transforms_3d.py 54.9 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
import numpy as np
2
import warnings
3
from mmcv import is_tuple_of
4
from mmcv.utils import build_from_cfg
zhangwenwei's avatar
zhangwenwei committed
5

6
from mmdet3d.core import VoxelGenerator
7
8
from mmdet3d.core.bbox import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                               LiDARInstance3DBoxes, box_np_ops)
9
from mmdet.datasets.builder import PIPELINES
zhangwenwei's avatar
zhangwenwei committed
10
from mmdet.datasets.pipelines import RandomFlip
11
from ..builder import OBJECTSAMPLERS
zhangwenwei's avatar
zhangwenwei committed
12
13
14
from .data_augment_utils import noise_per_object_v3_


15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
@PIPELINES.register_module()
class RandomDropPointsColor(object):
    r"""Randomly set the color of points to all zeros.

    Once this transform is executed, all the points' color will be dropped.
    Refer to `PAConv <https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/
    util/transform.py#L223>`_ for more details.

    Args:
        drop_ratio (float): The probability of dropping point colors.
            Defaults to 0.2.
    """

    def __init__(self, drop_ratio=0.2):
        assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \
            f'invalid drop_ratio value {drop_ratio}'
        self.drop_ratio = drop_ratio

    def __call__(self, input_dict):
        """Call function to drop point colors.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after color dropping, \
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims, \
            'Expect points have color attribute'

48
49
50
51
52
53
54
        # this if-expression is a bit strange
        # `RandomDropPointsColor` is used in training 3D segmentor PAConv
        # we discovered in our experiments that, using
        # `if np.random.rand() > 1.0 - self.drop_ratio` consistently leads to
        # better results than using `if np.random.rand() < self.drop_ratio`
        # so we keep this hack in our codebase
        if np.random.rand() > 1.0 - self.drop_ratio:
55
56
57
58
59
60
61
62
63
64
            points.color = points.color * 0.0
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(drop_ratio={self.drop_ratio})'
        return repr_str


65
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
66
67
68
69
70
71
72
73
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

    Args:
zhangwenwei's avatar
zhangwenwei committed
74
75
76
        sync_2d (bool, optional): Whether to apply flip according to the 2D
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
77
            to that of 2D images. Defaults to True.
wuyuefeng's avatar
wuyuefeng committed
78
        flip_ratio_bev_horizontal (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
79
            in horizontal direction. Defaults to 0.0.
wuyuefeng's avatar
wuyuefeng committed
80
        flip_ratio_bev_vertical (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
81
            in vertical direction. Defaults to 0.0.
zhangwenwei's avatar
zhangwenwei committed
82
83
    """

wuyuefeng's avatar
wuyuefeng committed
84
85
86
87
88
89
90
    def __init__(self,
                 sync_2d=True,
                 flip_ratio_bev_horizontal=0.0,
                 flip_ratio_bev_vertical=0.0,
                 **kwargs):
        super(RandomFlip3D, self).__init__(
            flip_ratio=flip_ratio_bev_horizontal, **kwargs)
zhangwenwei's avatar
zhangwenwei committed
91
        self.sync_2d = sync_2d
wuyuefeng's avatar
wuyuefeng committed
92
93
94
95
96
97
98
99
100
101
102
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

    def random_flip_data_3d(self, input_dict, direction='horizontal'):
103
104
105
106
107
108
109
110
111
112
        """Flip 3D data randomly.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            direction (str): Flip direction. Default: horizontal.

        Returns:
            dict: Flipped results, 'points', 'bbox3d_fields' keys are \
                updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
113
        assert direction in ['horizontal', 'vertical']
114
115
116
117
118
        if len(input_dict['bbox3d_fields']) == 0:  # test mode
            input_dict['bbox3d_fields'].append('empty_box3d')
            input_dict['empty_box3d'] = input_dict['box_type_3d'](
                np.array([], dtype=np.float32))
        assert len(input_dict['bbox3d_fields']) == 1
zhangwenwei's avatar
zhangwenwei committed
119
        for key in input_dict['bbox3d_fields']:
120
121
122
123
124
125
126
127
            if 'points' in input_dict:
                input_dict['points'] = input_dict[key].flip(
                    direction, points=input_dict['points'])
            else:
                input_dict[key].flip(direction)
        if 'centers2d' in input_dict:
            assert self.sync_2d is True and direction == 'horizontal', \
                'Only support sync_2d=True and horizontal flip with images'
128
            w = input_dict['ori_shape'][1]
129
130
            input_dict['centers2d'][..., 0] = \
                w - input_dict['centers2d'][..., 0]
131
132
            # need to modify the horizontal position of camera center
            # along u-axis in the image (flip like centers2d)
133
            # ['cam2img'][0][2] = c_u
134
135
            # see more details and examples at
            # https://github.com/open-mmlab/mmdetection3d/pull/744
136
            input_dict['cam2img'][0][2] = w - input_dict['cam2img'][0][2]
zhangwenwei's avatar
zhangwenwei committed
137
138

