test_box3d.py 84.4 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
import unittest

4
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
5
import pytest
6
7
import torch

liyinhao's avatar
liyinhao committed
8
from mmdet3d.core.bbox import (BaseInstance3DBoxes, Box3DMode,
9
10
11
                               CameraInstance3DBoxes, Coord3DMode,
                               DepthInstance3DBoxes, LiDARInstance3DBoxes,
                               bbox3d2roi, bbox3d_mapping_back)
liyinhao's avatar
liyinhao committed
12
13
14
15
from mmdet3d.core.bbox.structures.utils import (get_box_type, limit_period,
                                                points_cam2img,
                                                rotation_3d_in_axis,
                                                xywhr2xyxyr)
16
from mmdet3d.core.points import CameraPoints, DepthPoints, LiDARPoints
liyinhao's avatar
liyinhao committed
17
18


yinchimaoliang's avatar
yinchimaoliang committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
def test_bbox3d_mapping_back():
    bboxes = BaseInstance3DBoxes(
        [[
            -5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 2.06200000e+00,
            4.40900000e+00, 1.54800000e+00, -1.48801203e+00
        ],
         [
             -2.66751588e+01, 5.59499564e+00, -9.14345860e-01, 3.43000000e-01,
             4.58000000e-01, 7.82000000e-01, -4.62759755e+00
         ],
         [
             -5.80979675e+00, 3.54092357e+01, 2.00889888e-01, 2.39600000e+00,
             3.96900000e+00, 1.73200000e+00, -4.65203216e+00
         ],
         [
             -3.13086877e+01, 1.09007628e+00, -1.94612112e-01, 1.94400000e+00,
             3.85700000e+00, 1.72300000e+00, -2.81427027e+00
         ]])
    new_bboxes = bbox3d_mapping_back(bboxes, 1.1, True, True)
    expected_new_bboxes = torch.tensor(
        [[-4.7657, 36.3827, 0.2705, 1.8745, 4.0082, 1.4073, -1.4880],
         [-24.2501, 5.0864, -0.8312, 0.3118, 0.4164, 0.7109, -4.6276],
         [-5.2816, 32.1902, 0.1826, 2.1782, 3.6082, 1.5745, -4.6520],
         [-28.4624, 0.9910, -0.1769, 1.7673, 3.5064, 1.5664, -2.8143]])
    assert torch.allclose(new_bboxes.tensor, expected_new_bboxes, atol=1e-4)


def test_bbox3d2roi():
    bbox_0 = torch.tensor(
        [[-5.2422, 4.0020, 2.9757, 2.0620, 4.4090, 1.5480, -1.4880],
         [-5.8097, 3.5409, 2.0088, 2.3960, 3.9690, 1.7320, -4.6520]])
    bbox_1 = torch.tensor(
        [[-2.6675, 5.5949, -9.1434, 3.4300, 4.5800, 7.8200, -4.6275],
         [-3.1308, 1.0900, -1.9461, 1.9440, 3.8570, 1.7230, -2.8142]])
    bbox_list = [bbox_0, bbox_1]
    rois = bbox3d2roi(bbox_list)
    expected_rois = torch.tensor(
        [[0.0000, -5.2422, 4.0020, 2.9757, 2.0620, 4.4090, 1.5480, -1.4880],
         [0.0000, -5.8097, 3.5409, 2.0088, 2.3960, 3.9690, 1.7320, -4.6520],
         [1.0000, -2.6675, 5.5949, -9.1434, 3.4300, 4.5800, 7.8200, -4.6275],
         [1.0000, -3.1308, 1.0900, -1.9461, 1.9440, 3.8570, 1.7230, -2.8142]])
    assert torch.all(torch.eq(rois, expected_rois))


liyinhao's avatar
liyinhao committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
def test_base_boxes3d():
    # test empty initialization
    empty_boxes = []
    boxes = BaseInstance3DBoxes(empty_boxes)
    assert boxes.tensor.shape[0] == 0
    assert boxes.tensor.shape[1] == 7

