transforms_3d.py 64 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import random
3
import warnings
4
5
6

import cv2
import numpy as np
7
from mmcv import is_tuple_of
8
from mmcv.utils import build_from_cfg
zhangwenwei's avatar
zhangwenwei committed
9

10
from mmdet3d.core import VoxelGenerator
11
12
from mmdet3d.core.bbox import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                               LiDARInstance3DBoxes, box_np_ops)
13
from mmdet.datasets.builder import PIPELINES
zhangwenwei's avatar
zhangwenwei committed
14
from mmdet.datasets.pipelines import RandomFlip
15
from ..builder import OBJECTSAMPLERS
zhangwenwei's avatar
zhangwenwei committed
16
17
18
from .data_augment_utils import noise_per_object_v3_


19
20
21
22
23
24
25
26
27
@PIPELINES.register_module()
class RandomDropPointsColor(object):
    r"""Randomly set the color of points to all zeros.

    Once this transform is executed, all the points' color will be dropped.
    Refer to `PAConv <https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/
    util/transform.py#L223>`_ for more details.

    Args:
28
        drop_ratio (float, optional): The probability of dropping point colors.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
            Defaults to 0.2.
    """

    def __init__(self, drop_ratio=0.2):
        assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \
            f'invalid drop_ratio value {drop_ratio}'
        self.drop_ratio = drop_ratio

    def __call__(self, input_dict):
        """Call function to drop point colors.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
44
            dict: Results after color dropping,
45
46
47
48
49
50
51
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims, \
            'Expect points have color attribute'

52
53
54
55
56
57
58
        # this if-expression is a bit strange
        # `RandomDropPointsColor` is used in training 3D segmentor PAConv
        # we discovered in our experiments that, using
        # `if np.random.rand() > 1.0 - self.drop_ratio` consistently leads to
        # better results than using `if np.random.rand() < self.drop_ratio`
        # so we keep this hack in our codebase
        if np.random.rand() > 1.0 - self.drop_ratio:
59
60
61
62
63
64
65
66
67
68
            points.color = points.color * 0.0
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(drop_ratio={self.drop_ratio})'
        return repr_str


69
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
70
71
72
73
74
75
76
77
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

    Args:
zhangwenwei's avatar
zhangwenwei committed
78
79
80
        sync_2d (bool, optional): Whether to apply flip according to the 2D
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
81
            to that of 2D images. Defaults to True.
wuyuefeng's avatar
wuyuefeng committed
82
        flip_ratio_bev_horizontal (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
83
            in horizontal direction. Defaults to 0.0.
wuyuefeng's avatar
wuyuefeng committed
84
        flip_ratio_bev_vertical (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
85
            in vertical direction. Defaults to 0.0.
zhangwenwei's avatar
zhangwenwei committed
86
87
    """

wuyuefeng's avatar
wuyuefeng committed
88
89
90
91
92
93
94
    def __init__(self,
                 sync_2d=True,
                 flip_ratio_bev_horizontal=0.0,
                 flip_ratio_bev_vertical=0.0,
                 **kwargs):
        super(RandomFlip3D, self).__init__(
            flip_ratio=flip_ratio_bev_horizontal, **kwargs)
zhangwenwei's avatar
zhangwenwei committed
95
        self.sync_2d = sync_2d
wuyuefeng's avatar
wuyuefeng committed
96
97
98
99
100
101
102
103
104
105
106
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

    def random_flip_data_3d(self, input_dict, direction='horizontal'):
107
108
109
110
        """Flip 3D data randomly.

        Args:
            input_dict (dict): Result dict from loading pipeline.
111
112
            direction (str, optional): Flip direction.
                Default: 'horizontal'.
113
114

        Returns:
115
            dict: Flipped results, 'points', 'bbox3d_fields' keys are
116
117
                updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
118
        assert direction in ['horizontal', 'vertical']
119
120
121
122
123
        if len(input_dict['bbox3d_fields']) == 0:  # test mode
            input_dict['bbox3d_fields'].append('empty_box3d')
            input_dict['empty_box3d'] = input_dict['box_type_3d'](
                np.array([], dtype=np.float32))
        assert len(input_dict['bbox3d_fields']) == 1
zhangwenwei's avatar
zhangwenwei committed
124
        for key in input_dict['bbox3d_fields']:
125
126
127
128
129
130
131
132
            if 'points' in input_dict:
                input_dict['points'] = input_dict[key].flip(
                    direction, points=input_dict['points'])
            else:
                input_dict[key].flip(direction)
        if 'centers2d' in input_dict:
            assert self.sync_2d is True and direction == 'horizontal', \
                'Only support sync_2d=True and horizontal flip with images'
133
            w = input_dict['ori_shape'][1]
134
135
            input_dict['centers2d'][..., 0] = \
                w - input_dict['centers2d'][..., 0]
136
137
            # need to modify the horizontal position of camera center
            # along u-axis in the image (flip like centers2d)
138
            # ['cam2img'][0][2] = c_u
139
140
            # see more details and examples at
            # https://github.com/open-mmlab/mmdetection3d/pull/744
141
            input_dict['cam2img'][0][2] = w - input_dict['cam2img'][0][2]
zhangwenwei's avatar
zhangwenwei committed
142
143

    def __call__(self, input_dict):
144
        """Call function to flip points, values in the ``bbox3d_fields`` and
145
146
147
148
149
150
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
151
152
            dict: Flipped results, 'flip', 'flip_direction',
                'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added
153
154
                into result dict.
        """
155
        # flip 2D image and its annotations
zhangwenwei's avatar
zhangwenwei committed
156
        super(RandomFlip3D, self).__call__(input_dict)
zhangwenwei's avatar
zhangwenwei committed
157

zhangwenwei's avatar
zhangwenwei committed
158
        if self.sync_2d:
wuyuefeng's avatar
wuyuefeng committed
159
160
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
161
        else:
wuyuefeng's avatar
wuyuefeng committed
162
163
164
165
166
167
168
169
170
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
                ) < self.flip_ratio else False
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

171
172
173
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
174
175
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
176
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
177
178
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
179
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
180
181
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
182
    def __repr__(self):
183
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
184
        repr_str = self.__class__.__name__
185
        repr_str += f'(sync_2d={self.sync_2d},'
186
        repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
wuyuefeng's avatar
wuyuefeng committed
187
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
188

zhangwenwei's avatar
zhangwenwei committed
189

190
191
192
193
@PIPELINES.register_module()
class RandomJitterPoints(object):
    """Randomly jitter point coordinates.

