README.md 18.7 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
<div align="center">
zhangwenwei's avatar
zhangwenwei committed
2
  <img src="resources/mmdet3d-logo.png" width="600"/>
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
  <div>&nbsp;</div>
  <div align="center">
    <b><font size="5">OpenMMLab website</font></b>
    <sup>
      <a href="https://openmmlab.com">
        <i><font size="4">HOT</font></i>
      </a>
    </sup>
    &nbsp;&nbsp;&nbsp;&nbsp;
    <b><font size="5">OpenMMLab platform</font></b>
    <sup>
      <a href="https://platform.openmmlab.com">
        <i><font size="4">TRY IT OUT</font></i>
      </a>
    </sup>
  </div>
  <div>&nbsp;</div>
zhangwenwei's avatar
zhangwenwei committed
20

21
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/en/1.1/)
Wenwei Zhang's avatar
Wenwei Zhang committed
22
23
24
25
[![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d)
[![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/master/LICENSE)

26
27
28
29
30
31
</div>

</div>

<div align="center">
  <a href="https://openmmlab.medium.com/" style="text-decoration:none;">
32
    <img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a>
33
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
34
  <a href="https://discord.com/channels/1037617289144569886/1046608014234370059" style="text-decoration:none;">
35
36
37
38
39
40
41
    <img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
42
43
44
45
46
47
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://space.bilibili.com/1293512903" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
48
49
</div>

VVsssssk's avatar
VVsssssk committed
50
**News**:
Tai-Wang's avatar
Tai-Wang committed
51

52
**v1.1.0rc3** was released in 7/1/2023
VVsssssk's avatar
VVsssssk committed
53

VVsssssk's avatar
VVsssssk committed
54
The compatibilities of models are broken due to the unification and simplification of coordinate systems after v1.0.0rc0. For now, most models are benchmarked with similar performance, though few models are still being benchmarked. In the following release, we will update all the model checkpoints and benchmarks. See more details in the [Changelog](docs/en/notes/changelog.md) and [Changelog-v1.0.x](docs/en/notes/changelog_v1.0.x.md).
VVsssssk's avatar
VVsssssk committed
55

zhangwenwei's avatar
zhangwenwei committed
56
Documentation: https://mmdetection3d.readthedocs.io/
zhangwenwei's avatar
zhangwenwei committed
57
58
59

## Introduction

60
61
English | [简体中文](README_zh-CN.md)

VVsssssk's avatar
VVsssssk committed
62
The master branch works with **PyTorch 1.6+**.
zhangwenwei's avatar
zhangwenwei committed
63

64
MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is
zhangwenwei's avatar
zhangwenwei committed
65
a part of the OpenMMLab project developed by [MMLab](http://mmlab.ie.cuhk.edu.hk/).
zhangwenwei's avatar
zhangwenwei committed
66

zhangwenwei's avatar
zhangwenwei committed
67
![demo image](resources/mmdet3d_outdoor_demo.gif)
zhangwenwei's avatar
zhangwenwei committed
68
69
70

### Major features

zhangwenwei's avatar
zhangwenwei committed
71
- **Support multi-modality/single-modality detectors out of box**
zhangwenwei's avatar
zhangwenwei committed
72

73
  It directly supports multi-modality/single-modality detectors including MVXNet, VoteNet, PointPillars, etc.
zhangwenwei's avatar
zhangwenwei committed
74

zhangwenwei's avatar
zhangwenwei committed
75
- **Support indoor/outdoor 3D detection out of box**
zhangwenwei's avatar
zhangwenwei committed
76

Wenwei Zhang's avatar
Wenwei Zhang committed
77
  It directly supports popular indoor and outdoor 3D detection datasets, including ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, and KITTI.
78
  For nuScenes dataset, we also support [nuImages dataset](https://github.com/open-mmlab/mmdetection3d/tree/1.1/configs/nuimages).
zhangwenwei's avatar
zhangwenwei committed
79

zhangwenwei's avatar
zhangwenwei committed
80
- **Natural integration with 2D detection**
81

VVsssssk's avatar
VVsssssk committed
82
  All the about **300+ models, methods of 40+ papers**, and modules supported in [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/model_zoo.md) can be trained or used in this codebase.
zhangwenwei's avatar
zhangwenwei committed
83

zhangwenwei's avatar
zhangwenwei committed
84
- **High efficiency**
zhangwenwei's avatar
zhangwenwei committed
85

86
  It trains faster than other codebases. The main results are as below. Details can be found in [benchmark.md](./docs/en/notes/benchmarks.md). We compare the number of samples trained per second (the higher, the better). The models that are not supported by other codebases are marked by `✗`.
zhangwenwei's avatar
zhangwenwei committed
87