    # Test init with origin
    gravity_center_box = np.array(
        [[
            -5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 2.06200000e+00,
            4.40900000e+00, 1.54800000e+00, -1.48801203e+00
        ],
         [
             -2.66751588e+01, 5.59499564e+00, -9.14345860e-01, 3.43000000e-01,
             4.58000000e-01, 7.82000000e-01, -4.62759755e+00
         ],
         [
             -5.80979675e+00, 3.54092357e+01, 2.00889888e-01, 2.39600000e+00,
             3.96900000e+00, 1.73200000e+00, -4.65203216e+00
         ],
         [
             -3.13086877e+01, 1.09007628e+00, -1.94612112e-01, 1.94400000e+00,
             3.85700000e+00, 1.72300000e+00, -2.81427027e+00
         ]],
        dtype=np.float32)

    bottom_center_box = BaseInstance3DBoxes(
        gravity_center_box, origin=(0.5, 0.5, 0.5))

    assert bottom_center_box.yaw.shape[0] == 4
94
95
96


def test_lidar_boxes3d():
zhangwenwei's avatar
zhangwenwei committed
97
98
99
100
101
102
    # test empty initialization
    empty_boxes = []
    boxes = LiDARInstance3DBoxes(empty_boxes)
    assert boxes.tensor.shape[0] == 0
    assert boxes.tensor.shape[1] == 7

zhangwenwei's avatar
zhangwenwei committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    # Test init with origin
    gravity_center_box = np.array(
        [[
            -5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 2.06200000e+00,
            4.40900000e+00, 1.54800000e+00, -1.48801203e+00
        ],
         [
             -2.66751588e+01, 5.59499564e+00, -9.14345860e-01, 3.43000000e-01,
             4.58000000e-01, 7.82000000e-01, -4.62759755e+00
         ],
         [
             -5.80979675e+00, 3.54092357e+01, 2.00889888e-01, 2.39600000e+00,
             3.96900000e+00, 1.73200000e+00, -4.65203216e+00
         ],
         [
             -3.13086877e+01, 1.09007628e+00, -1.94612112e-01, 1.94400000e+00,
             3.85700000e+00, 1.72300000e+00, -2.81427027e+00
         ]],
        dtype=np.float32)
    bottom_center_box = LiDARInstance3DBoxes(
wuyuefeng's avatar
wuyuefeng committed
123
        gravity_center_box, origin=(0.5, 0.5, 0.5))
zhangwenwei's avatar
zhangwenwei committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    expected_tensor = torch.tensor(
        [[
            -5.24223238e+00, 4.00209696e+01, -4.76429619e-01, 2.06200000e+00,
            4.40900000e+00, 1.54800000e+00, -1.48801203e+00
        ],
         [
             -2.66751588e+01, 5.59499564e+00, -1.30534586e+00, 3.43000000e-01,
             4.58000000e-01, 7.82000000e-01, -4.62759755e+00
         ],
         [
             -5.80979675e+00, 3.54092357e+01, -6.65110112e-01, 2.39600000e+00,
             3.96900000e+00, 1.73200000e+00, -4.65203216e+00
         ],
         [
             -3.13086877e+01, 1.09007628e+00, -1.05611211e+00, 1.94400000e+00,
             3.85700000e+00, 1.72300000e+00, -2.81427027e+00
         ]])
    assert torch.allclose(expected_tensor, bottom_center_box.tensor)

143
    # Test init with numpy array
144
145
146
147
148
149
150
151
152
    np_boxes = np.array([[
        1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65,
        1.48 - 0.13603681398218053 * 4
    ],
                         [
                             8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57,
                             1.62 - 0.13603681398218053 * 4
                         ]],
                        dtype=np.float32)
153
154
155
    boxes_1 = LiDARInstance3DBoxes(np_boxes)
    assert torch.allclose(boxes_1.tensor, torch.from_numpy(np_boxes))

zhangwenwei's avatar
zhangwenwei committed
156
157
158
159
160
161
    # test properties
    assert boxes_1.volume.size(0) == 2
    assert (boxes_1.center == boxes_1.bottom_center).all()
    assert repr(boxes) == (
        'LiDARInstance3DBoxes(\n    tensor([], size=(0, 7)))')

162
163
164
165
    # test init with torch.Tensor
    th_boxes = torch.tensor(
        [[
            28.29669987, -0.5557558, -1.30332506, 1.47000003, 2.23000002,
166
            1.48000002, -1.57000005 - 0.13603681398218053 * 4
167
168
169
        ],
         [
             26.66901946, 21.82302134, -1.73605708, 1.55999994, 3.48000002,
170
             1.39999998, -1.69000006 - 0.13603681398218053 * 4
171
172
173
         ],
         [
             31.31977974, 8.16214412, -1.62177875, 1.74000001, 3.76999998,
174
             1.48000002, 2.78999996 - 0.13603681398218053 * 4
175
176
177
178
179
180
181
182
183
184
         ]],
        dtype=torch.float32)
    boxes_2 = LiDARInstance3DBoxes(th_boxes)
    assert torch.allclose(boxes_2.tensor, th_boxes)