194
    Different from the global translation in ``GlobalRotScaleTrans``, here we
195
196
197
198
        apply different noises to each point in a scene.

    Args:
        jitter_std (list[float]): The standard deviation of jittering noise.
199
200
            This applies random noise to all points in a 3D scene, which is
            sampled from a gaussian distribution whose standard deviation is
201
            set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01]
202
        clip_range (list[float]): Clip the randomly generated jitter
203
204
205
206
            noise into this range. If None is given, don't perform clipping.
            Defaults to [-0.05, 0.05]

    Note:
207
        This transform should only be used in point cloud segmentation tasks
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
            because we don't transform ground-truth bboxes accordingly.
        For similar transform in detection task, please refer to `ObjectNoise`.
    """

    def __init__(self,
                 jitter_std=[0.01, 0.01, 0.01],
                 clip_range=[-0.05, 0.05]):
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(jitter_std, seq_types):
            assert isinstance(jitter_std, (int, float)), \
                f'unsupported jitter_std type {type(jitter_std)}'
            jitter_std = [jitter_std, jitter_std, jitter_std]
        self.jitter_std = jitter_std

        if clip_range is not None:
            if not isinstance(clip_range, seq_types):
                assert isinstance(clip_range, (int, float)), \
                    f'unsupported clip_range type {type(clip_range)}'
                clip_range = [-clip_range, clip_range]
        self.clip_range = clip_range

    def __call__(self, input_dict):
        """Call function to jitter all the points in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
236
            dict: Results after adding noise to each point,
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        jitter_std = np.array(self.jitter_std, dtype=np.float32)
        jitter_noise = \
            np.random.randn(points.shape[0], 3) * jitter_std[None, :]
        if self.clip_range is not None:
            jitter_noise = np.clip(jitter_noise, self.clip_range[0],
                                   self.clip_range[1])

        points.translate(jitter_noise)
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(jitter_std={self.jitter_std},'
        repr_str += f' clip_range={self.clip_range})'
        return repr_str


258
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
259
class ObjectSample(object):
zhangwenwei's avatar
zhangwenwei committed
260
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
261
262
263
264
265

    Args:
        db_sampler (dict): Config dict of the database sampler.
        sample_2d (bool): Whether to also paste 2D image patch to the images
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
266
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
267
    """
zhangwenwei's avatar
zhangwenwei committed
268
269
270
271
272
273
274
275
276
277

    def __init__(self, db_sampler, sample_2d=False):
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
        self.db_sampler = build_from_cfg(db_sampler, OBJECTSAMPLERS)

    @staticmethod
    def remove_points_in_boxes(points, boxes):
278
279
280
        """Remove the points in the sampled bounding boxes.

        Args:
281
            points (:obj:`BasePoints`): Input point cloud array.
282
283
284
285
286
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
287
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
288
289
290
291
        points = points[np.logical_not(masks.any(-1))]
        return points

    def __call__(self, input_dict):
292
293
294
295
296
297
        """Call function to sample ground truth objects to the data.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
298
299
            dict: Results after object sampling augmentation,
                'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated
300
301
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
302
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
303
304
        gt_labels_3d = input_dict['gt_labels_3d']

zhangwenwei's avatar
zhangwenwei committed
305
306
307
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
308
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
309
310
311
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
312
313
314
315
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
316
317
        else:
            sampled_dict = self.db_sampler.sample_all(
318
                gt_bboxes_3d.tensor.numpy(), gt_labels_3d, img=None)
zhangwenwei's avatar
zhangwenwei committed
319
320
321
322

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
323
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
324

zhangwenwei's avatar
zhangwenwei committed
325
326
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
327
328
329
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
330

zhangwenwei's avatar
zhangwenwei committed
331
332
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
333
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
334
335
336
337
338

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
339

zhangwenwei's avatar
zhangwenwei committed
340
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
341
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
342
343

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
344
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.long)
zhangwenwei's avatar
zhangwenwei committed
345
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
346

zhangwenwei's avatar
zhangwenwei committed
347
348
349
        return input_dict

    def __repr__(self):
350
        """str: Return a string that describes the module."""
351
352
353
354
355
356
357
358
359
        repr_str = self.__class__.__name__
        repr_str += f' sample_2d={self.sample_2d},'
        repr_str += f' data_root={self.sampler_cfg.data_root},'
        repr_str += f' info_path={self.sampler_cfg.info_path},'
        repr_str += f' rate={self.sampler_cfg.rate},'
        repr_str += f' prepare={self.sampler_cfg.prepare},'
        repr_str += f' classes={self.sampler_cfg.classes},'
        repr_str += f' sample_groups={self.sampler_cfg.sample_groups}'
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
360
361


362
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
363
class ObjectNoise(object):
zhangwenwei's avatar
zhangwenwei committed
364
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
365
366

    Args:
367
        translation_std (list[float], optional): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
368
369
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
370
        global_rot_range (list[float], optional): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
371
            Defaults to [0.0, 0.0].
372
        rot_range (list[float], optional): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
373
374
375
376
            Defaults to [-0.15707963267, 0.15707963267].
        num_try (int, optional): Number of times to try if the noise applied is
            invalid. Defaults to 100.
    """
zhangwenwei's avatar
zhangwenwei committed
377
378

