool, optional): Whether to use color features.
            Defaults to False.
        file_client_args (dict, optional): Config dict of file clients,
            refer to
wuyuefeng's avatar
wuyuefeng committed
384
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
liyinhao's avatar
liyinhao committed
385
            for more details. Defaults to dict(backend='disk').
wuyuefeng's avatar
wuyuefeng committed
386
387
    """

jshilong's avatar
jshilong committed
388
389
390
391
392
393
394
395
396
    def __init__(
        self,
        coord_type: str,
        load_dim: int = 6,
        use_dim: list = [0, 1, 2],
        shift_height: bool = False,
        use_color: bool = False,
        file_client_args: dict = dict(backend='disk')
    ) -> None:
wuyuefeng's avatar
wuyuefeng committed
397
        self.shift_height = shift_height
398
        self.use_color = use_color
wuyuefeng's avatar
wuyuefeng committed
399
400
401
402
        if isinstance(use_dim, int):
            use_dim = list(range(use_dim))
        assert max(use_dim) < load_dim, \
            f'Expect all used dimensions < {load_dim}, got {use_dim}'
403
        assert coord_type in ['CAMERA', 'LIDAR', 'DEPTH']
wuyuefeng's avatar
wuyuefeng committed
404

405
        self.coord_type = coord_type
wuyuefeng's avatar
wuyuefeng committed
406
407
408
409
410
        self.load_dim = load_dim
        self.use_dim = use_dim
        self.file_client_args = file_client_args.copy()
        self.file_client = None

jshilong's avatar
jshilong committed
411
    def _load_points(self, pts_filename: str) -> np.ndarray:
412
413
414
415
416
417
418
419
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
wuyuefeng's avatar
wuyuefeng committed
420
421
422
423
424
425
426
427
428
429
430
        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
431

wuyuefeng's avatar
wuyuefeng committed
432
433
        return points

jshilong's avatar
jshilong committed
434
435
    def transform(self, results: dict) -> dict:
        """Method to load points data from file.
436
437
438
439
440

        Args:
            results (dict): Result dict containing point clouds data.

        Returns:
441
            dict: The result dict containing the point clouds data.
442
443
                Added key and value are described below.

444
                - points (:obj:`BasePoints`): Point clouds data.
445
        """
jshilong's avatar
jshilong committed
446
447
        pts_file_path = results['lidar_points']['lidar_path']
        points = self._load_points(pts_file_path)
wuyuefeng's avatar
wuyuefeng committed
448
449
        points = points.reshape(-1, self.load_dim)
        points = points[:, self.use_dim]
450
        attribute_dims = None
wuyuefeng's avatar
wuyuefeng committed
451
452
453
454

        if self.shift_height:
            floor_height = np.percentile(points[:, 2], 0.99)
            height = points[:, 2] - floor_height
455
456
457
            points = np.concatenate(
                [points[:, :3],
                 np.expand_dims(height, 1), points[:, 3:]], 1)
458
459
            attribute_dims = dict(height=3)

460
461
462
463
464
465
466
467
468
469
470
        if self.use_color:
            assert len(self.use_dim) >= 6
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(color=[
                    points.shape[1] - 3,
                    points.shape[1] - 2,
                    points.shape[1] - 1,
                ]))

471
472
473
        points_class = get_points_type(self.coord_type)
        points = points_class(
            points, points_dim=points.shape[-1], attribute_dims=attribute_dims)
wuyuefeng's avatar
wuyuefeng committed
474
        results['points'] = points
475

wuyuefeng's avatar
wuyuefeng committed
476
477
478
        return results

    def __repr__(self):
479
        """str: Return a string that describes the module."""
liyinhao's avatar
liyinhao committed
480
        repr_str = self.__class__.__name__ + '('
481
482
483
484
485
        repr_str += f'shift_height={self.shift_height}, '
        repr_str += f'use_color={self.use_color}, '
        repr_str += f'file_client_args={self.file_client_args}, '
        repr_str += f'load_dim={self.load_dim}, '
        repr_str += f'use_dim={self.use_dim})'
wuyuefeng's avatar
wuyuefeng committed
486
487
488
        return repr_str


489
@TRANSFORMS.register_module()
490
491
492
493
494
495
496
497
class LoadPointsFromDict(LoadPointsFromFile):
    """Load Points From Dict."""

    def __call__(self, results):
        assert 'points' in results
        return results


498
@TRANSFORMS.register_module()
wuyuefeng's avatar
wuyuefeng committed
499
500
501
502
503
504
class LoadAnnotations3D(LoadAnnotations):
    """Load Annotations3D.

