"vscode:/vscode.git/clone" did not exist on "f4b78d137cc2e07ebbc3b3b7de1e211da12bba64"
transforms_3d.py 51.5 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
import numpy as np
2
import warnings
3
from mmcv import is_tuple_of
4
from mmcv.utils import build_from_cfg
zhangwenwei's avatar
zhangwenwei committed
5

6
from mmdet3d.core import VoxelGenerator
7
8
from mmdet3d.core.bbox import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                               LiDARInstance3DBoxes, box_np_ops)
9
from mmdet.datasets.builder import PIPELINES
zhangwenwei's avatar
zhangwenwei committed
10
from mmdet.datasets.pipelines import RandomFlip
11
from ..builder import OBJECTSAMPLERS
zhangwenwei's avatar
zhangwenwei committed
12
13
14
from .data_augment_utils import noise_per_object_v3_


15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
@PIPELINES.register_module()
class RandomDropPointsColor(object):
    r"""Randomly set the color of points to all zeros.

    Once this transform is executed, all the points' color will be dropped.
    Refer to `PAConv <https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/
    util/transform.py#L223>`_ for more details.

    Args:
        drop_ratio (float): The probability of dropping point colors.
            Defaults to 0.2.
    """

    def __init__(self, drop_ratio=0.2):
        assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \
            f'invalid drop_ratio value {drop_ratio}'
        self.drop_ratio = drop_ratio

    def __call__(self, input_dict):
        """Call function to drop point colors.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after color dropping, \
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims, \
            'Expect points have color attribute'

        if np.random.rand() < self.drop_ratio:
            points.color = points.color * 0.0
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(drop_ratio={self.drop_ratio})'
        return repr_str


59
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
60
61
62
63
64
65
66
67
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

    Args:
zhangwenwei's avatar
zhangwenwei committed
68
69
70
        sync_2d (bool, optional): Whether to apply flip according to the 2D
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
71
            to that of 2D images. Defaults to True.
wuyuefeng's avatar
wuyuefeng committed
72
        flip_ratio_bev_horizontal (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
73
            in horizontal direction. Defaults to 0.0.
wuyuefeng's avatar
wuyuefeng committed
74
        flip_ratio_bev_vertical (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
75
            in vertical direction. Defaults to 0.0.
zhangwenwei's avatar
zhangwenwei committed
76
77
    """

wuyuefeng's avatar
wuyuefeng committed
78
79
80
81
82
83
84
    def __init__(self,
                 sync_2d=True,
                 flip_ratio_bev_horizontal=0.0,
                 flip_ratio_bev_vertical=0.0,
                 **kwargs):
        super(RandomFlip3D, self).__init__(
            flip_ratio=flip_ratio_bev_horizontal, **kwargs)
zhangwenwei's avatar
zhangwenwei committed
85
        self.sync_2d = sync_2d
wuyuefeng's avatar
wuyuefeng committed
86
87
88
89
90
91
92
93
94
95
96
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

    def random_flip_data_3d(self, input_dict, direction='horizontal'):
97
98
99
100
101
102
103
104
105
106
        """Flip 3D data randomly.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            direction (str): Flip direction. Default: horizontal.

        Returns:
            dict: Flipped results, 'points', 'bbox3d_fields' keys are \
                updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
107
        assert direction in ['horizontal', 'vertical']
108
109
110
111
112
        if len(input_dict['bbox3d_fields']) == 0:  # test mode
            input_dict['bbox3d_fields'].append('empty_box3d')
            input_dict['empty_box3d'] = input_dict['box_type_3d'](
                np.array([], dtype=np.float32))
        assert len(input_dict['bbox3d_fields']) == 1
zhangwenwei's avatar
zhangwenwei committed
113
        for key in input_dict['bbox3d_fields']:
114
115
116
117
118
119
120
121
            if 'points' in input_dict:
                input_dict['points'] = input_dict[key].flip(
                    direction, points=input_dict['points'])
            else:
                input_dict[key].flip(direction)
        if 'centers2d' in input_dict:
            assert self.sync_2d is True and direction == 'horizontal', \
                'Only support sync_2d=True and horizontal flip with images'
122
            w = input_dict['ori_shape'][1]
123
124
            input_dict['centers2d'][..., 0] = \
                w - input_dict['centers2d'][..., 0]
125
126
127
128
129
130
131
            # need to modify the horizontal position of camera center
            # along u-axis in the image (flip like centers2d)
            # ['cam_intrinsic'][0][2] = c_u
            # see more details and examples at
            # https://github.com/open-mmlab/mmdetection3d/pull/744
            input_dict['cam_intrinsic'][0][2] = \
                w - input_dict['cam_intrinsic'][0][2]
zhangwenwei's avatar
zhangwenwei committed
132
133