    def __call__(self, input_dict):
139
140
141
142
143
144
145
146
147
148
149
        """Call function to flip points, values in the ``bbox3d_fields`` and \
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Flipped results, 'flip', 'flip_direction', \
                'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added \
                into result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
150
        # filp 2D image and its annotations
zhangwenwei's avatar
zhangwenwei committed
151
        super(RandomFlip3D, self).__call__(input_dict)
zhangwenwei's avatar
zhangwenwei committed
152

zhangwenwei's avatar
zhangwenwei committed
153
        if self.sync_2d:
wuyuefeng's avatar
wuyuefeng committed
154
155
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
156
        else:
wuyuefeng's avatar
wuyuefeng committed
157
158
159
160
161
162
163
164
165
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
                ) < self.flip_ratio else False
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

166
167
168
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
169
170
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
171
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
172
173
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
174
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
175
176
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
177
    def __repr__(self):
178
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
179
        repr_str = self.__class__.__name__
180
        repr_str += f'(sync_2d={self.sync_2d},'
181
        repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
wuyuefeng's avatar
wuyuefeng committed
182
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
183

zhangwenwei's avatar
zhangwenwei committed
184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
@PIPELINES.register_module()
class RandomJitterPoints(object):
    """Randomly jitter point coordinates.

    Different from the global translation in ``GlobalRotScaleTrans``, here we \
        apply different noises to each point in a scene.

    Args:
        jitter_std (list[float]): The standard deviation of jittering noise.
            This applies random noise to all points in a 3D scene, which is \
            sampled from a gaussian distribution whose standard deviation is \
            set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01]
        clip_range (list[float] | None): Clip the randomly generated jitter \
            noise into this range. If None is given, don't perform clipping.
            Defaults to [-0.05, 0.05]

    Note:
        This transform should only be used in point cloud segmentation tasks \
            because we don't transform ground-truth bboxes accordingly.
        For similar transform in detection task, please refer to `ObjectNoise`.
    """

    def __init__(self,
                 jitter_std=[0.01, 0.01, 0.01],
                 clip_range=[-0.05, 0.05]):
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(jitter_std, seq_types):
            assert isinstance(jitter_std, (int, float)), \
                f'unsupported jitter_std type {type(jitter_std)}'
            jitter_std = [jitter_std, jitter_std, jitter_std]
        self.jitter_std = jitter_std

        if clip_range is not None:
            if not isinstance(clip_range, seq_types):
                assert isinstance(clip_range, (int, float)), \
                    f'unsupported clip_range type {type(clip_range)}'
                clip_range = [-clip_range, clip_range]
        self.clip_range = clip_range

    def __call__(self, input_dict):
        """Call function to jitter all the points in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after adding noise to each point, \
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        jitter_std = np.array(self.jitter_std, dtype=np.float32)
        jitter_noise = \
            np.random.randn(points.shape[0], 3) * jitter_std[None, :]
        if self.clip_range is not None:
            jitter_noise = np.clip(jitter_noise, self.clip_range[0],
                                   self.clip_range[1])

        points.translate(jitter_noise)
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(jitter_std={self.jitter_std},'
        repr_str += f' clip_range={self.clip_range})'
        return repr_str


253
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
254
class ObjectSample(object):
zhangwenwei's avatar
zhangwenwei committed
255
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
256
257
258
259
260

    Args:
        db_sampler (dict): Config dict of the database sampler.
        sample_2d (bool): Whether to also paste 2D image patch to the images
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
261
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
262
    """
zhangwenwei's avatar
zhangwenwei committed
263
264
265
266
267
268
269
270
271
272

    def __init__(self, db_sampler, sample_2d=False):
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
        self.db_sampler = build_from_cfg(db_sampler, OBJECTSAMPLERS)

    @staticmethod
    def remove_points_in_boxes(points, boxes):
273
274
275
        """Remove the points in the sampled bounding boxes.

        Args:
276
            points (:obj:`BasePoints`): Input point cloud array.
277
278
279
280
281
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
282
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
283
284
285
286
        points = points[np.logical_not(masks.any(-1))]
        return points

    def __call__(self, input_dict):
287
288
289
290
291
292
293
294
295
296
        """Call function to sample ground truth objects to the data.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after object sampling augmentation, \
                'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
297
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
298
299
        gt_labels_3d = input_dict['gt_labels_3d']

zhangwenwei's avatar
zhangwenwei committed
300
301
302
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
303
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
304
305
306
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
307
308
309
310
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
311
312
        else:
            sampled_dict = self.db_sampler.sample_all(
313
                gt_bboxes_3d.tensor.numpy(), gt_labels_3d, img=None)
zhangwenwei's avatar
zhangwenwei committed
314
315
316
317