    Load instance mask and semantic mask of points and
    encapsulate the items into related fields.

jshilong's avatar
jshilong committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
    Required Keys:

    - ann_info (dict)
        - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes` |
          :obj:`DepthInstance3DBoxes` | :obj:`CameraInstance3DBoxes`):
          3D ground truth bboxes. Only when `with_bbox_3d` is True
        - gt_labels_3d (np.int64): Labels of ground truths.
          Only when `with_label_3d` is True.
        - gt_bboxes (np.float32): 2D ground truth bboxes.
          Only when `with_bbox` is True.
        - gt_labels (np.ndarray): Labels of ground truths.
          Only when `with_label` is True.
        - depths (np.ndarray): Only when
          `with_bbox_depth` is True.
        - centers_2d (np.ndarray): Only when
          `with_bbox_depth` is True.
        - attr_labels (np.ndarray): Attribute labels of instances.
          Only when `with_attr_label` is True.

    - pts_instance_mask_path (str): Path of instance mask file.
      Only when `with_mask_3d` is True.
    - pts_semantic_mask_path (str): Path of semantic mask file.
      Only when

    Added Keys:

    - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes` |
      :obj:`DepthInstance3DBoxes` | :obj:`CameraInstance3DBoxes`):
      3D ground truth bboxes. Only when `with_bbox_3d` is True
    - gt_labels_3d (np.int64): Labels of ground truths.
      Only when `with_label_3d` is True.
    - gt_bboxes (np.float32): 2D ground truth bboxes.
      Only when `with_bbox` is True.
    - gt_labels (np.int64): Labels of ground truths.
      Only when `with_label` is True.
    - depths (np.float32): Only when
      `with_bbox_depth` is True.
    - centers_2d (np.ndarray): Only when
      `with_bbox_depth` is True.
    - attr_labels (np.int64): Attribute labels of instances.
      Only when `with_attr_label` is True.
    - pts_instance_mask (np.int64): Instance mask of each point.
      Only when `with_mask_3d` is True.
    - pts_semantic_mask (np.int64): Semantic mask of each point.
      Only when `with_seg_3d` is True.

wuyuefeng's avatar
wuyuefeng committed
551
552
553
554
555
    Args:
        with_bbox_3d (bool, optional): Whether to load 3D boxes.
            Defaults to True.
        with_label_3d (bool, optional): Whether to load 3D labels.
            Defaults to True.
556
557
        with_attr_label (bool, optional): Whether to load attribute label.
            Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
558
559
560
561
562
563
564
565
566
567
568
569
        with_mask_3d (bool, optional): Whether to load 3D instance masks.
            for points. Defaults to False.
        with_seg_3d (bool, optional): Whether to load 3D semantic masks.
            for points. Defaults to False.
        with_bbox (bool, optional): Whether to load 2D boxes.
            Defaults to False.
        with_label (bool, optional): Whether to load 2D labels.
            Defaults to False.
        with_mask (bool, optional): Whether to load 2D instance masks.
            Defaults to False.
        with_seg (bool, optional): Whether to load 2D semantic masks.
            Defaults to False.
570
571
        with_bbox_depth (bool, optional): Whether to load 2.5D boxes.
            Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
572
573
        poly2mask (bool, optional): Whether to convert polygon annotations
            to bitmasks. Defaults to True.
574
        seg_3d_dtype (dtype, optional): Dtype of 3D semantic masks.
jshilong's avatar
jshilong committed
575
            Defaults to int64.
wuyuefeng's avatar
wuyuefeng committed
576
577
578
579
580
        file_client_args (dict): Config dict of file clients, refer to
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
            for more details.
    """