88
89
  |       Methods       | MMDetection3D | [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) | [votenet](https://github.com/facebookresearch/votenet) | [Det3D](https://github.com/poodarchu/Det3D) |
  | :-----------------: | :-----------: | :--------------------------------------------------: | :----------------------------------------------------: | :-----------------------------------------: |
90
91
92
93
94
  |       VoteNet       |      358      |                          ✗                           |                           77                           |                      ✗                      |
  |  PointPillars-car   |      141      |                          ✗                           |                           ✗                            |                     140                     |
  | PointPillars-3class |      107      |                          44                          |                           ✗                            |                      ✗                      |
  |       SECOND        |      40       |                          30                          |                           ✗                            |                      ✗                      |
  |       Part-A2       |      17       |                          14                          |                           ✗                            |                      ✗                      |
Wenwei Zhang's avatar
Wenwei Zhang committed
95
96

Like [MMDetection](https://github.com/open-mmlab/mmdetection) and [MMCV](https://github.com/open-mmlab/mmcv), MMDetection3D can also be used as a library to support different projects on top of it.
zhangwenwei's avatar
zhangwenwei committed
97
98
99
100
101

## License

This project is released under the [Apache 2.0 license](LICENSE).

zhangwenwei's avatar
zhangwenwei committed
102
## Changelog
zhangwenwei's avatar
zhangwenwei committed
103

104
**1.1.0rc3** was released in 7/1/2023.
Tai-Wang's avatar
Tai-Wang committed
105

VVsssssk's avatar
VVsssssk committed
106
Please refer to [changelog.md](docs/en/notes/changelog.md) for details and release history.
zhangwenwei's avatar
zhangwenwei committed
107
108
109

## Benchmark and model zoo

Wenhao Wu's avatar
Wenhao Wu committed
110
Results and models are available in the [model zoo](docs/en/model_zoo.md).
zhangwenwei's avatar
zhangwenwei committed
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
<div align="center">
  <b>Components</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Heads</b>
      </td>
      <td>
        <b>Features</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
      <ul>
        <li><a href="configs/pointnet2">PointNet (CVPR'2017)</a></li>
        <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
        <li><a href="configs/regnet">RegNet (CVPR'2020)</a></li>
        <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        <li>DLA (CVPR'2018)</li>
136
        <li>MinkResNet (CVPR'2019)</li>
137
        <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
138
        <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/free_anchor">FreeAnchor (NeurIPS'2019)</a></li>
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/dynamic_voxelization">Dynamic Voxelization (CoRL'2019)</a></li>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>

<div align="center">
  <b>Architectures</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="middle">
      <td>
        <b>3D Object Detection</b>
      </td>
      <td>
        <b>Monocular 3D Object Detection</b>
      </td>
      <td>
        <b>Multi-modal 3D Object Detection</b>
      </td>
      <td>
        <b>3D Semantic Segmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
        <li><b>Outdoor</b></li>
        <ul>
            <li><a href="configs/second">SECOND (Sensor'2018)</a></li>
            <li><a href="configs/pointpillars">PointPillars (CVPR'2019)</a></li>
            <li><a href="configs/ssn">SSN (ECCV'2020)</a></li>
            <li><a href="configs/3dssd">3DSSD (CVPR'2020)</a></li>
Tai-Wang's avatar
Tai-Wang committed
184
            <li><a href="configs/sassd">SA-SSD (CVPR'2020)</a></li>
ChaimZhu's avatar
ChaimZhu committed
185
            <li><a href="configs/point_rcnn">PointRCNN (CVPR'2019)</a></li>
186
187
            <li><a href="configs/parta2">Part-A2 (TPAMI'2020)</a></li>
            <li><a href="configs/centerpoint">CenterPoint (CVPR'2021)</a></li>
188
            <li><a href="configs/pv_rcnn">PV-RCNN (CVPR'2020)</a></li>
189
190
191
192
193
194
        </ul>
        <li><b>Indoor</b></li>
        <ul>
            <li><a href="configs/votenet">VoteNet (ICCV'2019)</a></li>
            <li><a href="configs/h3dnet">H3DNet (ECCV'2020)</a></li>
            <li><a href="configs/groupfree3d">Group-Free-3D (ICCV'2021)</a></li>
195
            <li><a href="configs/fcaf3d">FCAF3D (ECCV'2022)</a></li>
196
197
198
199
200
201
202
203
204
205
206
      </ul>
      </td>
      <td>
        <li><b>Outdoor</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
          <li><a href="configs/smoke">SMOKE (CVPRW'2020)</a></li>
          <li><a href="configs/fcos3d">FCOS3D (ICCVW'2021)</a></li>
          <li><a href="configs/pgd">PGD (CoRL'2021)</a></li>
          <li><a href="configs/monoflex">MonoFlex (CVPR'2021)</a></li>
        </ul>
207
208
209
210
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
        </ul>
211
212
213
214
215
216
217
218
219
220
221
222
      </td>
      <td>
        <li><b>Outdoor</b></li>
        <ul>
          <li><a href="configs/mvxnet">MVXNet (ICRA'2019)</a></li>
        </ul>
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/imvotenet">ImVoteNet (CVPR'2020)</a></li>
        </ul>
      </td>
      <td>
223
224
        <li><b>Outdoor</b></li>
        <ul>
225
          <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
226
227
          <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
        </ul>
228
229
230
231
232
233
234
235
236
237
238
239
240
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
          <li><a href="configs/paconv">PAConv (CVPR'2021)</a></li>
          <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        </ul>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>
241