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
318
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
319

zhangwenwei's avatar
zhangwenwei committed
320
321
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
322
323
324
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
325

zhangwenwei's avatar
zhangwenwei committed
326
327
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
328
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
329
330
331
332
333

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
334

zhangwenwei's avatar
zhangwenwei committed
335
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
336
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
337
338

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
339
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.long)
zhangwenwei's avatar
zhangwenwei committed
340
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
341

zhangwenwei's avatar
zhangwenwei committed
342
343
344
        return input_dict

    def __repr__(self):
345
        """str: Return a string that describes the module."""
346
347
348
349
350
351
352
353
354
        repr_str = self.__class__.__name__
        repr_str += f' sample_2d={self.sample_2d},'
        repr_str += f' data_root={self.sampler_cfg.data_root},'
        repr_str += f' info_path={self.sampler_cfg.info_path},'
        repr_str += f' rate={self.sampler_cfg.rate},'
        repr_str += f' prepare={self.sampler_cfg.prepare},'
        repr_str += f' classes={self.sampler_cfg.classes},'
        repr_str += f' sample_groups={self.sampler_cfg.sample_groups}'
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
355
356


357
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
358
class ObjectNoise(object):
zhangwenwei's avatar
zhangwenwei committed
359
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
360
361

    Args:
362
        translation_std (list[float], optional): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
363
364
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
365
        global_rot_range (list[float], optional): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
366
            Defaults to [0.0, 0.0].
367
        rot_range (list[float], optional): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
368
369
370
371
            Defaults to [-0.15707963267, 0.15707963267].
        num_try (int, optional): Number of times to try if the noise applied is
            invalid. Defaults to 100.
    """
zhangwenwei's avatar
zhangwenwei committed
372
373

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
374
                 translation_std=[0.25, 0.25, 0.25],
zhangwenwei's avatar
zhangwenwei committed
375
                 global_rot_range=[0.0, 0.0],
zhangwenwei's avatar
zhangwenwei committed
376
                 rot_range=[-0.15707963267, 0.15707963267],
zhangwenwei's avatar
zhangwenwei committed
377
                 num_try=100):
zhangwenwei's avatar
zhangwenwei committed
378
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
379
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
380
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
381
382
383
        self.num_try = num_try

    def __call__(self, input_dict):
384
385
386
387
388
389
390
391
392
        """Call function to apply noise to each ground truth in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after adding noise to each object, \
                'points', 'gt_bboxes_3d' keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
393
394
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
395

zhangwenwei's avatar
zhangwenwei committed
396
        # TODO: check this inplace function
397
        numpy_box = gt_bboxes_3d.tensor.numpy()
398
399
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
400
        noise_per_object_v3_(
401
            numpy_box,
402
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
403
404
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
405
406
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
407
408

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
409
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
410
411
412
        return input_dict

    def __repr__(self):
413
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
414
        repr_str = self.__class__.__name__
415
416
417
418
        repr_str += f'(num_try={self.num_try},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' global_rot_range={self.global_rot_range},'
        repr_str += f' rot_range={self.rot_range})'
zhangwenwei's avatar
zhangwenwei committed
419
420
421
        return repr_str


422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
@PIPELINES.register_module()
class GlobalAlignment(object):
    """Apply global alignment to 3D scene points by rotation and translation.

    Args:
        rotation_axis (int): Rotation axis for points and bboxes rotation.

    Note:
        We do not record the applied rotation and translation as in \
            GlobalRotScaleTrans. Because usually, we do not need to reverse \
            the alignment step.
        For example, ScanNet 3D detection task uses aligned ground-truth \
            bounding boxes for evaluation.
    """

    def __init__(self, rotation_axis):
        self.rotation_axis = rotation_axis

    def _trans_points(self, input_dict, trans_factor):
        """Private function to translate points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            trans_factor (np.ndarray): Translation vector to be applied.

        Returns:
            dict: Results after translation, 'points' is updated in the dict.
        """
        input_dict['points'].translate(trans_factor)

    def _rot_points(self, input_dict, rot_mat):
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            rot_mat (np.ndarray): Rotation matrix to be applied.

        Returns:
            dict: Results after rotation, 'points' is updated in the dict.
        """
        # input should be rot_mat_T so I transpose it here
        input_dict['points'].rotate(rot_mat.T)

    def _check_rot_mat(self, rot_mat):
        """Check if rotation matrix is valid for self.rotation_axis.