    # test clone/to/device
    boxes_2 = boxes_2.clone()
    boxes_1 = boxes_1.to(boxes_2.device)

    # test box concatenation
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    expected_tensor = torch.tensor([[
        1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65,
        1.48 - 0.13603681398218053 * 4
    ],
                                    [
                                        8.959413, 2.4567227, -1.6357126, 1.54,
                                        4.01, 1.57,
                                        1.62 - 0.13603681398218053 * 4
                                    ],
                                    [
                                        28.2967, -0.5557558, -1.303325, 1.47,
                                        2.23, 1.48,
                                        -1.57 - 0.13603681398218053 * 4
                                    ],
                                    [
                                        26.66902, 21.82302, -1.736057, 1.56,
                                        3.48, 1.4,
                                        -1.69 - 0.13603681398218053 * 4
                                    ],
                                    [
                                        31.31978, 8.162144, -1.6217787, 1.74,
                                        3.77, 1.48,
                                        2.79 - 0.13603681398218053 * 4
                                    ]])
209
210
    boxes = LiDARInstance3DBoxes.cat([boxes_1, boxes_2])
    assert torch.allclose(boxes.tensor, expected_tensor)
zhangwenwei's avatar
zhangwenwei committed
211
212
213
214
    # concatenate empty list
    empty_boxes = LiDARInstance3DBoxes.cat([])
    assert empty_boxes.tensor.shape[0] == 0
    assert empty_boxes.tensor.shape[-1] == 7
215
216

    # test box flip
liyinhao's avatar
liyinhao committed
217
218
219
220
221
    points = torch.tensor([[1.2559, -0.6762, -1.4658],
                           [4.7814, -0.8784,
                            -1.3857], [6.7053, 0.2517, -0.9697],
                           [0.6533, -0.5520, -0.5265],
                           [4.5870, 0.5358, -1.4741]])
222
    expected_tensor = torch.tensor(
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        [[
            1.7802081, -2.516249, -1.7501148, 1.75, 3.39, 1.65,
            1.6615927 - np.pi + 0.13603681398218053 * 4
        ],
         [
             8.959413, -2.4567227, -1.6357126, 1.54, 4.01, 1.57,
             1.5215927 - np.pi + 0.13603681398218053 * 4
         ],
         [
             28.2967, 0.5557558, -1.303325, 1.47, 2.23, 1.48,
             4.7115927 - np.pi + 0.13603681398218053 * 4
         ],
         [
             26.66902, -21.82302, -1.736057, 1.56, 3.48, 1.4,
             4.8315926 - np.pi + 0.13603681398218053 * 4
         ],
         [
             31.31978, -8.162144, -1.6217787, 1.74, 3.77, 1.48,
             0.35159278 - np.pi + 0.13603681398218053 * 4
         ]])
liyinhao's avatar
liyinhao committed
243
244
245
246
247
248
    expected_points = torch.tensor([[1.2559, 0.6762, -1.4658],
                                    [4.7814, 0.8784, -1.3857],
                                    [6.7053, -0.2517, -0.9697],
                                    [0.6533, 0.5520, -0.5265],
                                    [4.5870, -0.5358, -1.4741]])
    points = boxes.flip('horizontal', points)
249
    assert torch.allclose(boxes.tensor, expected_tensor)
liyinhao's avatar
liyinhao committed
250
    assert torch.allclose(points, expected_points, 1e-3)
251