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
379
                 translation_std=[0.25, 0.25, 0.25],
zhangwenwei's avatar
zhangwenwei committed
380
                 global_rot_range=[0.0, 0.0],
zhangwenwei's avatar
zhangwenwei committed
381
                 rot_range=[-0.15707963267, 0.15707963267],
zhangwenwei's avatar
zhangwenwei committed
382
                 num_try=100):
zhangwenwei's avatar
zhangwenwei committed
383
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
384
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
385
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
386
387
388
        self.num_try = num_try

    def __call__(self, input_dict):
389
390
391
392
393
394
        """Call function to apply noise to each ground truth in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
395
            dict: Results after adding noise to each object,
396
397
                'points', 'gt_bboxes_3d' keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
398
399
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
400

401
        # TODO: this is inplace operation
402
        numpy_box = gt_bboxes_3d.tensor.numpy()
403
404
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
405
        noise_per_object_v3_(
406
            numpy_box,
407
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
408
409
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
410
411
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
412
413

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
414
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
415
416
417
        return input_dict

    def __repr__(self):
418
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
419
        repr_str = self.__class__.__name__
420
421
422
423
        repr_str += f'(num_try={self.num_try},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' global_rot_range={self.global_rot_range},'
        repr_str += f' rot_range={self.rot_range})'
zhangwenwei's avatar
zhangwenwei committed
424
425
426
        return repr_str


427
428
429
430
431
432
433
434
@PIPELINES.register_module()
class GlobalAlignment(object):
    """Apply global alignment to 3D scene points by rotation and translation.

    Args:
        rotation_axis (int): Rotation axis for points and bboxes rotation.

    Note:
435
436
        We do not record the applied rotation and translation as in
            GlobalRotScaleTrans. Because usually, we do not need to reverse
437
            the alignment step.
438
        For example, ScanNet 3D detection task uses aligned ground-truth
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
            bounding boxes for evaluation.
    """

    def __init__(self, rotation_axis):
        self.rotation_axis = rotation_axis

    def _trans_points(self, input_dict, trans_factor):
        """Private function to translate points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            trans_factor (np.ndarray): Translation vector to be applied.

        Returns:
            dict: Results after translation, 'points' is updated in the dict.
        """
        input_dict['points'].translate(trans_factor)

    def _rot_points(self, input_dict, rot_mat):
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            rot_mat (np.ndarray): Rotation matrix to be applied.

        Returns:
            dict: Results after rotation, 'points' is updated in the dict.
        """
        # input should be rot_mat_T so I transpose it here
        input_dict['points'].rotate(rot_mat.T)

    def _check_rot_mat(self, rot_mat):
        """Check if rotation matrix is valid for self.rotation_axis.

        Args:
            rot_mat (np.ndarray): Rotation matrix to be applied.
        """
        is_valid = np.allclose(np.linalg.det(rot_mat), 1.0)
        valid_array = np.zeros(3)
        valid_array[self.rotation_axis] = 1.0
        is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all()
        is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all()
        assert is_valid, f'invalid rotation matrix {rot_mat}'

    def __call__(self, input_dict):
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
490
            dict: Results after global alignment, 'points' and keys in
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
        assert 'axis_align_matrix' in input_dict['ann_info'].keys(), \
            'axis_align_matrix is not provided in GlobalAlignment'

        axis_align_matrix = input_dict['ann_info']['axis_align_matrix']
        assert axis_align_matrix.shape == (4, 4), \
            f'invalid shape {axis_align_matrix.shape} for axis_align_matrix'
        rot_mat = axis_align_matrix[:3, :3]
        trans_vec = axis_align_matrix[:3, -1]

        self._check_rot_mat(rot_mat)
        self._rot_points(input_dict, rot_mat)
        self._trans_points(input_dict, trans_vec)

        return input_dict

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(rotation_axis={self.rotation_axis})'
        return repr_str


514
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
515
class GlobalRotScaleTrans(object):
zhangwenwei's avatar
zhangwenwei committed
516
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
517
518

    Args:
519
        rot_range (list[float], optional): Range of rotation angle.
liyinhao's avatar
liyinhao committed
520
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
521
        scale_ratio_range (list[float], optional): Range of scale ratio.
liyinhao's avatar
liyinhao committed
522
            Defaults to [0.95, 1.05].
523
524
        translation_std (list[float], optional): The standard deviation of
            translation noise applied to a scene, which
zhangwenwei's avatar
zhangwenwei committed
525
            is sampled from a gaussian distribution whose standard deviation
liyinhao's avatar
liyinhao committed
526
            is set by ``translation_std``. Defaults to [0, 0, 0]
527
        shift_height (bool, optional): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
528
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
529
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
530
    """
zhangwenwei's avatar
zhangwenwei committed
531
532

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
533
534
                 rot_range=[-0.78539816, 0.78539816],
                 scale_ratio_range=[0.95, 1.05],
wuyuefeng's avatar
wuyuefeng committed
535
536
                 translation_std=[0, 0, 0],
                 shift_height=False):
537
538
539
540
541
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(rot_range, seq_types):
            assert isinstance(rot_range, (int, float)), \
                f'unsupported rot_range type {type(rot_range)}'
            rot_range = [-rot_range, rot_range]
zhangwenwei's avatar
zhangwenwei committed
542
        self.rot_range = rot_range
543
544
545

        assert isinstance(scale_ratio_range, seq_types), \
            f'unsupported scale_ratio_range type {type(scale_ratio_range)}'
zhangwenwei's avatar
zhangwenwei committed
546
        self.scale_ratio_range = scale_ratio_range
547
548
549
550
551
552
553

        if not isinstance(translation_std, seq_types):
            assert isinstance(translation_std, (int, float)), \
                f'unsupported translation_std type {type(translation_std)}'
            translation_std = [
                translation_std, translation_std, translation_std
            ]
554
555
        assert all([std >= 0 for std in translation_std]), \
            'translation_std should be positive'
zhangwenwei's avatar
zhangwenwei committed
556
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
557
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
558
559

    def _trans_bbox_points(self, input_dict):
560
561
562
563
564
565
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
566
567
            dict: Results after translation, 'points', 'pcd_trans'
                and keys in input_dict['bbox3d_fields'] are updated
568
569
                in the result dict.
        """
570
        translation_std = np.array(self.translation_std, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
571
572
        trans_factor = np.random.normal(scale=translation_std, size=3).T