        Args:
            rot_mat (np.ndarray): Rotation matrix to be applied.
        """
        is_valid = np.allclose(np.linalg.det(rot_mat), 1.0)
        valid_array = np.zeros(3)
        valid_array[self.rotation_axis] = 1.0
        is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all()
        is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all()
        assert is_valid, f'invalid rotation matrix {rot_mat}'

    def __call__(self, input_dict):
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after global alignment, 'points' and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
        assert 'axis_align_matrix' in input_dict['ann_info'].keys(), \
            'axis_align_matrix is not provided in GlobalAlignment'

        axis_align_matrix = input_dict['ann_info']['axis_align_matrix']
        assert axis_align_matrix.shape == (4, 4), \
            f'invalid shape {axis_align_matrix.shape} for axis_align_matrix'
        rot_mat = axis_align_matrix[:3, :3]
        trans_vec = axis_align_matrix[:3, -1]

        self._check_rot_mat(rot_mat)
        self._rot_points(input_dict, rot_mat)
        self._trans_points(input_dict, trans_vec)

        return input_dict

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(rotation_axis={self.rotation_axis})'
        return repr_str


509
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
510
class GlobalRotScaleTrans(object):
zhangwenwei's avatar
zhangwenwei committed
511
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
512
513
514

    Args:
        rot_range (list[float]): Range of rotation angle.
liyinhao's avatar
liyinhao committed
515
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
zhangwenwei's avatar
zhangwenwei committed
516
        scale_ratio_range (list[float]): Range of scale ratio.
liyinhao's avatar
liyinhao committed
517
            Defaults to [0.95, 1.05].
518
519
        translation_std (list[float]): The standard deviation of translation
            noise. This applies random translation to a scene by a noise, which
zhangwenwei's avatar
zhangwenwei committed
520
            is sampled from a gaussian distribution whose standard deviation
liyinhao's avatar
liyinhao committed
521
522
            is set by ``translation_std``. Defaults to [0, 0, 0]
        shift_height (bool): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
523
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
524
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
525
    """
zhangwenwei's avatar
zhangwenwei committed
526
527

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
528
529
                 rot_range=[-0.78539816, 0.78539816],
                 scale_ratio_range=[0.95, 1.05],
wuyuefeng's avatar
wuyuefeng committed
530
531
                 translation_std=[0, 0, 0],
                 shift_height=False):
532
533
534
535
536
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(rot_range, seq_types):
            assert isinstance(rot_range, (int, float)), \
                f'unsupported rot_range type {type(rot_range)}'
            rot_range = [-rot_range, rot_range]
zhangwenwei's avatar
zhangwenwei committed
537
        self.rot_range = rot_range
538
539
540

        assert isinstance(scale_ratio_range, seq_types), \
            f'unsupported scale_ratio_range type {type(scale_ratio_range)}'
zhangwenwei's avatar
zhangwenwei committed
541
        self.scale_ratio_range = scale_ratio_range
542
543
544
545
546
547
548

        if not isinstance(translation_std, seq_types):
            assert isinstance(translation_std, (int, float)), \
                f'unsupported translation_std type {type(translation_std)}'
            translation_std = [
                translation_std, translation_std, translation_std
            ]
549
550
        assert all([std >= 0 for std in translation_std]), \
            'translation_std should be positive'
zhangwenwei's avatar
zhangwenwei committed
551
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
552
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
553
554

    def _trans_bbox_points(self, input_dict):
555
556
557
558
559
560
561
562
563
564
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after translation, 'points', 'pcd_trans' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
565
        translation_std = np.array(self.translation_std, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
566
567
        trans_factor = np.random.normal(scale=translation_std, size=3).T

568
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
569
570
571
572
573
        input_dict['pcd_trans'] = trans_factor
        for key in input_dict['bbox3d_fields']:
            input_dict[key].translate(trans_factor)

    def _rot_bbox_points(self, input_dict):
574
575
576
577
578
579
580
581
582
583
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after rotation, 'points', 'pcd_rotation' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
584
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
585
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
586

587
588
589
590
591
592
593
        # if no bbox in input_dict, only rotate points
        if len(input_dict['bbox3d_fields']) == 0:
            rot_mat_T = input_dict['points'].rotate(noise_rotation)
            input_dict['pcd_rotation'] = rot_mat_T
            return

        # rotate points with bboxes
zhangwenwei's avatar
zhangwenwei committed
594
        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
595
596
597
598
599
            if len(input_dict[key].tensor) != 0:
                points, rot_mat_T = input_dict[key].rotate(
                    noise_rotation, input_dict['points'])
                input_dict['points'] = points
                input_dict['pcd_rotation'] = rot_mat_T
600

zhangwenwei's avatar
zhangwenwei committed
601
    def _scale_bbox_points(self, input_dict):
602
603
604
605
606
607
608
609
610
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points'and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
611
        scale = input_dict['pcd_scale_factor']
612
613
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
614
        if self.shift_height:
615
616
            assert 'height' in points.attribute_dims.keys(), \
                'setting shift_height=True but points have no height attribute'
617
618
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
619

zhangwenwei's avatar
zhangwenwei committed
620
621
        for key in input_dict['bbox3d_fields']:
            input_dict[key].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
622

zhangwenwei's avatar
zhangwenwei committed
623
    def _random_scale(self, input_dict):
624
625
626
627
628
629
630
631
632
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'pcd_scale_factor' are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
633
634
635
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
636
637

    def __call__(self, input_dict):
638
639
640
641
642
643
644
645
646
647
648
        """Private function to rotate, scale and translate bounding boxes and \
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
                'pcd_scale_factor', 'pcd_trans' and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
649
650
651
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
652
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
653

zhangwenwei's avatar
zhangwenwei committed
654
655
656
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
657

zhangwenwei's avatar
zhangwenwei committed
658
        self._trans_bbox_points(input_dict)
659
660