wuyuefeng's avatar
wuyuefeng committed
252
    expected_tensor = torch.tensor(
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        [[
            -1.7802, -2.5162, -1.7501, 1.7500, 3.3900, 1.6500,
            -1.6616 + np.pi * 2 - 0.13603681398218053 * 4
        ],
         [
             -8.9594, -2.4567, -1.6357, 1.5400, 4.0100, 1.5700,
             -1.5216 + np.pi * 2 - 0.13603681398218053 * 4
         ],
         [
             -28.2967, 0.5558, -1.3033, 1.4700, 2.2300, 1.4800,
             -4.7116 + np.pi * 2 - 0.13603681398218053 * 4
         ],
         [
             -26.6690, -21.8230, -1.7361, 1.5600, 3.4800, 1.4000,
             -4.8316 + np.pi * 2 - 0.13603681398218053 * 4
         ],
         [
             -31.3198, -8.1621, -1.6218, 1.7400, 3.7700, 1.4800,
             -0.3516 + np.pi * 2 - 0.13603681398218053 * 4
         ]])
wuyuefeng's avatar
wuyuefeng committed
273
    boxes_flip_vert = boxes.clone()
liyinhao's avatar
liyinhao committed
274
275
276
277
278
279
    points = boxes_flip_vert.flip('vertical', points)
    expected_points = torch.tensor([[-1.2559, 0.6762, -1.4658],
                                    [-4.7814, 0.8784, -1.3857],
                                    [-6.7053, -0.2517, -0.9697],
                                    [-0.6533, 0.5520, -0.5265],
                                    [-4.5870, -0.5358, -1.4741]])
wuyuefeng's avatar
wuyuefeng committed
280
    assert torch.allclose(boxes_flip_vert.tensor, expected_tensor, 1e-4)
liyinhao's avatar
liyinhao committed
281
    assert torch.allclose(points, expected_points)
wuyuefeng's avatar
wuyuefeng committed
282

283
    # test box rotation
284
    # with input torch.Tensor points and angle
285
    expected_tensor = torch.tensor(
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
        [[
            1.4225, -2.7344, -1.7501, 1.7500, 3.3900, 1.6500,
            1.7976 - np.pi + 0.13603681398218053 * 2
        ],
         [
             8.5435, -3.6491, -1.6357, 1.5400, 4.0100, 1.5700,
             1.6576 - np.pi + 0.13603681398218053 * 2
         ],
         [
             28.1106, -3.2869, -1.3033, 1.4700, 2.2300, 1.4800,
             4.8476 - np.pi + 0.13603681398218053 * 2
         ],
         [
             23.4630, -25.2382, -1.7361, 1.5600, 3.4800, 1.4000,
             4.9676 - np.pi + 0.13603681398218053 * 2
         ],
         [
             29.9235, -12.3342, -1.6218, 1.7400, 3.7700, 1.4800,
             0.4876 - np.pi + 0.13603681398218053 * 2
         ]])
    points, rot_mat_T = boxes.rotate(-0.13603681398218053, points)
liyinhao's avatar
liyinhao committed
307
308
309
310
311
312
313
314
315
316
317
318
    expected_points = torch.tensor([[-1.1526, 0.8403, -1.4658],
                                    [-4.6181, 1.5187, -1.3857],
                                    [-6.6775, 0.6600, -0.9697],
                                    [-0.5724, 0.6355, -0.5265],
                                    [-4.6173, 0.0912, -1.4741]])
    expected_rot_mat_T = torch.tensor([[0.9908, -0.1356, 0.0000],
                                       [0.1356, 0.9908, 0.0000],
                                       [0.0000, 0.0000, 1.0000]])
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)

319
    # with input torch.Tensor points and rotation matrix
320
    points, rot_mat_T = boxes.rotate(0.13603681398218053, points)  # back
321
322
323
324
325
326
327
328
    rot_mat = np.array([[0.99076125, -0.13561762, 0.],
                        [0.13561762, 0.99076125, 0.], [0., 0., 1.]])
    points, rot_mat_T = boxes.rotate(rot_mat, points)
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)

    # with input np.ndarray points and angle
liyinhao's avatar
liyinhao committed
329
330
331
332
333
    points_np = np.array([[-1.0280, 0.9888,
                           -1.4658], [-4.3695, 2.1310, -1.3857],
                          [-6.5263, 1.5595,
                           -0.9697], [-0.4809, 0.7073, -0.5265],
                          [-4.5623, 0.7166, -1.4741]])
334
    points_np, rot_mat_T_np = boxes.rotate(-0.13603681398218053, points_np)
liyinhao's avatar
liyinhao committed
335
336
337
338
339
340
341
342
343
344
345
    expected_points_np = np.array([[-0.8844, 1.1191, -1.4658],
                                   [-4.0401, 2.7039, -1.3857],
                                   [-6.2545, 2.4302, -0.9697],
                                   [-0.3805, 0.7660, -0.5265],
                                   [-4.4230, 1.3287, -1.4741]])
    expected_rot_mat_T_np = np.array([[0.9908, -0.1356, 0.0000],
                                      [0.1356, 0.9908, 0.0000],
                                      [0.0000, 0.0000, 1.0000]])

    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)
346

347
    # with input LiDARPoints and rotation matrix
348
    points_np, rot_mat_T_np = boxes.rotate(0.13603681398218053, points_np)
349
350
351
352
353
354
355
    lidar_points = LiDARPoints(points_np)
    lidar_points, rot_mat_T_np = boxes.rotate(rot_mat, lidar_points)
    points_np = lidar_points.tensor.numpy()