573
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
574
575
576
577
578
        input_dict['pcd_trans'] = trans_factor
        for key in input_dict['bbox3d_fields']:
            input_dict[key].translate(trans_factor)

    def _rot_bbox_points(self, input_dict):
579
580
581
582
583
584
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
585
586
            dict: Results after rotation, 'points', 'pcd_rotation'
                and keys in input_dict['bbox3d_fields'] are updated
587
588
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
589
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
590
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
591

592
593
594
595
        # if no bbox in input_dict, only rotate points
        if len(input_dict['bbox3d_fields']) == 0:
            rot_mat_T = input_dict['points'].rotate(noise_rotation)
            input_dict['pcd_rotation'] = rot_mat_T
596
            input_dict['pcd_rotation_angle'] = noise_rotation
597
598
599
            return

        # rotate points with bboxes
zhangwenwei's avatar
zhangwenwei committed
600
        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
601
602
603
604
605
            if len(input_dict[key].tensor) != 0:
                points, rot_mat_T = input_dict[key].rotate(
                    noise_rotation, input_dict['points'])
                input_dict['points'] = points
                input_dict['pcd_rotation'] = rot_mat_T
606
                input_dict['pcd_rotation_angle'] = noise_rotation
607

zhangwenwei's avatar
zhangwenwei committed
608
    def _scale_bbox_points(self, input_dict):
609
610
611
612
613
614
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
615
            dict: Results after scaling, 'points'and keys in
616
617
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
618
        scale = input_dict['pcd_scale_factor']
619
620
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
621
        if self.shift_height:
622
623
            assert 'height' in points.attribute_dims.keys(), \
                'setting shift_height=True but points have no height attribute'
624
625
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
626

zhangwenwei's avatar
zhangwenwei committed
627
628
        for key in input_dict['bbox3d_fields']:
            input_dict[key].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
629

zhangwenwei's avatar
zhangwenwei committed
630
    def _random_scale(self, input_dict):
631
632
633
634
635
636
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
637
            dict: Results after scaling, 'pcd_scale_factor' are updated
638
639
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
640
641
642
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
643
644

    def __call__(self, input_dict):
645
        """Private function to rotate, scale and translate bounding boxes and
646
647
648
649
650
651
652
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
653
                'pcd_scale_factor', 'pcd_trans' and keys in
654
655
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
656
657
658
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
659
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
660

zhangwenwei's avatar
zhangwenwei committed
661
662
663
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
664

zhangwenwei's avatar
zhangwenwei committed
665
        self._trans_bbox_points(input_dict)
666
667

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
668
669
670
        return input_dict

    def __repr__(self):
671
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
672
        repr_str = self.__class__.__name__
673
674
675
676
        repr_str += f'(rot_range={self.rot_range},'
        repr_str += f' scale_ratio_range={self.scale_ratio_range},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' shift_height={self.shift_height})'
zhangwenwei's avatar
zhangwenwei committed
677
678
679
        return repr_str


680
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
681
class PointShuffle(object):
682
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
683
684

    def __call__(self, input_dict):
685
686
687
688
689
690
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
691
            dict: Results after filtering, 'points', 'pts_instance_mask'
692
                and 'pts_semantic_mask' keys are updated in the result dict.
693
        """
694
695
696
697
698
699
700
701
702
703
704
705
        idx = input_dict['points'].shuffle()
        idx = idx.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[idx]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[idx]

zhangwenwei's avatar
zhangwenwei committed
706
707
708
709
710
711
        return input_dict

    def __repr__(self):
        return self.__class__.__name__


712
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
713
class ObjectRangeFilter(object):
714
715
716
717
718
    """Filter objects by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
719
720
721
722
723

    def __init__(self, point_cloud_range):
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)

    def __call__(self, input_dict):
724
725
726
727
728
729
        """Call function to filter objects by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
730
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
731
732
                keys are updated in the result dict.
        """
733
734
735
736
737
738
739
        # Check points instance type and initialise bev_range
        if isinstance(input_dict['gt_bboxes_3d'],
                      (LiDARInstance3DBoxes, DepthInstance3DBoxes)):
            bev_range = self.pcd_range[[0, 1, 3, 4]]
        elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes):
            bev_range = self.pcd_range[[0, 2, 3, 5]]

zhangwenwei's avatar
zhangwenwei committed
740
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
741
        gt_labels_3d = input_dict['gt_labels_3d']
742
        mask = gt_bboxes_3d.in_range_bev(bev_range)
zhangwenwei's avatar
zhangwenwei committed
743
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
744
745
746
747
748
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
749
750

        # limit rad to [-pi, pi]
751
752
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
753
754
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
755
756
757
        return input_dict

    def __repr__(self):
758
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
759
        repr_str = self.__class__.__name__
760
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
761
762
763
        return repr_str


764
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
765
class PointsRangeFilter(object):
766
767
768
769
770
    """Filter points by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
771
772

    def __init__(self, point_cloud_range):
773
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
774
775

    def __call__(self, input_dict):
776
777
778
779
780
781
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
782
            dict: Results after filtering, 'points', 'pts_instance_mask'
783
                and 'pts_semantic_mask' keys are updated in the result dict.
784
        """
zhangwenwei's avatar
zhangwenwei committed
785
        points = input_dict['points']
786
787
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
788
        input_dict['points'] = clean_points
789
790
791
792
793
794
795
796
797
798
799
        points_mask = points_mask.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[points_mask]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask]

zhangwenwei's avatar
zhangwenwei committed
800
801
802
        return input_dict

    def __repr__(self):
803
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
804
        repr_str = self.__class__.__name__
805
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
806
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
807
808
809
810


@PIPELINES.register_module()
class ObjectNameFilter(object):
zhangwenwei's avatar
zhangwenwei committed
811
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
812
813

    Args:
liyinhao's avatar
liyinhao committed
814
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
815
816
817
818
819
820
821
    """

    def __init__(self, classes):
        self.classes = classes
        self.labels = list(range(len(self.classes)))

    def __call__(self, input_dict):
822
823
824
825
826
827
        """Call function to filter objects by their names.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
828
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
829
830
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
831
832
833
834
835
836
837
838
839
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

    def __repr__(self):
840
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
841
842
843
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
844
845
846


@PIPELINES.register_module()
847
848
class PointSample(object):
    """Point sample.
wuyuefeng's avatar
wuyuefeng committed
849
850
851
852
853

    Sampling data to a certain number.