    def __call__(self, input_dict):
134
135
136
137
138
139
140
141
142
143
144
        """Call function to flip points, values in the ``bbox3d_fields`` and \
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Flipped results, 'flip', 'flip_direction', \
                'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added \
                into result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
145
        # filp 2D image and its annotations
zhangwenwei's avatar
zhangwenwei committed
146
        super(RandomFlip3D, self).__call__(input_dict)
zhangwenwei's avatar
zhangwenwei committed
147

zhangwenwei's avatar
zhangwenwei committed
148
        if self.sync_2d:
wuyuefeng's avatar
wuyuefeng committed
149
150
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
151
        else:
wuyuefeng's avatar
wuyuefeng committed
152
153
154
155
156
157
158
159
160
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
                ) < self.flip_ratio else False
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

161
162
163
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
164
165
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
166
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
167
168
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
169
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
170
171
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
172
    def __repr__(self):
173
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
174
        repr_str = self.__class__.__name__
175
        repr_str += f'(sync_2d={self.sync_2d},'
176
        repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
wuyuefeng's avatar
wuyuefeng committed
177
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
178

zhangwenwei's avatar
zhangwenwei committed
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
@PIPELINES.register_module()
class RandomJitterPoints(object):
    """Randomly jitter point coordinates.

    Different from the global translation in ``GlobalRotScaleTrans``, here we \
        apply different noises to each point in a scene.

    Args:
        jitter_std (list[float]): The standard deviation of jittering noise.
            This applies random noise to all points in a 3D scene, which is \
            sampled from a gaussian distribution whose standard deviation is \
            set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01]
        clip_range (list[float] | None): Clip the randomly generated jitter \
            noise into this range. If None is given, don't perform clipping.
            Defaults to [-0.05, 0.05]

    Note:
        This transform should only be used in point cloud segmentation tasks \
            because we don't transform ground-truth bboxes accordingly.
        For similar transform in detection task, please refer to `ObjectNoise`.
    """

    def __init__(self,
                 jitter_std=[0.01, 0.01, 0.01],
                 clip_range=[-0.05, 0.05]):
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(jitter_std, seq_types):
            assert isinstance(jitter_std, (int, float)), \
                f'unsupported jitter_std type {type(jitter_std)}'
            jitter_std = [jitter_std, jitter_std, jitter_std]
        self.jitter_std = jitter_std

        if clip_range is not None:
            if not isinstance(clip_range, seq_types):
                assert isinstance(clip_range, (int, float)), \
                    f'unsupported clip_range type {type(clip_range)}'
                clip_range = [-clip_range, clip_range]
        self.clip_range = clip_range

    def __call__(self, input_dict):
        """Call function to jitter all the points in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after adding noise to each point, \
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        jitter_std = np.array(self.jitter_std, dtype=np.float32)
        jitter_noise = \
            np.random.randn(points.shape[0], 3) * jitter_std[None, :]
        if self.clip_range is not None:
            jitter_noise = np.clip(jitter_noise, self.clip_range[0],
                                   self.clip_range[1])

        points.translate(jitter_noise)
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(jitter_std={self.jitter_std},'
        repr_str += f' clip_range={self.clip_range})'
        return repr_str


248
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
249
class ObjectSample(object):
zhangwenwei's avatar
zhangwenwei committed
250
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
251
252
253
254
255

    Args:
        db_sampler (dict): Config dict of the database sampler.
        sample_2d (bool): Whether to also paste 2D image patch to the images
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
256
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
257
    """
zhangwenwei's avatar
zhangwenwei committed
258
259
260
261
262
263
264
265
266
267

    def __init__(self, db_sampler, sample_2d=False):
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
        self.db_sampler = build_from_cfg(db_sampler, OBJECTSAMPLERS)

    @staticmethod
    def remove_points_in_boxes(points, boxes):
268
269
270
        """Remove the points in the sampled bounding boxes.