    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)

356
357
358
    # test box scaling
    expected_tensor = torch.tensor([[
        1.0443488, -2.9183323, -1.7599131, 1.7597977, 3.4089797, 1.6592377,
359
        1.9336663 - np.pi
360
361
362
363
    ],
                                    [
                                        8.014273, -4.8007393, -1.6448704,
                                        1.5486219, 4.0324507, 1.57879,
364
                                        1.7936664 - np.pi
365
366
367
368
                                    ],
                                    [
                                        27.558605, -7.1084175, -1.310622,
                                        1.4782301, 2.242485, 1.488286,
369
                                        4.9836664 - np.pi
370
371
372
373
                                    ],
                                    [
                                        19.934517, -28.344835, -1.7457767,
                                        1.5687338, 3.4994833, 1.4078381,
374
                                        5.1036663 - np.pi
375
376
377
378
                                    ],
                                    [
                                        28.130915, -16.369587, -1.6308585,
                                        1.7497417, 3.791107, 1.488286,
379
                                        0.6236664 - np.pi
380
381
382
383
384
385
386
                                    ]])
    boxes.scale(1.00559866335275)
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box translation
    expected_tensor = torch.tensor([[
        1.1281544, -3.0507944, -1.9169292, 1.7597977, 3.4089797, 1.6592377,
387
        1.9336663 - np.pi
388
389
390
391
    ],
                                    [
                                        8.098079, -4.9332013, -1.8018866,
                                        1.5486219, 4.0324507, 1.57879,
392
                                        1.7936664 - np.pi
393
394
395
396
                                    ],
                                    [
                                        27.64241, -7.2408795, -1.4676381,
                                        1.4782301, 2.242485, 1.488286,
397
                                        4.9836664 - np.pi
398
399
400
401
                                    ],
                                    [
                                        20.018322, -28.477297, -1.9027928,
                                        1.5687338, 3.4994833, 1.4078381,
402
                                        5.1036663 - np.pi
403
404
405
406
                                    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
407
                                        0.6236664 - np.pi
408
409
410
411
412
                                    ]])
    boxes.translate([0.0838056, -0.13246193, -0.15701613])
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test bbox in_range_bev
413
414
415
416
417
418
419
    expected_tensor = torch.tensor(
        [[1.1282, -3.0508, 1.7598, 3.4090, -1.2079],
         [8.0981, -4.9332, 1.5486, 4.0325, -1.3479],
         [27.6424, -7.2409, 1.4782, 2.2425, 1.8421],
         [20.0183, -28.4773, 1.5687, 3.4995, 1.9621],
         [28.2147, -16.5020, 1.7497, 3.7911, -2.5179]])
    assert torch.allclose(boxes.bev, expected_tensor, atol=1e-3)
420
421
422
423
424
425
    expected_tensor = torch.tensor([1, 1, 1, 1, 1], dtype=torch.bool)
    mask = boxes.in_range_bev([0., -40., 70.4, 40.])
    assert (mask == expected_tensor).all()
    mask = boxes.nonempty()
    assert (mask == expected_tensor).all()

zhangwenwei's avatar
zhangwenwei committed
426
427
428
429
430
    # test bbox in_range
    expected_tensor = torch.tensor([1, 1, 0, 0, 0], dtype=torch.bool)
    mask = boxes.in_range_3d([0, -20, -2, 22, 2, 5])
    assert (mask == expected_tensor).all()

431
432
433
434
    # test bbox indexing
    index_boxes = boxes[2:5]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
435
        4.9836664 - np.pi
436
437
438
439
    ],
                                    [
                                        20.018322, -28.477297, -1.9027928,
                                        1.5687338, 3.4994833, 1.4078381,
440
                                        5.1036663 - np.pi
441
442
443
444
                                    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
445
                                        0.6236664 - np.pi
446
447
448
449
450
451
452
                                    ]])
    assert len(index_boxes) == 3
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    index_boxes = boxes[2]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
453
        4.9836664 - np.pi
454
455
456
457
458
459
460
    ]])
    assert len(index_boxes) == 1
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    index_boxes = boxes[[2, 4]]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
461
        4.9836664 - np.pi
462
463
464
465
    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
466
                                        0.6236664 - np.pi
467
468
469
470
471
472
473
                                    ]])
    assert len(index_boxes) == 2
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    # test iteration
    for i, box in enumerate(index_boxes):
        torch.allclose(box, expected_tensor[i])
zhangwenwei's avatar
zhangwenwei committed
474
475
476
477
478
479
480
481
482
483
484
485
486