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
661
662
663
        return input_dict

    def __repr__(self):
664
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
665
        repr_str = self.__class__.__name__
666
667
668
669
        repr_str += f'(rot_range={self.rot_range},'
        repr_str += f' scale_ratio_range={self.scale_ratio_range},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' shift_height={self.shift_height})'
zhangwenwei's avatar
zhangwenwei committed
670
671
672
        return repr_str


673
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
674
class PointShuffle(object):
675
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
676
677

    def __call__(self, input_dict):
678
679
680
681
682
683
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
684
685
            dict: Results after filtering, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
686
        """
687
688
689
690
691
692
693
694
695
696
697
698
        idx = input_dict['points'].shuffle()
        idx = idx.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[idx]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[idx]

zhangwenwei's avatar
zhangwenwei committed
699
700
701
702
703
704
        return input_dict

    def __repr__(self):
        return self.__class__.__name__


705
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
706
class ObjectRangeFilter(object):
707
708
709
710
711
    """Filter objects by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
712
713
714
715
716

    def __init__(self, point_cloud_range):
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)

    def __call__(self, input_dict):
717
718
719
720
721
722
723
724
725
        """Call function to filter objects by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
726
727
728
729
730
731
732
        # Check points instance type and initialise bev_range
        if isinstance(input_dict['gt_bboxes_3d'],
                      (LiDARInstance3DBoxes, DepthInstance3DBoxes)):
            bev_range = self.pcd_range[[0, 1, 3, 4]]
        elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes):
            bev_range = self.pcd_range[[0, 2, 3, 5]]

zhangwenwei's avatar
zhangwenwei committed
733
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
734
        gt_labels_3d = input_dict['gt_labels_3d']
735
        mask = gt_bboxes_3d.in_range_bev(bev_range)
zhangwenwei's avatar
zhangwenwei committed
736
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
737
738
739
740
741
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
742
743

        # limit rad to [-pi, pi]
744
745
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
746
747
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
748
749
750
        return input_dict

    def __repr__(self):
751
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
752
        repr_str = self.__class__.__name__
753
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
754
755
756
        return repr_str


757
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
758
class PointsRangeFilter(object):
759
760
761
762
763
    """Filter points by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
764
765

    def __init__(self, point_cloud_range):
766
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
767
768

    def __call__(self, input_dict):
769
770
771
772
773
774
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
775
776
            dict: Results after filtering, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
777
        """
zhangwenwei's avatar
zhangwenwei committed
778
        points = input_dict['points']
779
780
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
781
        input_dict['points'] = clean_points
782
783
784
785
786
787
788
789
790
791
792
        points_mask = points_mask.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[points_mask]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask]

zhangwenwei's avatar
zhangwenwei committed
793
794
795
        return input_dict

    def __repr__(self):
796
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
797
        repr_str = self.__class__.__name__
798
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
799
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
800
801
802
803


@PIPELINES.register_module()
class ObjectNameFilter(object):
zhangwenwei's avatar
zhangwenwei committed
804
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
805
806

    Args:
liyinhao's avatar
liyinhao committed
807
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
808
809
810
811
812
813
814
    """

    def __init__(self, classes):
        self.classes = classes
        self.labels = list(range(len(self.classes)))

    def __call__(self, input_dict):
815
816
817
818
819
820
821
822
823
        """Call function to filter objects by their names.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
824
825
826
827
828
829
830
831
832
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

    def __repr__(self):
833
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
834
835
836
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
837
838
839


@PIPELINES.register_module()
840
841
class PointSample(object):
    """Point sample.
wuyuefeng's avatar
wuyuefeng committed
842
843
844
845
846

    Sampling data to a certain number.

    Args:
        num_points (int): Number of points to be sampled.
847
        sample_range (float, optional): The range where to sample points.
848
849
850
851
            If not None, the points with depth larger than `sample_range` are
            prior to be sampled. Defaults to None.
        replace (bool, optional): Whether the sampling is with or without
            replacement. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
852
853
    """

854
    def __init__(self, num_points, sample_range=None, replace=False):
wuyuefeng's avatar
wuyuefeng committed
855
        self.num_points = num_points
856
857
858
859
860
861
862
863
864
        self.sample_range = sample_range
        self.replace = replace

    def _points_random_sampling(self,
                                points,
                                num_samples,
                                sample_range=None,
                                replace=False,
                                return_choices=False):
wuyuefeng's avatar
wuyuefeng committed
865
866
867
868
869
        """Points random sampling.

        Sample points to a certain number.