        Args:
271
            points (:obj:`BasePoints`): Input point cloud array.
272
273
274
275
276
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
277
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
278
279
280
281
        points = points[np.logical_not(masks.any(-1))]
        return points

    def __call__(self, input_dict):
282
283
284
285
286
287
288
289
290
291
        """Call function to sample ground truth objects to the data.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after object sampling augmentation, \
                'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
292
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
293
294
        gt_labels_3d = input_dict['gt_labels_3d']

zhangwenwei's avatar
zhangwenwei committed
295
296
297
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
298
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
299
300
301
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
302
303
304
305
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
306
307
        else:
            sampled_dict = self.db_sampler.sample_all(
308
                gt_bboxes_3d.tensor.numpy(), gt_labels_3d, img=None)
zhangwenwei's avatar
zhangwenwei committed
309
310
311
312

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
313
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
314

zhangwenwei's avatar
zhangwenwei committed
315
316
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
317
318
319
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
320

zhangwenwei's avatar
zhangwenwei committed
321
322
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
323
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
324
325
326
327
328

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
329

zhangwenwei's avatar
zhangwenwei committed
330
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
331
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
332
333

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
334
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.long)
zhangwenwei's avatar
zhangwenwei committed
335
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
336

zhangwenwei's avatar
zhangwenwei committed
337
338
339
        return input_dict

    def __repr__(self):
340
        """str: Return a string that describes the module."""
341
342
343
344
345
346
347
348
349
        repr_str = self.__class__.__name__
        repr_str += f' sample_2d={self.sample_2d},'
        repr_str += f' data_root={self.sampler_cfg.data_root},'
        repr_str += f' info_path={self.sampler_cfg.info_path},'
        repr_str += f' rate={self.sampler_cfg.rate},'
        repr_str += f' prepare={self.sampler_cfg.prepare},'
        repr_str += f' classes={self.sampler_cfg.classes},'
        repr_str += f' sample_groups={self.sampler_cfg.sample_groups}'
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
350
351


352
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
353
class ObjectNoise(object):
zhangwenwei's avatar
zhangwenwei committed
354
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
355
356

    Args:
357
        translation_std (list[float], optional): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
358
359
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
360
        global_rot_range (list[float], optional): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
361
            Defaults to [0.0, 0.0].
362
        rot_range (list[float], optional): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
363
364
365
366
            Defaults to [-0.15707963267, 0.15707963267].
        num_try (int, optional): Number of times to try if the noise applied is
            invalid. Defaults to 100.
    """
zhangwenwei's avatar
zhangwenwei committed
367
368

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
369
                 translation_std=[0.25, 0.25, 0.25],
zhangwenwei's avatar
zhangwenwei committed
370
                 global_rot_range=[0.0, 0.0],
zhangwenwei's avatar
zhangwenwei committed
371
                 rot_range=[-0.15707963267, 0.15707963267],
zhangwenwei's avatar
zhangwenwei committed
372
                 num_try=100):
zhangwenwei's avatar
zhangwenwei committed
373
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
374
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
375
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
376
377
378
        self.num_try = num_try

    def __call__(self, input_dict):
379
380
381
382
383
384
385
386
387
        """Call function to apply noise to each ground truth in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after adding noise to each object, \
                'points', 'gt_bboxes_3d' keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
388
389
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
390

zhangwenwei's avatar
zhangwenwei committed
391
        # TODO: check this inplace function
392
        numpy_box = gt_bboxes_3d.tensor.numpy()
393
394
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
395
        noise_per_object_v3_(
396
            numpy_box,
397
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
398
399
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
400
401
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
402
403

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
404
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
405
406
407
        return input_dict

    def __repr__(self):
408
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
409
        repr_str = self.__class__.__name__
410
411
412
413
        repr_str += f'(num_try={self.num_try},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' global_rot_range={self.global_rot_range},'
        repr_str += f' rot_range={self.rot_range})'
zhangwenwei's avatar
zhangwenwei committed
414
415
416
        return repr_str


417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
@PIPELINES.register_module()
class GlobalAlignment(object):
    """Apply global alignment to 3D scene points by rotation and translation.

    Args:
        rotation_axis (int): Rotation axis for points and bboxes rotation.

    Note:
        We do not record the applied rotation and translation as in \
            GlobalRotScaleTrans. Because usually, we do not need to reverse \
            the alignment step.
        For example, ScanNet 3D detection task uses aligned ground-truth \
            bounding boxes for evaluation.
    """

    def __init__(self, rotation_axis):
        self.rotation_axis = rotation_axis

    def _trans_points(self, input_dict, trans_factor):
        """Private function to translate points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            trans_factor (np.ndarray): Translation vector to be applied.