    Args:
        num_points (int): Number of points to be sampled.
854
        sample_range (float, optional): The range where to sample points.
855
856
857
858
            If not None, the points with depth larger than `sample_range` are
            prior to be sampled. Defaults to None.
        replace (bool, optional): Whether the sampling is with or without
            replacement. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
859
860
    """

861
    def __init__(self, num_points, sample_range=None, replace=False):
wuyuefeng's avatar
wuyuefeng committed
862
        self.num_points = num_points
863
864
865
866
867
868
869
870
871
        self.sample_range = sample_range
        self.replace = replace

    def _points_random_sampling(self,
                                points,
                                num_samples,
                                sample_range=None,
                                replace=False,
                                return_choices=False):
wuyuefeng's avatar
wuyuefeng committed
872
873
874
875
876
        """Points random sampling.

        Sample points to a certain number.

        Args:
877
            points (np.ndarray | :obj:`BasePoints`): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
878
            num_samples (int): Number of samples to be sampled.
879
            sample_range (float, optional): Indicating the range where the
880
                points will be sampled. Defaults to None.
881
882
883
884
            replace (bool, optional): Sampling with or without replacement.
                Defaults to None.
            return_choices (bool, optional): Whether return choice.
                Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
885
        Returns:
886
            tuple[np.ndarray] | np.ndarray:
887
                - points (np.ndarray | :obj:`BasePoints`): 3D Points.
888
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
889
        """
890
        if not replace:
wuyuefeng's avatar
wuyuefeng committed
891
            replace = (points.shape[0] < num_samples)
892
893
894
895
        point_range = range(len(points))
        if sample_range is not None and not replace:
            # Only sampling the near points when len(points) >= num_samples
            depth = np.linalg.norm(points.tensor, axis=1)
896
897
            far_inds = np.where(depth >= sample_range)[0]
            near_inds = np.where(depth < sample_range)[0]
898
899
900
901
            # in case there are too many far points
            if len(far_inds) > num_samples:
                far_inds = np.random.choice(
                    far_inds, num_samples, replace=False)
902
903
904
905
906
907
908
            point_range = near_inds
            num_samples -= len(far_inds)
        choices = np.random.choice(point_range, num_samples, replace=replace)
        if sample_range is not None and not replace:
            choices = np.concatenate((far_inds, choices))
            # Shuffle points after sampling
            np.random.shuffle(choices)
wuyuefeng's avatar
wuyuefeng committed
909
910
911
912
913
914
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

    def __call__(self, results):
915
916
917
918
919
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.
        Returns:
920
            dict: Results after sampling, 'points', 'pts_instance_mask'
921
922
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
923
        points = results['points']
924
925
926
927
928
929
        points, choices = self._points_random_sampling(
            points,
            self.num_points,
            self.sample_range,
            self.replace,
            return_choices=True)
930
        results['points'] = points
931

wuyuefeng's avatar
wuyuefeng committed
932
933
934
        pts_instance_mask = results.get('pts_instance_mask', None)
        pts_semantic_mask = results.get('pts_semantic_mask', None)

935
        if pts_instance_mask is not None:
wuyuefeng's avatar
wuyuefeng committed
936
937
            pts_instance_mask = pts_instance_mask[choices]
            results['pts_instance_mask'] = pts_instance_mask
938
939
940

        if pts_semantic_mask is not None:
            pts_semantic_mask = pts_semantic_mask[choices]
wuyuefeng's avatar
wuyuefeng committed
941
942
943
944
945
            results['pts_semantic_mask'] = pts_semantic_mask

        return results

    def __repr__(self):
946
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
947
        repr_str = self.__class__.__name__
948
        repr_str += f'(num_points={self.num_points},'
949
950
        repr_str += f' sample_range={self.sample_range},'
        repr_str += f' replace={self.replace})'
951

952
953
954
        return repr_str


955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
@PIPELINES.register_module()
class IndoorPointSample(PointSample):
    """Indoor point sample.

    Sampling data to a certain number.
    NOTE: IndoorPointSample is deprecated in favor of PointSample

    Args:
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, *args, **kwargs):
        warnings.warn(
            'IndoorPointSample is deprecated in favor of PointSample')
        super(IndoorPointSample, self).__init__(*args, **kwargs)


972
973
974
975
976
977
978
979
980
981
982
983
@PIPELINES.register_module()
class IndoorPatchPointSample(object):
    r"""Indoor point sample within a patch. Modified from `PointNet++ <https://
    github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py>`_.

    Sampling data to a certain number for semantic segmentation.

    Args:
        num_points (int): Number of points to be sampled.
        block_size (float, optional): Size of a block to sample points from.
            Defaults to 1.5.
        sample_rate (float, optional): Stride used in sliding patch generation.
984
985
986
            This parameter is unused in `IndoorPatchPointSample` and thus has
            been deprecated. We plan to remove it in the future.
            Defaults to None.
987
988
        ignore_index (int, optional): Label index that won't be used for the
            segmentation task. This is set in PointSegClassMapping as neg_cls.
989
            If not None, will be used as a patch selection criterion.
990
991
992
993
994
            Defaults to None.
        use_normalized_coord (bool, optional): Whether to use normalized xyz as
            additional features. Defaults to False.
        num_try (int, optional): Number of times to try if the patch selected
            is invalid. Defaults to 10.
995
        enlarge_size (float, optional): Enlarge the sampled patch to
996
            [-block_size / 2 - enlarge_size, block_size / 2 + enlarge_size] as
997
            an augmentation. If None, set it as 0. Defaults to 0.2.
998
        min_unique_num (int, optional): Minimum number of unique points
999
1000
            the sampled patch should contain. If None, use PointNet++'s method
            to judge uniqueness. Defaults to None.
1001
1002
        eps (float, optional): A value added to patch boundary to guarantee
            points coverage. Defaults to 1e-2.
1003
1004
1005
1006
1007
1008