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
|               | ResNet | PointNet++ | SECOND | DGCNN | RegNetX | DLA | MinkResNet | Cylinder3D | MinkUNet |
| :-----------: | :----: | :--------: | :----: | :---: | :-----: | :-: | :--------: | :--------: | :------: |
|    SECOND     |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| PointPillars  |   ✗    |     ✗      |   ✓    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|  FreeAnchor   |   ✗    |     ✗      |   ✗    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|    VoteNet    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    H3DNet     |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     3DSSD     |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    Part-A2    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    MVXNet     |   ✓    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  CenterPoint  |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|      SSN      |   ✗    |     ✗      |   ✗    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|   ImVoteNet   |   ✓    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    FCOS3D     |   ✓    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  PointNet++   |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| Group-Free-3D |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  ImVoxelNet   |   ✓    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    PAConv     |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     DGCNN     |   ✗    |     ✗      |   ✗    |   ✓   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     SMOKE     |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✓  |     ✗      |     ✗      |    ✗     |
|      PGD      |   ✓    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|   MonoFlex    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✓  |     ✗      |     ✗      |    ✗     |
|    SA-SSD     |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    FCAF3D     |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✓      |     ✗      |    ✗     |
|    PV-RCNN    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  Cylinder3D   |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✓      |    ✗     |
|   MinkUNet    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✓     |
zhangwenwei's avatar
zhangwenwei committed
269

270
**Note:** All the about **300+ models, methods of 40+ papers** in 2D detection supported by [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/model_zoo.md) can be trained or used in this codebase.
zhangwenwei's avatar
zhangwenwei committed
271
272
273

## Installation

Xiang Xu's avatar
Xiang Xu committed
274
Please refer to [get_started.md](docs/en/get_started.md) for installation.
zhangwenwei's avatar
zhangwenwei committed
275
276
277

## Get Started

Xiang Xu's avatar
Xiang Xu committed
278
Please see [get_started.md](docs/en/get_started.md) for the basic usage of MMDetection3D. We provide guidance for quick run [with existing dataset](docs/en/user_guides/train_test.md) and [with new dataset](docs/en/user_guides/2_new_data_model.md) for beginners. There are also tutorials for [learning configuration systems](docs/en/user_guides/config.md), [customizing dataset](docs/en/advanced_guides/customize_dataset.md), [designing data pipeline](docs/en/user_guides/data_pipeline.md), [customizing models](docs/en/advanced_guides/customize_models.md), [customizing runtime settings](docs/en/advanced_guides/customize_runtime.md) and [Waymo dataset](docs/en/advanced_guides/datasets/waymo_det.md).
VVsssssk's avatar
VVsssssk committed
279

VVsssssk's avatar
VVsssssk committed
280
Please refer to [FAQ](docs/en/notes/faq.md) for frequently asked questions. When updating the version of MMDetection3D, please also check the [compatibility doc](docs/en/notes/compatibility.md) to be aware of the BC-breaking updates introduced in each version.
281

282
283
284
285
286
287
## Citation

If you find this project useful in your research, please consider cite:

```latex
@misc{mmdet3d2020,
Ziyi Wu's avatar
Ziyi Wu committed
288
    title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
289
290
291
292
293
294
    author={MMDetection3D Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
    year={2020}
}
```

zhangwenwei's avatar
zhangwenwei committed
295
296
## Contributing

zhangwenwei's avatar
zhangwenwei committed
297
We appreciate all contributions to improve MMDetection3D. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
zhangwenwei's avatar
zhangwenwei committed
298
299
300

## Acknowledgement

zhangwenwei's avatar
zhangwenwei committed
301
MMDetection3D is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors as well as users who give valuable feedbacks.
zhangwenwei's avatar
zhangwenwei committed
302
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new 3D detectors.
303
304
305

## Projects in OpenMMLab

VVsssssk's avatar
VVsssssk committed
306
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models.
307
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
xiangxu-0103's avatar
xiangxu-0103 committed
308
- [MMEval](https://github.com/open-mmlab/mmeval): A unified evaluation library for multiple machine learning libraries.
309
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
310
311
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
312
313
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
314
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark.
315
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
316
317
318
319
320
321
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
322
323
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
324
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
325
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
326
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
327
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.