        Args:
870
            points (np.ndarray | :obj:`BasePoints`): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
871
            num_samples (int): Number of samples to be sampled.
872
            sample_range (float, optional): Indicating the range where the
873
                points will be sampled. Defaults to None.
874
875
876
877
            replace (bool, optional): Sampling with or without replacement.
                Defaults to None.
            return_choices (bool, optional): Whether return choice.
                Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
878
        Returns:
879
            tuple[np.ndarray] | np.ndarray:
880
                - points (np.ndarray | :obj:`BasePoints`): 3D Points.
881
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
882
        """
883
        if not replace:
wuyuefeng's avatar
wuyuefeng committed
884
            replace = (points.shape[0] < num_samples)
885
886
887
888
889
890
        point_range = range(len(points))
        if sample_range is not None and not replace:
            # Only sampling the near points when len(points) >= num_samples
            depth = np.linalg.norm(points.tensor, axis=1)
            far_inds = np.where(depth > sample_range)[0]
            near_inds = np.where(depth <= sample_range)[0]
891
892
893
894
            # in case there are too many far points
            if len(far_inds) > num_samples:
                far_inds = np.random.choice(
                    far_inds, num_samples, replace=False)
895
896
897
898
899
900
901
            point_range = near_inds
            num_samples -= len(far_inds)
        choices = np.random.choice(point_range, num_samples, replace=replace)
        if sample_range is not None and not replace:
            choices = np.concatenate((far_inds, choices))
            # Shuffle points after sampling
            np.random.shuffle(choices)
wuyuefeng's avatar
wuyuefeng committed
902
903
904
905
906
907
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

    def __call__(self, results):
908
909
910
911
912
913
914
915
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.
        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
916
        points = results['points']
917
918
919
        # Points in Camera coord can provide the depth information.
        # TODO: Need to suport distance-based sampling for other coord system.
        if self.sample_range is not None:
920
            from mmdet3d.core.points import CameraPoints
921
922
923
924
925
926
927
928
            assert isinstance(points, CameraPoints), \
                'Sampling based on distance is only appliable for CAMERA coord'
        points, choices = self._points_random_sampling(
            points,
            self.num_points,
            self.sample_range,
            self.replace,
            return_choices=True)
929
        results['points'] = points
930

wuyuefeng's avatar
wuyuefeng committed
931
932
933
        pts_instance_mask = results.get('pts_instance_mask', None)
        pts_semantic_mask = results.get('pts_semantic_mask', None)

934
        if pts_instance_mask is not None:
wuyuefeng's avatar
wuyuefeng committed
935
936
            pts_instance_mask = pts_instance_mask[choices]
            results['pts_instance_mask'] = pts_instance_mask
937
938
939

        if pts_semantic_mask is not None:
            pts_semantic_mask = pts_semantic_mask[choices]
wuyuefeng's avatar
wuyuefeng committed
940
941
942
943
944
            results['pts_semantic_mask'] = pts_semantic_mask

        return results

    def __repr__(self):
945
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
946
        repr_str = self.__class__.__name__
947
        repr_str += f'(num_points={self.num_points},'
948
949
        repr_str += f' sample_range={self.sample_range},'
        repr_str += f' replace={self.replace})'
950

951
952
953
        return repr_str


954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
@PIPELINES.register_module()
class IndoorPointSample(PointSample):
    """Indoor point sample.

    Sampling data to a certain number.
    NOTE: IndoorPointSample is deprecated in favor of PointSample

    Args:
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, *args, **kwargs):
        warnings.warn(
            'IndoorPointSample is deprecated in favor of PointSample')
        super(IndoorPointSample, self).__init__(*args, **kwargs)


971
972
973
974
975
976
977
978
979
980
981
982
@PIPELINES.register_module()
class IndoorPatchPointSample(object):
    r"""Indoor point sample within a patch. Modified from `PointNet++ <https://
    github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py>`_.

    Sampling data to a certain number for semantic segmentation.

    Args:
        num_points (int): Number of points to be sampled.
        block_size (float, optional): Size of a block to sample points from.
            Defaults to 1.5.
        sample_rate (float, optional): Stride used in sliding patch generation.
983
984
985
            This parameter is unused in `IndoorPatchPointSample` and thus has
            been deprecated. We plan to remove it in the future.
            Defaults to None.
986
987
        ignore_index (int, optional): Label index that won't be used for the
            segmentation task. This is set in PointSegClassMapping as neg_cls.
988
            If not None, will be used as a patch selection criterion.
989
990
991
992
993
            Defaults to None.
        use_normalized_coord (bool, optional): Whether to use normalized xyz as
            additional features. Defaults to False.
        num_try (int, optional): Number of times to try if the patch selected
            is invalid. Defaults to 10.
994
995
        enlarge_size (float | None, optional): Enlarge the sampled patch to
            [-block_size / 2 - enlarge_size, block_size / 2 + enlarge_size] as
996
            an augmentation. If None, set it as 0. Defaults to 0.2.
997
998
999
        min_unique_num (int | None, optional): Minimum number of unique points
            the sampled patch should contain. If None, use PointNet++'s method
            to judge uniqueness. Defaults to None.
1000
1001
        eps (float, optional): A value added to patch boundary to guarantee
            points coverage. Defaults to 1e-2.
1002
1003
1004
1005
1006
1007