    Note:
        This transform should only be used in the training process of point
            cloud segmentation tasks. For the sliding patch generation and
            inference process in testing, please refer to the `slide_inference`
            function of `EncoderDecoder3D` class.
1009
1010
1011
1012
1013
    """

    def __init__(self,
                 num_points,
                 block_size=1.5,
1014
                 sample_rate=None,
1015
1016
                 ignore_index=None,
                 use_normalized_coord=False,
1017
1018
                 num_try=10,
                 enlarge_size=0.2,
1019
1020
                 min_unique_num=None,
                 eps=1e-2):
1021
1022
1023
1024
1025
        self.num_points = num_points
        self.block_size = block_size
        self.ignore_index = ignore_index
        self.use_normalized_coord = use_normalized_coord
        self.num_try = num_try
1026
        self.enlarge_size = enlarge_size if enlarge_size is not None else 0.0
1027
        self.min_unique_num = min_unique_num
1028
        self.eps = eps
1029
1030
1031
1032
1033

        if sample_rate is not None:
            warnings.warn(
                "'sample_rate' has been deprecated and will be removed in "
                'the future. Please remove them from your code.')
1034
1035
1036
1037
1038

    def _input_generation(self, coords, patch_center, coord_max, attributes,
                          attribute_dims, point_type):
        """Generating model input.

1039
        Generate input by subtracting patch center and adding additional
1040
1041
1042
1043
1044
1045
1046
1047
1048
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (np.ndarray): Sampled 3D Points.
            patch_center (np.ndarray): Center coordinate of the selected patch.
            coord_max (np.ndarray): Max coordinate of all 3D Points.
            attributes (np.ndarray): features of input points.
            attribute_dims (dict): Dictionary to indicate the meaning of extra
                dimension.
1049
            point_type (type): class of input points inherited from BasePoints.
1050
1051

        Returns:
1052
            :obj:`BasePoints`: The generated input data.
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.copy()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        if self.use_normalized_coord:
            normalized_coord = coords / coord_max
            attributes = np.concatenate([attributes, normalized_coord], axis=1)
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(normalized_coord=[
                    attributes.shape[1], attributes.shape[1] +
                    1, attributes.shape[1] + 2
                ]))

        points = np.concatenate([centered_coords, attributes], axis=1)
        points = point_type(
            points, points_dim=points.shape[1], attribute_dims=attribute_dims)

        return points

1076
    def _patch_points_sampling(self, points, sem_mask):
1077
1078
1079
1080
1081
1082
        """Patch points sampling.

        First sample a valid patch.
        Then sample points within that patch to a certain number.

        Args:
1083
            points (:obj:`BasePoints`): 3D Points.
1084
1085
1086
            sem_mask (np.ndarray): semantic segmentation mask for input points.

        Returns:
1087
            tuple[:obj:`BasePoints`, np.ndarray] | :obj:`BasePoints`:
1088

1089
                - points (:obj:`BasePoints`): 3D Points.
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
                - choices (np.ndarray): The generated random samples.
        """
        coords = points.coord.numpy()
        attributes = points.tensor[:, 3:].numpy()
        attribute_dims = points.attribute_dims
        point_type = type(points)

        coord_max = np.amax(coords, axis=0)
        coord_min = np.amin(coords, axis=0)

1100
        for _ in range(self.num_try):
1101
1102
1103
            # random sample a point as patch center
            cur_center = coords[np.random.choice(coords.shape[0])]

1104
1105
            # boundary of a patch, which would be enlarged by
            # `self.enlarge_size` as an augmentation
1106
1107
1108
1109
1110
1111
1112
            cur_max = cur_center + np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_min = cur_center - np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_max[2] = coord_max[2]
            cur_min[2] = coord_min[2]
            cur_choice = np.sum(
1113
1114
                (coords >= (cur_min - self.enlarge_size)) *
                (coords <= (cur_max + self.enlarge_size)),
1115
1116
1117
1118
1119
1120
1121
                axis=1) == 3

            if not cur_choice.any():  # no points in this patch
                continue

            cur_coords = coords[cur_choice, :]
            cur_sem_mask = sem_mask[cur_choice]
1122
            point_idxs = np.where(cur_choice)[0]
1123
            mask = np.sum(
1124
1125
                (cur_coords >= (cur_min - self.eps)) * (cur_coords <=
                                                        (cur_max + self.eps)),
1126
                axis=1) == 3
1127

1128
1129
            # two criteria for patch sampling, adopted from PointNet++
            # 1. selected patch should contain enough unique points
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
            if self.min_unique_num is None:
                # use PointNet++'s method as default
                # [31, 31, 62] are just some big values used to transform
                # coords from 3d array to 1d and then check their uniqueness
                # this is used in all the ScanNet code following PointNet++
                vidx = np.ceil(
                    (cur_coords[mask, :] - cur_min) / (cur_max - cur_min) *
                    np.array([31.0, 31.0, 62.0]))
                vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 +
                                 vidx[:, 2])
                flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02
            else:
1142
                # if `min_unique_num` is provided, directly compare with it
1143
                flag1 = mask.sum() >= self.min_unique_num
1144

1145
            # 2. selected patch should contain enough annotated points
1146
1147
1148
1149
1150
1151
1152
1153
1154
            if self.ignore_index is None:
                flag2 = True
            else:
                flag2 = np.sum(cur_sem_mask != self.ignore_index) / \
                               len(cur_sem_mask) >= 0.7

            if flag1 and flag2:
                break

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
        # sample idx to `self.num_points`
        if point_idxs.size >= self.num_points:
            # no duplicate in sub-sampling
            choices = np.random.choice(
                point_idxs, self.num_points, replace=False)
        else:
            # do not use random choice here to avoid some points not counted
            dup = np.random.choice(point_idxs.size,
                                   self.num_points - point_idxs.size)
            idx_dup = np.concatenate(
                [np.arange(point_idxs.size),
                 np.array(dup)], 0)
            choices = point_idxs[idx_dup]
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182