    # test properties
    assert torch.allclose(boxes.bottom_center, boxes.tensor[:, :3])
    expected_tensor = (
        boxes.tensor[:, :3] - boxes.tensor[:, 3:6] *
        (torch.tensor([0.5, 0.5, 0]) - torch.tensor([0.5, 0.5, 0.5])))
    assert torch.allclose(boxes.gravity_center, expected_tensor)

    boxes.limit_yaw()
    assert (boxes.tensor[:, 6] <= np.pi / 2).all()
    assert (boxes.tensor[:, 6] >= -np.pi / 2).all()

    Box3DMode.convert(boxes, Box3DMode.LIDAR, Box3DMode.LIDAR)
487
488
    expected_tensor = boxes.tensor.clone()
    assert torch.allclose(expected_tensor, boxes.tensor)
zhangwenwei's avatar
zhangwenwei committed
489
490
491
492

    boxes.flip()
    boxes.flip()
    boxes.limit_yaw()
493
    assert torch.allclose(expected_tensor, boxes.tensor)
zhangwenwei's avatar
zhangwenwei committed
494
495
496
497
498
499
500
501

    # test nearest_bev
    expected_tensor = torch.tensor([[-0.5763, -3.9307, 2.8326, -2.1709],
                                    [6.0819, -5.7075, 10.1143, -4.1589],
                                    [26.5212, -7.9800, 28.7637, -6.5018],
                                    [18.2686, -29.2617, 21.7681, -27.6929],
                                    [27.3398, -18.3976, 29.0896, -14.6065]])
    assert torch.allclose(
wuyuefeng's avatar
wuyuefeng committed
502
        boxes.nearest_bev, expected_tensor, rtol=1e-4, atol=1e-7)
zhangwenwei's avatar
zhangwenwei committed
503

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
    expected_tensor = torch.tensor([[[-7.7767e-01, -2.8332e+00, -1.9169e+00],
                                     [-7.7767e-01, -2.8332e+00, -2.5769e-01],
                                     [2.4093e+00, -1.6232e+00, -2.5769e-01],
                                     [2.4093e+00, -1.6232e+00, -1.9169e+00],
                                     [-1.5301e-01, -4.4784e+00, -1.9169e+00],
                                     [-1.5301e-01, -4.4784e+00, -2.5769e-01],
                                     [3.0340e+00, -3.2684e+00, -2.5769e-01],
                                     [3.0340e+00, -3.2684e+00, -1.9169e+00]],
                                    [[5.9606e+00, -4.6237e+00, -1.8019e+00],
                                     [5.9606e+00, -4.6237e+00, -2.2310e-01],
                                     [9.8933e+00, -3.7324e+00, -2.2310e-01],
                                     [9.8933e+00, -3.7324e+00, -1.8019e+00],
                                     [6.3029e+00, -6.1340e+00, -1.8019e+00],
                                     [6.3029e+00, -6.1340e+00, -2.2310e-01],
                                     [1.0236e+01, -5.2427e+00, -2.2310e-01],
                                     [1.0236e+01, -5.2427e+00, -1.8019e+00]],
                                    [[2.6364e+01, -6.8292e+00, -1.4676e+00],
                                     [2.6364e+01, -6.8292e+00, 2.0648e-02],
                                     [2.8525e+01, -6.2283e+00, 2.0648e-02],
                                     [2.8525e+01, -6.2283e+00, -1.4676e+00],
                                     [2.6760e+01, -8.2534e+00, -1.4676e+00],
                                     [2.6760e+01, -8.2534e+00, 2.0648e-02],
                                     [2.8921e+01, -7.6525e+00, 2.0648e-02],
                                     [2.8921e+01, -7.6525e+00, -1.4676e+00]],
                                    [[1.8102e+01, -2.8420e+01, -1.9028e+00],
                                     [1.8102e+01, -2.8420e+01, -4.9495e-01],
                                     [2.1337e+01, -2.7085e+01, -4.9495e-01],
                                     [2.1337e+01, -2.7085e+01, -1.9028e+00],
                                     [1.8700e+01, -2.9870e+01, -1.9028e+00],
                                     [1.8700e+01, -2.9870e+01, -4.9495e-01],
                                     [2.1935e+01, -2.8535e+01, -4.9495e-01],
                                     [2.1935e+01, -2.8535e+01, -1.9028e+00]],
                                    [[2.8612e+01, -1.8552e+01, -1.7879e+00],
                                     [2.8612e+01, -1.8552e+01, -2.9959e-01],
                                     [2.6398e+01, -1.5474e+01, -2.9959e-01],
                                     [2.6398e+01, -1.5474e+01, -1.7879e+00],
                                     [3.0032e+01, -1.7530e+01, -1.7879e+00],
                                     [3.0032e+01, -1.7530e+01, -2.9959e-01],
                                     [2.7818e+01, -1.4452e+01, -2.9959e-01],
                                     [2.7818e+01, -1.4452e+01, -1.7879e+00]]])