jshilong's avatar
jshilong committed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
    def __init__(
        self,
        with_bbox_3d: bool = True,
        with_label_3d: bool = True,
        with_attr_label: bool = False,
        with_mask_3d: bool = False,
        with_seg_3d: bool = False,
        with_bbox: bool = False,
        with_label: bool = False,
        with_mask: bool = False,
        with_seg: bool = False,
        with_bbox_depth: bool = False,
        poly2mask: bool = True,
        seg_3d_dtype: np.dtype = np.int64,
        file_client_args: dict = dict(backend='disk')
    ) -> None:
wuyuefeng's avatar
wuyuefeng committed
597
        super().__init__(
jshilong's avatar
jshilong committed
598
599
600
601
602
            with_bbox=with_bbox,
            with_label=with_label,
            with_mask=with_mask,
            with_seg=with_seg,
            poly2mask=poly2mask,
wuyuefeng's avatar
wuyuefeng committed
603
604
            file_client_args=file_client_args)
        self.with_bbox_3d = with_bbox_3d
605
        self.with_bbox_depth = with_bbox_depth
wuyuefeng's avatar
wuyuefeng committed
606
        self.with_label_3d = with_label_3d
607
        self.with_attr_label = with_attr_label
wuyuefeng's avatar
wuyuefeng committed
608
609
        self.with_mask_3d = with_mask_3d
        self.with_seg_3d = with_seg_3d
610
        self.seg_3d_dtype = seg_3d_dtype
wuyuefeng's avatar
wuyuefeng committed
611

jshilong's avatar
jshilong committed
612
613
614
    def _load_bboxes_3d(self, results: dict) -> dict:
        """Private function to move the 3D bounding box annotation from
        `ann_info` field to the root of `results`.
615
616
617
618
619
620
621

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D bounding box annotations.
        """
jshilong's avatar
jshilong committed
622

wuyuefeng's avatar
wuyuefeng committed
623
624
625
        results['gt_bboxes_3d'] = results['ann_info']['gt_bboxes_3d']
        return results

jshilong's avatar
jshilong committed
626
    def _load_bboxes_depth(self, results: dict) -> dict:
627
628
629
630
631
632
633
634
        """Private function to load 2.5D bounding box annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 2.5D bounding box annotations.
        """
jshilong's avatar
jshilong committed
635

636
        results['depths'] = results['ann_info']['depths']
jshilong's avatar
jshilong committed
637
        results['centers_2d'] = results['ann_info']['centers_2d']
638
639
        return results

jshilong's avatar
jshilong committed
640
    def _load_labels_3d(self, results: dict) -> dict:
641
642
643
644
645
646
647
648
        """Private function to load label annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded label annotations.
        """
jshilong's avatar
jshilong committed
649

wuyuefeng's avatar
wuyuefeng committed
650
651
652
        results['gt_labels_3d'] = results['ann_info']['gt_labels_3d']
        return results

jshilong's avatar
jshilong committed
653
    def _load_attr_labels(self, results: dict) -> dict:
654
655
656
657
658
659
660
661
662
663
664
        """Private function to load label annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded label annotations.
        """
        results['attr_labels'] = results['ann_info']['attr_labels']
        return results

jshilong's avatar
jshilong committed
665
    def _load_masks_3d(self, results: dict) -> dict:
666
667
668
669
670
671
672
673
        """Private function to load 3D mask annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D mask annotations.
        """
jshilong's avatar
jshilong committed
674
        pts_instance_mask_path = results['pts_instance_mask_path']
wuyuefeng's avatar
wuyuefeng committed
675
676
677
678
679