        # construct model input
        points = self._input_generation(coords[choices], cur_center, coord_max,
                                        attributes[choices], attribute_dims,
                                        point_type)

        return points, choices

    def __call__(self, results):
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1183
            dict: Results after sampling, 'points', 'pts_instance_mask'
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']

        assert 'pts_semantic_mask' in results.keys(), \
            'semantic mask should be provided in training and evaluation'
        pts_semantic_mask = results['pts_semantic_mask']

        points, choices = self._patch_points_sampling(points,
                                                      pts_semantic_mask)

        results['points'] = points
        results['pts_semantic_mask'] = pts_semantic_mask[choices]
        pts_instance_mask = results.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            results['pts_instance_mask'] = pts_instance_mask[choices]

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_points={self.num_points},'
        repr_str += f' block_size={self.block_size},'
        repr_str += f' ignore_index={self.ignore_index},'
        repr_str += f' use_normalized_coord={self.use_normalized_coord},'
1210
1211
        repr_str += f' num_try={self.num_try},'
        repr_str += f' enlarge_size={self.enlarge_size},'
1212
1213
        repr_str += f' min_unique_num={self.min_unique_num},'
        repr_str += f' eps={self.eps})'
wuyuefeng's avatar
wuyuefeng committed
1214
        return repr_str
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242


@PIPELINES.register_module()
class BackgroundPointsFilter(object):
    """Filter background points near the bounding box.

    Args:
        bbox_enlarge_range (tuple[float], float): Bbox enlarge range.
    """

    def __init__(self, bbox_enlarge_range):
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

    def __call__(self, input_dict):
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1243
            dict: Results after filtering, 'points', 'pts_instance_mask'
1244
                and 'pts_semantic_mask' keys are updated in the result dict.
1245
1246
1247
1248
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

xiliu8006's avatar
xiliu8006 committed
1249
1250
1251
1252
        # avoid groundtruth being modified
        gt_bboxes_3d_np = gt_bboxes_3d.tensor.clone().numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.clone().numpy()

1253
1254
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
xiliu8006's avatar
xiliu8006 committed
1255
        points_numpy = points.tensor.clone().numpy()
1256
1257
        foreground_masks = box_np_ops.points_in_rbbox(
            points_numpy, gt_bboxes_3d_np, origin=(0.5, 0.5, 0.5))
1258
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
1259
            points_numpy, enlarged_gt_bboxes_3d, origin=(0.5, 0.5, 0.5))
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
1278
        repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})'
1279
        return repr_str
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290


@PIPELINES.register_module()
class VoxelBasedPointSampler(object):
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
        prev_sweep_cfg (dict): Config for sampling previous points.
1291
        time_dim (int): Index that indicate the time dimension
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
            for input points.
    """

    def __init__(self, cur_sweep_cfg, prev_sweep_cfg=None, time_dim=3):
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

    def _sample_points(self, points, sampler, point_dim):
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
1315
            point_dim (int): The dimension of each points
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

    def __call__(self, results):
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1341
            dict: Results after sampling, 'points', 'pts_instance_mask'
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
1352
1353
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
1354
1355
1356
1357
1358
1359
1360
1361
1362
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

1363
        points_numpy = np.concatenate(extra_channel, axis=-1)
1364
1365
1366
1367
1368

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
1369
1370
1371
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
1372
1373
1374
1375
1376
1377
1378
1379
1380
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
1381
                                               points_numpy.shape[1])
1382
1383
1384
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
1385
                                                     points_numpy.shape[1])
1386

1387
1388
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
1389
        else:
1390
            points_numpy = cur_sweep_points
1391
1392

        if self.cur_voxel_generator._max_num_points == 1:
1393
1394
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
1395

1396
        # Restore the corresponding seg and mask fields
1397
        for key, dim_index in map_fields2dim:
1398
            results[key] = points_numpy[..., dim_index]
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548


@PIPELINES.register_module()
class AffineResize(object):
    """Get the affine transform matrices to the target size.

    Different from :class:`RandomAffine` in MMDetection, this class can
    calculate the affine transform matrices while resizing the input image
    to a fixed size. The affine transform matrices include: 1) matrix
    transforming original image to the network input image size. 2) matrix
    transforming original image to the network output feature map size.

    Args:
        img_scale (tuple): Images scales for resizing.
        down_ratio (int): The down ratio of feature map.
            Actually the arg should be >= 1.
        bbox_clip_border (bool, optional): Whether clip the objects
            outside the border of the image. Defaults to True.
    """

    def __init__(self, img_scale, down_ratio, bbox_clip_border=True):

        self.img_scale = img_scale
        self.down_ratio = down_ratio
        self.bbox_clip_border = bbox_clip_border

    def __call__(self, results):
        """Call function to do affine transform to input image and labels.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after affine resize, 'affine_aug', 'trans_mat'
                keys are added in the result dict.
        """
        # The results have gone through RandomShiftScale before AffineResize
        if 'center' not in results:
            img = results['img']
            height, width = img.shape[:2]
            center = np.array([width / 2, height / 2], dtype=np.float32)
            size = np.array([width, height], dtype=np.float32)
            results['affine_aug'] = False
        else:
            # The results did not go through RandomShiftScale before
            # AffineResize
            img = results['img']
            center = results['center']
            size = results['size']

        trans_affine = self._get_transform_matrix(center, size, self.img_scale)

        img = cv2.warpAffine(img, trans_affine[:2, :], self.img_scale)

        if isinstance(self.down_ratio, tuple):
            trans_mat = [
                self._get_transform_matrix(
                    center, size,
                    (self.img_scale[0] // ratio, self.img_scale[1] // ratio))
                for ratio in self.down_ratio
            ]  # (3, 3)
        else:
            trans_mat = self._get_transform_matrix(
                center, size, (self.img_scale[0] // self.down_ratio,
                               self.img_scale[1] // self.down_ratio))