        Returns:
            dict: Results after translation, 'points' is updated in the dict.
        """
        input_dict['points'].translate(trans_factor)

    def _rot_points(self, input_dict, rot_mat):
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            rot_mat (np.ndarray): Rotation matrix to be applied.

        Returns:
            dict: Results after rotation, 'points' is updated in the dict.
        """
        # input should be rot_mat_T so I transpose it here
        input_dict['points'].rotate(rot_mat.T)

    def _check_rot_mat(self, rot_mat):
        """Check if rotation matrix is valid for self.rotation_axis.

        Args:
            rot_mat (np.ndarray): Rotation matrix to be applied.
        """
        is_valid = np.allclose(np.linalg.det(rot_mat), 1.0)
        valid_array = np.zeros(3)
        valid_array[self.rotation_axis] = 1.0
        is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all()
        is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all()
        assert is_valid, f'invalid rotation matrix {rot_mat}'

    def __call__(self, input_dict):
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after global alignment, 'points' and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
        assert 'axis_align_matrix' in input_dict['ann_info'].keys(), \
            'axis_align_matrix is not provided in GlobalAlignment'

        axis_align_matrix = input_dict['ann_info']['axis_align_matrix']
        assert axis_align_matrix.shape == (4, 4), \
            f'invalid shape {axis_align_matrix.shape} for axis_align_matrix'
        rot_mat = axis_align_matrix[:3, :3]
        trans_vec = axis_align_matrix[:3, -1]

        self._check_rot_mat(rot_mat)
        self._rot_points(input_dict, rot_mat)
        self._trans_points(input_dict, trans_vec)

        return input_dict

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(rotation_axis={self.rotation_axis})'
        return repr_str


504
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
505
class GlobalRotScaleTrans(object):
zhangwenwei's avatar
zhangwenwei committed
506
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
507
508
509

    Args:
        rot_range (list[float]): Range of rotation angle.
liyinhao's avatar
liyinhao committed
510
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
zhangwenwei's avatar
zhangwenwei committed
511
        scale_ratio_range (list[float]): Range of scale ratio.
liyinhao's avatar
liyinhao committed
512
            Defaults to [0.95, 1.05].
513
514
        translation_std (list[float]): The standard deviation of translation
            noise. This applies random translation to a scene by a noise, which
zhangwenwei's avatar
zhangwenwei committed
515
            is sampled from a gaussian distribution whose standard deviation
liyinhao's avatar
liyinhao committed
516
517
            is set by ``translation_std``. Defaults to [0, 0, 0]
        shift_height (bool): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
518
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
519
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
520
    """
zhangwenwei's avatar
zhangwenwei committed
521
522

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
523
524
                 rot_range=[-0.78539816, 0.78539816],
                 scale_ratio_range=[0.95, 1.05],
wuyuefeng's avatar
wuyuefeng committed
525
526
                 translation_std=[0, 0, 0],
                 shift_height=False):
527
528
529
530
531
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(rot_range, seq_types):
            assert isinstance(rot_range, (int, float)), \
                f'unsupported rot_range type {type(rot_range)}'
            rot_range = [-rot_range, rot_range]
zhangwenwei's avatar
zhangwenwei committed
532
        self.rot_range = rot_range
533
534
535

        assert isinstance(scale_ratio_range, seq_types), \
            f'unsupported scale_ratio_range type {type(scale_ratio_range)}'
zhangwenwei's avatar
zhangwenwei committed
536
        self.scale_ratio_range = scale_ratio_range
537
538
539
540
541
542
543

        if not isinstance(translation_std, seq_types):
            assert isinstance(translation_std, (int, float)), \
                f'unsupported translation_std type {type(translation_std)}'
            translation_std = [
                translation_std, translation_std, translation_std
            ]
544
545
        assert all([std >= 0 for std in translation_std]), \
            'translation_std should be positive'
zhangwenwei's avatar
zhangwenwei committed
546
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
547
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
548
549

    def _trans_bbox_points(self, input_dict):
550
551
552
553
554
555
556
557
558
559
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after translation, 'points', 'pcd_trans' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
560
        translation_std = np.array(self.translation_std, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
561
562
        trans_factor = np.random.normal(scale=translation_std, size=3).T