zhangwenwei's avatar
zhangwenwei committed
545
    assert torch.allclose(boxes.corners, expected_tensor, rtol=1e-4, atol=1e-7)
zhangwenwei's avatar
zhangwenwei committed
546

wuyuefeng's avatar
wuyuefeng committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
    # test new_box
    new_box1 = boxes.new_box([[1, 2, 3, 4, 5, 6, 7]])
    assert torch.allclose(
        new_box1.tensor,
        torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=boxes.tensor.dtype))
    assert new_box1.device == boxes.device
    assert new_box1.with_yaw == boxes.with_yaw
    assert new_box1.box_dim == boxes.box_dim

    new_box2 = boxes.new_box(np.array([[1, 2, 3, 4, 5, 6, 7]]))
    assert torch.allclose(
        new_box2.tensor,
        torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=boxes.tensor.dtype))

    new_box3 = boxes.new_box(torch.tensor([[1, 2, 3, 4, 5, 6, 7]]))
    assert torch.allclose(
        new_box3.tensor,
        torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=boxes.tensor.dtype))

zhangwenwei's avatar
zhangwenwei committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

def test_boxes_conversion():
    """Test the conversion of boxes between different modes.

    ComandLine:
        xdoctest tests/test_box3d.py::test_boxes_conversion zero
    """
    lidar_boxes = LiDARInstance3DBoxes(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62],
         [28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48, -1.57],
         [26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4, -1.69],
         [31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48, 2.79]])
    cam_box_tensor = Box3DMode.convert(lidar_boxes.tensor, Box3DMode.LIDAR,
                                       Box3DMode.CAM)
zhangwenwei's avatar
zhangwenwei committed
581
582
    expected_box = lidar_boxes.convert_to(Box3DMode.CAM)
    assert torch.equal(expected_box.tensor, cam_box_tensor)
583
584
585
586

    # Some properties should be the same
    cam_boxes = CameraInstance3DBoxes(cam_box_tensor)
    assert torch.equal(cam_boxes.height, lidar_boxes.height)
zhangwenwei's avatar
zhangwenwei committed
587
588
589
    assert torch.equal(cam_boxes.top_height, -lidar_boxes.top_height)
    assert torch.equal(cam_boxes.bottom_height, -lidar_boxes.bottom_height)
    assert torch.allclose(cam_boxes.volume, lidar_boxes.volume)
590

zhangwenwei's avatar
zhangwenwei committed
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
    lidar_box_tensor = Box3DMode.convert(cam_box_tensor, Box3DMode.CAM,
                                         Box3DMode.LIDAR)
    expected_tensor = torch.tensor(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62],
         [28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48, -1.57],
         [26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4, -1.69],
         [31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48, 2.79]])

    assert torch.allclose(expected_tensor, lidar_box_tensor)
    assert torch.allclose(lidar_boxes.tensor, lidar_box_tensor)

    depth_box_tensor = Box3DMode.convert(cam_box_tensor, Box3DMode.CAM,
                                         Box3DMode.DEPTH)
    depth_to_cam_box_tensor = Box3DMode.convert(depth_box_tensor,
                                                Box3DMode.DEPTH, Box3DMode.CAM)
    assert torch.allclose(cam_box_tensor, depth_to_cam_box_tensor)

zhangwenwei's avatar
zhangwenwei committed
609
610
611
    # test similar mode conversion
    same_results = Box3DMode.convert(depth_box_tensor, Box3DMode.DEPTH,
                                     Box3DMode.DEPTH)
zhangwenwei's avatar
zhangwenwei committed
612
    assert torch.equal(same_results, depth_box_tensor)
zhangwenwei's avatar
zhangwenwei committed
613