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_instance_mask_path)
680
            pts_instance_mask = np.frombuffer(mask_bytes, dtype=np.int64)
wuyuefeng's avatar
wuyuefeng committed
681
682
683
        except ConnectionError:
            mmcv.check_file_exist(pts_instance_mask_path)
            pts_instance_mask = np.fromfile(
WRH's avatar
WRH committed
684
                pts_instance_mask_path, dtype=np.int64)
wuyuefeng's avatar
wuyuefeng committed
685
686

        results['pts_instance_mask'] = pts_instance_mask
jshilong's avatar
jshilong committed
687
688
689
        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in results:
            results['eval_ann_info']['pts_instance_mask'] = pts_instance_mask
wuyuefeng's avatar
wuyuefeng committed
690
691
        return results

jshilong's avatar
jshilong committed
692
    def _load_semantic_seg_3d(self, results: dict) -> dict:
693
694
695
696
697
698
699
700
        """Private function to load 3D semantic segmentation annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing the semantic segmentation annotations.
        """
jshilong's avatar
jshilong committed
701
        pts_semantic_mask_path = results['pts_semantic_mask_path']
wuyuefeng's avatar
wuyuefeng committed
702
703
704
705
706
707

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_semantic_mask_path)
            # add .copy() to fix read-only bug
708
709
            pts_semantic_mask = np.frombuffer(
                mask_bytes, dtype=self.seg_3d_dtype).copy()
wuyuefeng's avatar
wuyuefeng committed
710
711
712
        except ConnectionError:
            mmcv.check_file_exist(pts_semantic_mask_path)
            pts_semantic_mask = np.fromfile(
WRH's avatar
WRH committed
713
                pts_semantic_mask_path, dtype=np.int64)
wuyuefeng's avatar
wuyuefeng committed
714
715

        results['pts_semantic_mask'] = pts_semantic_mask
jshilong's avatar
jshilong committed
716
717
718
        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in results:
            results['eval_ann_info']['pts_semantic_mask'] = pts_semantic_mask
wuyuefeng's avatar
wuyuefeng committed
719
720
        return results

jshilong's avatar
jshilong committed
721
722
    def transform(self, results: dict) -> dict:
        """Function to load multiple types annotations.
723
724
725
726
727
728

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D bounding box, label, mask and
jshilong's avatar
jshilong committed
729
            semantic segmentation annotations.
730
        """
jshilong's avatar
jshilong committed
731
        results = super().transform(results)
wuyuefeng's avatar
wuyuefeng committed
732
733
        if self.with_bbox_3d:
            results = self._load_bboxes_3d(results)
734
735
        if self.with_bbox_depth:
            results = self._load_bboxes_depth(results)
wuyuefeng's avatar
wuyuefeng committed
736
737
        if self.with_label_3d:
            results = self._load_labels_3d(results)
738
739
        if self.with_attr_label:
            results = self._load_attr_labels(results)
wuyuefeng's avatar
wuyuefeng committed
740
741
742
743
744
745
746
747
        if self.with_mask_3d:
            results = self._load_masks_3d(results)
        if self.with_seg_3d:
            results = self._load_semantic_seg_3d(results)

        return results

    def __repr__(self):
748
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
749
750
        indent_str = '    '
        repr_str = self.__class__.__name__ + '(\n'
liyinhao's avatar
liyinhao committed
751
752
        repr_str += f'{indent_str}with_bbox_3d={self.with_bbox_3d}, '
        repr_str += f'{indent_str}with_label_3d={self.with_label_3d}, '
753
        repr_str += f'{indent_str}with_attr_label={self.with_attr_label}, '
liyinhao's avatar
liyinhao committed
754
755
756
757
758
759
        repr_str += f'{indent_str}with_mask_3d={self.with_mask_3d}, '
        repr_str += f'{indent_str}with_seg_3d={self.with_seg_3d}, '
        repr_str += f'{indent_str}with_bbox={self.with_bbox}, '
        repr_str += f'{indent_str}with_label={self.with_label}, '
        repr_str += f'{indent_str}with_mask={self.with_mask}, '
        repr_str += f'{indent_str}with_seg={self.with_seg}, '
760
        repr_str += f'{indent_str}with_bbox_depth={self.with_bbox_depth}, '
wuyuefeng's avatar
wuyuefeng committed
761
762
        repr_str += f'{indent_str}poly2mask={self.poly2mask})'
        return repr_str