563
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
564
565
566
567
568
        input_dict['pcd_trans'] = trans_factor
        for key in input_dict['bbox3d_fields']:
            input_dict[key].translate(trans_factor)

    def _rot_bbox_points(self, input_dict):
569
570
571
572
573
574
575
576
577
578
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after rotation, 'points', 'pcd_rotation' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
579
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
580
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
581

582
583
584
585
586
587
588
        # if no bbox in input_dict, only rotate points
        if len(input_dict['bbox3d_fields']) == 0:
            rot_mat_T = input_dict['points'].rotate(noise_rotation)
            input_dict['pcd_rotation'] = rot_mat_T
            return

        # rotate points with bboxes
zhangwenwei's avatar
zhangwenwei committed
589
        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
590
591
592
593
594
            if len(input_dict[key].tensor) != 0:
                points, rot_mat_T = input_dict[key].rotate(
                    noise_rotation, input_dict['points'])
                input_dict['points'] = points
                input_dict['pcd_rotation'] = rot_mat_T
595

zhangwenwei's avatar
zhangwenwei committed
596
    def _scale_bbox_points(self, input_dict):
597
598
599
600
601
602
603
604
605
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points'and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
606
        scale = input_dict['pcd_scale_factor']
607
608
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
609
        if self.shift_height:
610
611
            assert 'height' in points.attribute_dims.keys(), \
                'setting shift_height=True but points have no height attribute'
612
613
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
614

zhangwenwei's avatar
zhangwenwei committed
615
616
        for key in input_dict['bbox3d_fields']:
            input_dict[key].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
617

zhangwenwei's avatar
zhangwenwei committed
618
    def _random_scale(self, input_dict):
619
620
621
622
623
624
625
626
627
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'pcd_scale_factor' are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
628
629
630
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
631
632

    def __call__(self, input_dict):
633
634
635
636
637
638
639
640
641
642
643
        """Private function to rotate, scale and translate bounding boxes and \
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
                'pcd_scale_factor', 'pcd_trans' and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
644
645
646
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
647
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
648

zhangwenwei's avatar
zhangwenwei committed
649
650
651
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
652

zhangwenwei's avatar
zhangwenwei committed
653
        self._trans_bbox_points(input_dict)
654
655

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
656
657
658
        return input_dict

    def __repr__(self):
659
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
660
        repr_str = self.__class__.__name__
661
662
663
664
        repr_str += f'(rot_range={self.rot_range},'
        repr_str += f' scale_ratio_range={self.scale_ratio_range},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' shift_height={self.shift_height})'
zhangwenwei's avatar
zhangwenwei committed
665
666
667
        return repr_str


668
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
669
class PointShuffle(object):
670
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
671
672

    def __call__(self, input_dict):
673
674
675
676
677
678
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
679
680
            dict: Results after filtering, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
681
        """
682
683
684
685
686
687
688
689
690
691
692
693
        idx = input_dict['points'].shuffle()
        idx = idx.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[idx]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[idx]

zhangwenwei's avatar
zhangwenwei committed
694
695
696
697
698
699
        return input_dict

    def __repr__(self):
        return self.__class__.__name__


700
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
701
class ObjectRangeFilter(object):
702
703
704
705
706
    """Filter objects by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
707
708
709
710
711

    def __init__(self, point_cloud_range):
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)

    def __call__(self, input_dict):
712
713
714
715
716
717
718
719
720
        """Call function to filter objects by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
721
722
723
724
725
726
727
        # Check points instance type and initialise bev_range
        if isinstance(input_dict['gt_bboxes_3d'],
                      (LiDARInstance3DBoxes, DepthInstance3DBoxes)):
            bev_range = self.pcd_range[[0, 1, 3, 4]]
        elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes):
            bev_range = self.pcd_range[[0, 2, 3, 5]]

zhangwenwei's avatar
zhangwenwei committed
728
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
729
        gt_labels_3d = input_dict['gt_labels_3d']
730
        mask = gt_bboxes_3d.in_range_bev(bev_range)
zhangwenwei's avatar
zhangwenwei committed
731
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
732
733
734
735
736
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
737
738

        # limit rad to [-pi, pi]
739
740
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
741
742
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
743
744
745
        return input_dict

    def __repr__(self):
746
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
747
        repr_str = self.__class__.__name__
748
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
749
750
751
        return repr_str