    Note:
        This transform should only be used in the training process of point
            cloud segmentation tasks. For the sliding patch generation and
            inference process in testing, please refer to the `slide_inference`
            function of `EncoderDecoder3D` class.
1008
1009
1010
1011
1012
    """

    def __init__(self,
                 num_points,
                 block_size=1.5,
1013
                 sample_rate=None,
1014
1015
                 ignore_index=None,
                 use_normalized_coord=False,
1016
1017
                 num_try=10,
                 enlarge_size=0.2,
1018
1019
                 min_unique_num=None,
                 eps=1e-2):
1020
1021
1022
1023
1024
        self.num_points = num_points
        self.block_size = block_size
        self.ignore_index = ignore_index
        self.use_normalized_coord = use_normalized_coord
        self.num_try = num_try
1025
        self.enlarge_size = enlarge_size if enlarge_size is not None else 0.0
1026
        self.min_unique_num = min_unique_num
1027
        self.eps = eps
1028
1029
1030
1031
1032

        if sample_rate is not None:
            warnings.warn(
                "'sample_rate' has been deprecated and will be removed in "
                'the future. Please remove them from your code.')
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047

    def _input_generation(self, coords, patch_center, coord_max, attributes,
                          attribute_dims, point_type):
        """Generating model input.

        Generate input by subtracting patch center and adding additional \
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (np.ndarray): Sampled 3D Points.
            patch_center (np.ndarray): Center coordinate of the selected patch.
            coord_max (np.ndarray): Max coordinate of all 3D Points.
            attributes (np.ndarray): features of input points.
            attribute_dims (dict): Dictionary to indicate the meaning of extra
                dimension.
1048
            point_type (type): class of input points inherited from BasePoints.
1049
1050

        Returns:
1051
            :obj:`BasePoints`: The generated input data.
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.copy()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        if self.use_normalized_coord:
            normalized_coord = coords / coord_max
            attributes = np.concatenate([attributes, normalized_coord], axis=1)
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(normalized_coord=[
                    attributes.shape[1], attributes.shape[1] +
                    1, attributes.shape[1] + 2
                ]))

        points = np.concatenate([centered_coords, attributes], axis=1)
        points = point_type(
            points, points_dim=points.shape[1], attribute_dims=attribute_dims)

        return points

1075
    def _patch_points_sampling(self, points, sem_mask):
1076
1077
1078
1079
1080
1081
        """Patch points sampling.

        First sample a valid patch.
        Then sample points within that patch to a certain number.

        Args:
1082
            points (:obj:`BasePoints`): 3D Points.
1083
1084
1085
            sem_mask (np.ndarray): semantic segmentation mask for input points.

        Returns:
1086
            tuple[:obj:`BasePoints`, np.ndarray] | :obj:`BasePoints`:
1087

1088
                - points (:obj:`BasePoints`): 3D Points.
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
                - choices (np.ndarray): The generated random samples.
        """
        coords = points.coord.numpy()
        attributes = points.tensor[:, 3:].numpy()
        attribute_dims = points.attribute_dims
        point_type = type(points)

        coord_max = np.amax(coords, axis=0)
        coord_min = np.amin(coords, axis=0)

1099
        for _ in range(self.num_try):
1100
1101
1102
            # random sample a point as patch center
            cur_center = coords[np.random.choice(coords.shape[0])]

1103
1104
            # boundary of a patch, which would be enlarged by
            # `self.enlarge_size` as an augmentation
1105
1106
1107
1108
1109
1110
1111
            cur_max = cur_center + np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_min = cur_center - np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_max[2] = coord_max[2]
            cur_min[2] = coord_min[2]
            cur_choice = np.sum(
1112
1113
                (coords >= (cur_min - self.enlarge_size)) *
                (coords <= (cur_max + self.enlarge_size)),
1114
1115
1116
1117
1118
1119
1120
                axis=1) == 3

            if not cur_choice.any():  # no points in this patch
                continue

            cur_coords = coords[cur_choice, :]
            cur_sem_mask = sem_mask[cur_choice]
1121
            point_idxs = np.where(cur_choice)[0]
1122
            mask = np.sum(
1123
1124
                (cur_coords >= (cur_min - self.eps)) * (cur_coords <=
                                                        (cur_max + self.eps)),
1125
                axis=1) == 3
1126