        results['img'] = img
        results['img_shape'] = img.shape
        results['pad_shape'] = img.shape
        results['trans_mat'] = trans_mat

        self._affine_bboxes(results, trans_affine)

        if 'centers2d' in results:
            centers2d = self._affine_transform(results['centers2d'],
                                               trans_affine)
            valid_index = (centers2d[:, 0] >
                           0) & (centers2d[:, 0] <
                                 self.img_scale[0]) & (centers2d[:, 1] > 0) & (
                                     centers2d[:, 1] < self.img_scale[1])
            results['centers2d'] = centers2d[valid_index]

            for key in results.get('bbox_fields', []):
                if key in ['gt_bboxes']:
                    results[key] = results[key][valid_index]
                    if 'gt_labels' in results:
                        results['gt_labels'] = results['gt_labels'][
                            valid_index]
                    if 'gt_masks' in results:
                        raise NotImplementedError(
                            'AffineResize only supports bbox.')

            for key in results.get('bbox3d_fields', []):
                if key in ['gt_bboxes_3d']:
                    results[key].tensor = results[key].tensor[valid_index]
                    if 'gt_labels_3d' in results:
                        results['gt_labels_3d'] = results['gt_labels_3d'][
                            valid_index]

            results['depths'] = results['depths'][valid_index]

        return results

    def _affine_bboxes(self, results, matrix):
        """Affine transform bboxes to input image.

        Args:
            results (dict): Result dict from loading pipeline.
            matrix (np.ndarray): Matrix transforming original
                image to the network input image size.
                shape: (3, 3)
        """

        for key in results.get('bbox_fields', []):
            bboxes = results[key]
            bboxes[:, :2] = self._affine_transform(bboxes[:, :2], matrix)
            bboxes[:, 2:] = self._affine_transform(bboxes[:, 2:], matrix)
            if self.bbox_clip_border:
                bboxes[:,
                       [0, 2]] = bboxes[:,
                                        [0, 2]].clip(0, self.img_scale[0] - 1)
                bboxes[:,
                       [1, 3]] = bboxes[:,
                                        [1, 3]].clip(0, self.img_scale[1] - 1)
            results[key] = bboxes

    def _affine_transform(self, points, matrix):
1549
        """Affine transform bbox points to input image.
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602

        Args:
            points (np.ndarray): Points to be transformed.
                shape: (N, 2)
            matrix (np.ndarray): Affine transform matrix.
                shape: (3, 3)

        Returns:
            np.ndarray: Transformed points.
        """
        num_points = points.shape[0]
        hom_points_2d = np.concatenate((points, np.ones((num_points, 1))),
                                       axis=1)
        hom_points_2d = hom_points_2d.T
        affined_points = np.matmul(matrix, hom_points_2d).T
        return affined_points[:, :2]

    def _get_transform_matrix(self, center, scale, output_scale):
        """Get affine transform matrix.

        Args:
            center (tuple): Center of current image.
            scale (tuple): Scale of current image.
            output_scale (tuple[float]): The transform target image scales.

        Returns:
            np.ndarray: Affine transform matrix.
        """
        # TODO: further add rot and shift here.
        src_w = scale[0]
        dst_w = output_scale[0]
        dst_h = output_scale[1]

        src_dir = np.array([0, src_w * -0.5])
        dst_dir = np.array([0, dst_w * -0.5])

        src = np.zeros((3, 2), dtype=np.float32)
        dst = np.zeros((3, 2), dtype=np.float32)
        src[0, :] = center
        src[1, :] = center + src_dir
        dst[0, :] = np.array([dst_w * 0.5, dst_h * 0.5])
        dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir

        src[2, :] = self._get_ref_point(src[0, :], src[1, :])
        dst[2, :] = self._get_ref_point(dst[0, :], dst[1, :])

        get_matrix = cv2.getAffineTransform(src, dst)

        matrix = np.concatenate((get_matrix, [[0., 0., 1.]]))

        return matrix.astype(np.float32)

    def _get_ref_point(self, ref_point1, ref_point2):
1603
        """Get reference point to calculate affine transform matrix.
1604
1605

        While using opencv to calculate the affine matrix, we need at least
1606
        three corresponding points separately on original image and target
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
        image. Here we use two points to get the the third reference point.
        """
        d = ref_point1 - ref_point2
        ref_point3 = ref_point2 + np.array([-d[1], d[0]])
        return ref_point3

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(img_scale={self.img_scale}, '
        repr_str += f'down_ratio={self.down_ratio}) '
        return repr_str


@PIPELINES.register_module()
class RandomShiftScale(object):
    """Random shift scale.

    Different from the normal shift and scale function, it doesn't
    directly shift or scale image. It can record the shift and scale
1626
    infos into loading pipelines. It's designed to be used with
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
    AffineResize together.

    Args:
        shift_scale (tuple[float]): Shift and scale range.
        aug_prob (float): The shifting and scaling probability.
    """

    def __init__(self, shift_scale, aug_prob):

        self.shift_scale = shift_scale
        self.aug_prob = aug_prob

    def __call__(self, results):
        """Call function to record random shift and scale infos.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after random shift and scale, 'center', 'size'
                and 'affine_aug' keys are added in the result dict.
        """
        img = results['img']

        height, width = img.shape[:2]

        center = np.array([width / 2, height / 2], dtype=np.float32)
        size = np.array([width, height], dtype=np.float32)

        if random.random() < self.aug_prob:
            shift, scale = self.shift_scale[0], self.shift_scale[1]
            shift_ranges = np.arange(-shift, shift + 0.1, 0.1)
            center[0] += size[0] * random.choice(shift_ranges)
            center[1] += size[1] * random.choice(shift_ranges)
            scale_ranges = np.arange(1 - scale, 1 + scale + 0.1, 0.1)
            size *= random.choice(scale_ranges)
            results['affine_aug'] = True
        else:
            results['affine_aug'] = False

        results['center'] = center
        results['size'] = size

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(shift_scale={self.shift_scale}, '
        repr_str += f'aug_prob={self.aug_prob}) '
        return repr_str