752
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
753
class PointsRangeFilter(object):
754
755
756
757
758
    """Filter points by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
759
760

    def __init__(self, point_cloud_range):
761
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
762
763

    def __call__(self, input_dict):
764
765
766
767
768
769
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
770
771
            dict: Results after filtering, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
772
        """
zhangwenwei's avatar
zhangwenwei committed
773
        points = input_dict['points']
774
775
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
776
        input_dict['points'] = clean_points
777
778
779
780
781
782
783
784
785
786
787
        points_mask = points_mask.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[points_mask]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask]

zhangwenwei's avatar
zhangwenwei committed
788
789
790
        return input_dict

    def __repr__(self):
791
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
792
        repr_str = self.__class__.__name__
793
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
794
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
795
796
797
798


@PIPELINES.register_module()
class ObjectNameFilter(object):
zhangwenwei's avatar
zhangwenwei committed
799
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
800
801

    Args:
liyinhao's avatar
liyinhao committed
802
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
803
804
805
806
807
808
809
    """

    def __init__(self, classes):
        self.classes = classes
        self.labels = list(range(len(self.classes)))

    def __call__(self, input_dict):
810
811
812
813
814
815
816
817
818
        """Call function to filter objects by their names.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
819
820
821
822
823
824
825
826
827
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

    def __repr__(self):
828
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
829
830
831
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857


@PIPELINES.register_module()
class IndoorPointSample(object):
    """Indoor point sample.

    Sampling data to a certain number.

    Args:
        name (str): Name of the dataset.
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, num_points):
        self.num_points = num_points

    def points_random_sampling(self,
                               points,
                               num_samples,
                               replace=None,
                               return_choices=False):
        """Points random sampling.

        Sample points to a certain number.

        Args:
858
            points (np.ndarray | :obj:`BasePoints`): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
859
860
            num_samples (int): Number of samples to be sampled.
            replace (bool): Whether the sample is with or without replacement.
liyinhao's avatar
liyinhao committed
861
862
            Defaults to None.
            return_choices (bool): Whether return choice. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
863
864

        Returns:
865
866
            tuple[np.ndarray] | np.ndarray:

867
                - points (np.ndarray | :obj:`BasePoints`): 3D Points.
868
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
869
870
871
872
873
874
875
876
877
878
879
        """
        if replace is None:
            replace = (points.shape[0] < num_samples)
        choices = np.random.choice(
            points.shape[0], num_samples, replace=replace)
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

    def __call__(self, results):
880
881
882
883
884
885
886
887
888
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
889
890
891
        points = results['points']
        points, choices = self.points_random_sampling(
            points, self.num_points, return_choices=True)
892
        results['points'] = points
893

wuyuefeng's avatar
wuyuefeng committed
894
895
896
        pts_instance_mask = results.get('pts_instance_mask', None)
        pts_semantic_mask = results.get('pts_semantic_mask', None)

897
        if pts_instance_mask is not None:
wuyuefeng's avatar
wuyuefeng committed
898
899
            pts_instance_mask = pts_instance_mask[choices]
            results['pts_instance_mask'] = pts_instance_mask
900
901
902

        if pts_semantic_mask is not None:
            pts_semantic_mask = pts_semantic_mask[choices]
wuyuefeng's avatar
wuyuefeng committed
903
904
905
906
907
            results['pts_semantic_mask'] = pts_semantic_mask

        return results

    def __repr__(self):
908
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
909
        repr_str = self.__class__.__name__
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
        repr_str += f'(num_points={self.num_points})'
        return repr_str


@PIPELINES.register_module()
class IndoorPatchPointSample(object):
    r"""Indoor point sample within a patch. Modified from `PointNet++ <https://
    github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py>`_.

    Sampling data to a certain number for semantic segmentation.

    Args:
        num_points (int): Number of points to be sampled.
        block_size (float, optional): Size of a block to sample points from.
            Defaults to 1.5.
        sample_rate (float, optional): Stride used in sliding patch generation.
926
927
928
            This parameter is unused in `IndoorPatchPointSample` and thus has
            been deprecated. We plan to remove it in the future.
            Defaults to None.
929
930
931
932
933
934
935
        ignore_index (int, optional): Label index that won't be used for the
            segmentation task. This is set in PointSegClassMapping as neg_cls.
            Defaults to None.
        use_normalized_coord (bool, optional): Whether to use normalized xyz as
            additional features. Defaults to False.
        num_try (int, optional): Number of times to try if the patch selected
            is invalid. Defaults to 10.
936
937
938
939
940
941
942
943
944
945
946
947
        enlarge_size (float | None, optional): Enlarge the sampled patch to
            [-block_size / 2 - enlarge_size, block_size / 2 + enlarge_size] as
            an augmentation. If None, set it as 0.01. Defaults to 0.2.
        min_unique_num (int | None, optional): Minimum number of unique points
            the sampled patch should contain. If None, use PointNet++'s method
            to judge uniqueness. Defaults to None.