1127
1128
            # two criteria for patch sampling, adopted from PointNet++
            # 1. selected patch should contain enough unique points
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
            if self.min_unique_num is None:
                # use PointNet++'s method as default
                # [31, 31, 62] are just some big values used to transform
                # coords from 3d array to 1d and then check their uniqueness
                # this is used in all the ScanNet code following PointNet++
                vidx = np.ceil(
                    (cur_coords[mask, :] - cur_min) / (cur_max - cur_min) *
                    np.array([31.0, 31.0, 62.0]))
                vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 +
                                 vidx[:, 2])
                flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02
            else:
1141
                # if `min_unique_num` is provided, directly compare with it
1142
                flag1 = mask.sum() >= self.min_unique_num
1143

1144
            # 2. selected patch should contain enough annotated points
1145
1146
1147
1148
1149
1150
1151
1152
1153
            if self.ignore_index is None:
                flag2 = True
            else:
                flag2 = np.sum(cur_sem_mask != self.ignore_index) / \
                               len(cur_sem_mask) >= 0.7

            if flag1 and flag2:
                break

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
        # sample idx to `self.num_points`
        if point_idxs.size >= self.num_points:
            # no duplicate in sub-sampling
            choices = np.random.choice(
                point_idxs, self.num_points, replace=False)
        else:
            # do not use random choice here to avoid some points not counted
            dup = np.random.choice(point_idxs.size,
                                   self.num_points - point_idxs.size)
            idx_dup = np.concatenate(
                [np.arange(point_idxs.size),
                 np.array(dup)], 0)
            choices = point_idxs[idx_dup]
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208

        # construct model input
        points = self._input_generation(coords[choices], cur_center, coord_max,
                                        attributes[choices], attribute_dims,
                                        point_type)

        return points, choices

    def __call__(self, results):
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']

        assert 'pts_semantic_mask' in results.keys(), \
            'semantic mask should be provided in training and evaluation'
        pts_semantic_mask = results['pts_semantic_mask']

        points, choices = self._patch_points_sampling(points,
                                                      pts_semantic_mask)

        results['points'] = points
        results['pts_semantic_mask'] = pts_semantic_mask[choices]
        pts_instance_mask = results.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            results['pts_instance_mask'] = pts_instance_mask[choices]

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_points={self.num_points},'
        repr_str += f' block_size={self.block_size},'
        repr_str += f' ignore_index={self.ignore_index},'
        repr_str += f' use_normalized_coord={self.use_normalized_coord},'
1209
1210
        repr_str += f' num_try={self.num_try},'
        repr_str += f' enlarge_size={self.enlarge_size},'
1211
1212
        repr_str += f' min_unique_num={self.min_unique_num},'
        repr_str += f' eps={self.eps})'
wuyuefeng's avatar
wuyuefeng committed
1213
        return repr_str
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241


@PIPELINES.register_module()
class BackgroundPointsFilter(object):
    """Filter background points near the bounding box.

    Args:
        bbox_enlarge_range (tuple[float], float): Bbox enlarge range.
    """

    def __init__(self, bbox_enlarge_range):
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

    def __call__(self, input_dict):
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1242
1243
            dict: Results after filtering, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
1244
1245
1246
1247
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

xiliu8006's avatar
xiliu8006 committed
1248
1249
1250
1251
        # avoid groundtruth being modified
        gt_bboxes_3d_np = gt_bboxes_3d.tensor.clone().numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.clone().numpy()

1252
1253
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
xiliu8006's avatar
xiliu8006 committed
1254
        points_numpy = points.tensor.clone().numpy()
1255
1256
        foreground_masks = box_np_ops.points_in_rbbox(
            points_numpy, gt_bboxes_3d_np, origin=(0.5, 0.5, 0.5))
1257
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
1258
            points_numpy, enlarged_gt_bboxes_3d, origin=(0.5, 0.5, 0.5))
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
1277
        repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})'
1278
        return repr_str
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350


@PIPELINES.register_module()
class VoxelBasedPointSampler(object):
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
        prev_sweep_cfg (dict): Config for sampling previous points.
        time_dim (int): Index that indicate the time dimention
            for input points.
    """

    def __init__(self, cur_sweep_cfg, prev_sweep_cfg=None, time_dim=3):
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

    def _sample_points(self, points, sampler, point_dim):
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
            point_dim (int): The dimention of each points

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

    def __call__(self, results):
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
1351
1352
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
1353
1354
1355
1356
1357
1358
1359
1360
1361
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

1362
        points_numpy = np.concatenate(extra_channel, axis=-1)
1363
1364
1365
1366
1367

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
1368
1369
1370
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
1371
1372
1373
1374
1375
1376
1377
1378
1379
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
1380
                                               points_numpy.shape[1])
1381
1382
1383
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
1384
                                                     points_numpy.shape[1])
1385

1386
1387
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
1388
        else:
1389
            points_numpy = cur_sweep_points
1390
1391

        if self.cur_voxel_generator._max_num_points == 1:
1392
1393
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
1394
1395
1396

        # Restore the correspoinding seg and mask fields
        for key, dim_index in map_fields2dim:
1397
            results[key] = points_numpy[..., dim_index]
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str