    Note:
        This transform should only be used in the training process of point
            cloud segmentation tasks. For the sliding patch generation and
            inference process in testing, please refer to the `slide_inference`
            function of `EncoderDecoder3D` class.
948
949
950
951
952
    """

    def __init__(self,
                 num_points,
                 block_size=1.5,
953
                 sample_rate=None,
954
955
                 ignore_index=None,
                 use_normalized_coord=False,
956
957
958
                 num_try=10,
                 enlarge_size=0.2,
                 min_unique_num=None):
959
960
961
962
963
        self.num_points = num_points
        self.block_size = block_size
        self.ignore_index = ignore_index
        self.use_normalized_coord = use_normalized_coord
        self.num_try = num_try
964
965
966
967
968
969
970
        self.enlarge_size = enlarge_size if enlarge_size is not None else 0.01
        self.min_unique_num = min_unique_num

        if sample_rate is not None:
            warnings.warn(
                "'sample_rate' has been deprecated and will be removed in "
                'the future. Please remove them from your code.')
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

    def _input_generation(self, coords, patch_center, coord_max, attributes,
                          attribute_dims, point_type):
        """Generating model input.

        Generate input by subtracting patch center and adding additional \
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (np.ndarray): Sampled 3D Points.
            patch_center (np.ndarray): Center coordinate of the selected patch.
            coord_max (np.ndarray): Max coordinate of all 3D Points.
            attributes (np.ndarray): features of input points.
            attribute_dims (dict): Dictionary to indicate the meaning of extra
                dimension.
986
            point_type (type): class of input points inherited from BasePoints.
987
988

        Returns:
989
            :obj:`BasePoints`: The generated input data.
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.copy()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        if self.use_normalized_coord:
            normalized_coord = coords / coord_max
            attributes = np.concatenate([attributes, normalized_coord], axis=1)
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(normalized_coord=[
                    attributes.shape[1], attributes.shape[1] +
                    1, attributes.shape[1] + 2
                ]))

        points = np.concatenate([centered_coords, attributes], axis=1)
        points = point_type(
            points, points_dim=points.shape[1], attribute_dims=attribute_dims)

        return points

    def _patch_points_sampling(self, points, sem_mask, replace=None):
        """Patch points sampling.

        First sample a valid patch.
        Then sample points within that patch to a certain number.

        Args:
1020
            points (:obj:`BasePoints`): 3D Points.
1021
1022
1023
1024
1025
            sem_mask (np.ndarray): semantic segmentation mask for input points.
            replace (bool): Whether the sample is with or without replacement.
                Defaults to None.

        Returns:
1026
            tuple[:obj:`BasePoints`, np.ndarray] | :obj:`BasePoints`:
1027

1028
                - points (:obj:`BasePoints`): 3D Points.
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
                - choices (np.ndarray): The generated random samples.
        """
        coords = points.coord.numpy()
        attributes = points.tensor[:, 3:].numpy()
        attribute_dims = points.attribute_dims
        point_type = type(points)

        coord_max = np.amax(coords, axis=0)
        coord_min = np.amin(coords, axis=0)

1039
        for _ in range(self.num_try):
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
            # random sample a point as patch center
            cur_center = coords[np.random.choice(coords.shape[0])]

            # boundary of a patch
            cur_max = cur_center + np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_min = cur_center - np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_max[2] = coord_max[2]
            cur_min[2] = coord_min[2]
            cur_choice = np.sum(
1051
1052
                (coords >= (cur_min - self.enlarge_size)) *
                (coords <= (cur_max + self.enlarge_size)),
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
                axis=1) == 3

            if not cur_choice.any():  # no points in this patch
                continue

            cur_coords = coords[cur_choice, :]
            cur_sem_mask = sem_mask[cur_choice]

            # two criterion for patch sampling, adopted from PointNet++
            # points within selected patch shoule be scattered separately
            mask = np.sum(
                (cur_coords >= (cur_min - 0.01)) * (cur_coords <=
                                                    (cur_max + 0.01)),
                axis=1) == 3
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

            if self.min_unique_num is None:
                # use PointNet++'s method as default
                # [31, 31, 62] are just some big values used to transform
                # coords from 3d array to 1d and then check their uniqueness
                # this is used in all the ScanNet code following PointNet++
                vidx = np.ceil(
                    (cur_coords[mask, :] - cur_min) / (cur_max - cur_min) *
                    np.array([31.0, 31.0, 62.0]))
                vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 +
                                 vidx[:, 2])
                flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02
            else:
                flag1 = mask.sum() >= self.min_unique_num
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138

            # selected patch should contain enough annotated points
            if self.ignore_index is None:
                flag2 = True
            else:
                flag2 = np.sum(cur_sem_mask != self.ignore_index) / \
                               len(cur_sem_mask) >= 0.7

            if flag1 and flag2:
                break

        # random sample idx
        if replace is None:
            replace = (cur_sem_mask.shape[0] < self.num_points)
        choices = np.random.choice(
            np.where(cur_choice)[0], self.num_points, replace=replace)

        # construct model input
        points = self._input_generation(coords[choices], cur_center, coord_max,
                                        attributes[choices], attribute_dims,
                                        point_type)

        return points, choices

    def __call__(self, results):
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']

        assert 'pts_semantic_mask' in results.keys(), \
            'semantic mask should be provided in training and evaluation'
        pts_semantic_mask = results['pts_semantic_mask']

        points, choices = self._patch_points_sampling(points,
                                                      pts_semantic_mask)

        results['points'] = points
        results['pts_semantic_mask'] = pts_semantic_mask[choices]
        pts_instance_mask = results.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            results['pts_instance_mask'] = pts_instance_mask[choices]

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_points={self.num_points},'
        repr_str += f' block_size={self.block_size},'
        repr_str += f' ignore_index={self.ignore_index},'
        repr_str += f' use_normalized_coord={self.use_normalized_coord},'
1139
1140
1141
        repr_str += f' num_try={self.num_try},'
        repr_str += f' enlarge_size={self.enlarge_size},'
        repr_str += f' min_unique_num={self.min_unique_num})'
wuyuefeng's avatar
wuyuefeng committed
1142
        return repr_str
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170


@PIPELINES.register_module()
class BackgroundPointsFilter(object):
    """Filter background points near the bounding box.

    Args:
        bbox_enlarge_range (tuple[float], float): Bbox enlarge range.
    """

    def __init__(self, bbox_enlarge_range):
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

    def __call__(self, input_dict):
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1171
1172
            dict: Results after filtering, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
1173
1174
1175
1176
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

xiliu8006's avatar
xiliu8006 committed
1177
1178
1179
1180
        # avoid groundtruth being modified
        gt_bboxes_3d_np = gt_bboxes_3d.tensor.clone().numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.clone().numpy()

1181
1182
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
xiliu8006's avatar
xiliu8006 committed
1183
        points_numpy = points.tensor.clone().numpy()
1184
1185
        foreground_masks = box_np_ops.points_in_rbbox(points_numpy,
                                                      gt_bboxes_3d_np)
1186
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
1187
            points_numpy, enlarged_gt_bboxes_3d)
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
1206
        repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})'
1207
        return repr_str
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279


@PIPELINES.register_module()
class VoxelBasedPointSampler(object):
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
        prev_sweep_cfg (dict): Config for sampling previous points.
        time_dim (int): Index that indicate the time dimention
            for input points.
    """

    def __init__(self, cur_sweep_cfg, prev_sweep_cfg=None, time_dim=3):
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

    def _sample_points(self, points, sampler, point_dim):
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
            point_dim (int): The dimention of each points

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

    def __call__(self, results):
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
1280
1281
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
1282
1283
1284
1285
1286
1287
1288
1289
1290
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

1291
        points_numpy = np.concatenate(extra_channel, axis=-1)
1292
1293
1294
1295
1296

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
1297
1298
1299
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
1300
1301
1302
1303
1304
1305
1306
1307
1308
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
1309
                                               points_numpy.shape[1])
1310
1311
1312
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
1313
                                                     points_numpy.shape[1])
1314

1315
1316
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
1317
        else:
1318
            points_numpy = cur_sweep_points
1319
1320

        if self.cur_voxel_generator._max_num_points == 1:
1321
1322
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
1323
1324
1325

        # Restore the correspoinding seg and mask fields
        for key, dim_index in map_fields2dim:
1326
            results[key] = points_numpy[..., dim_index]
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str