zhangwenwei's avatar
zhangwenwei committed
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    # test conversion with a given rt_mat
    camera_boxes = CameraInstance3DBoxes(
        [[0.06, 1.77, 21.4, 3.2, 1.61, 1.66, -1.54],
         [6.59, 1.53, 6.76, 12.78, 3.66, 2.28, 1.55],
         [6.71, 1.59, 22.18, 14.73, 3.64, 2.32, 1.59],
         [7.11, 1.58, 34.54, 10.04, 3.61, 2.32, 1.61],
         [7.78, 1.65, 45.95, 12.83, 3.63, 2.34, 1.64]])

    rect = torch.tensor(
        [[0.9999239, 0.00983776, -0.00744505, 0.],
         [-0.0098698, 0.9999421, -0.00427846, 0.],
         [0.00740253, 0.00435161, 0.9999631, 0.], [0., 0., 0., 1.]],
        dtype=torch.float32)

    Trv2c = torch.tensor(
        [[7.533745e-03, -9.999714e-01, -6.166020e-04, -4.069766e-03],
         [1.480249e-02, 7.280733e-04, -9.998902e-01, -7.631618e-02],
         [9.998621e-01, 7.523790e-03, 1.480755e-02, -2.717806e-01],
         [0.000000e+00, 0.000000e+00, 0.000000e+00, 1.000000e+00]],
        dtype=torch.float32)

635
    # coord sys refactor (reverse sign of yaw)
zhangwenwei's avatar
zhangwenwei committed
636
637
    expected_tensor = torch.tensor(
        [[
638
639
            2.16902434e+01, -4.06038554e-02, -1.61906639e+00, 3.20000005e+00,
            1.65999997e+00, 1.61000001e+00, 1.53999996e+00 - np.pi / 2
zhangwenwei's avatar
zhangwenwei committed
640
641
        ],
         [
642
643
             7.05006905e+00, -6.57459601e+00, -1.60107949e+00, 1.27799997e+01,
             2.27999997e+00, 3.66000009e+00, -1.54999995e+00 - np.pi / 2
zhangwenwei's avatar
zhangwenwei committed
644
645
         ],
         [
646
647
             2.24698818e+01, -6.69203759e+00, -1.50118145e+00, 1.47299995e+01,
             2.31999993e+00, 3.64000010e+00, -1.59000003e+00 + 3 * np.pi / 2
zhangwenwei's avatar
zhangwenwei committed
648
649
         ],
         [
650
651
             3.48291965e+01, -7.09058388e+00, -1.36622983e+00, 1.00400000e+01,
             2.31999993e+00, 3.60999990e+00, -1.61000001e+00 + 3 * np.pi / 2
zhangwenwei's avatar
zhangwenwei committed
652
653
         ],
         [
654
655
             4.62394617e+01, -7.75838800e+00, -1.32405020e+00, 1.28299999e+01,
             2.33999991e+00, 3.63000011e+00, -1.63999999e+00 + 3 * np.pi / 2
zhangwenwei's avatar
zhangwenwei committed
656
657
658
659
         ]],
        dtype=torch.float32)

    rt_mat = rect @ Trv2c
660
    # test conversion with Box type
zhangwenwei's avatar
zhangwenwei committed
661
    cam_to_lidar_box = Box3DMode.convert(camera_boxes, Box3DMode.CAM,
zhangwenwei's avatar
zhangwenwei committed
662
                                         Box3DMode.LIDAR, rt_mat.inverse())
zhangwenwei's avatar
zhangwenwei committed
663
    assert torch.allclose(cam_to_lidar_box.tensor, expected_tensor)
zhangwenwei's avatar
zhangwenwei committed
664

zhangwenwei's avatar
zhangwenwei committed
665
666
667
    lidar_to_cam_box = Box3DMode.convert(cam_to_lidar_box.tensor,
                                         Box3DMode.LIDAR, Box3DMode.CAM,
                                         rt_mat)
zhangwenwei's avatar
zhangwenwei committed
668
    assert torch.allclose(lidar_to_cam_box, camera_boxes.tensor)
zhangwenwei's avatar
zhangwenwei committed
669
670
671
672
673
674
675
676
677
678
679
680
681
682

    # test numpy convert
    cam_to_lidar_box = Box3DMode.convert(camera_boxes.tensor.numpy(),
                                         Box3DMode.CAM, Box3DMode.LIDAR,
                                         rt_mat.inverse().numpy())
    assert np.allclose(cam_to_lidar_box, expected_tensor.numpy())

    # test list convert
    cam_to_lidar_box = Box3DMode.convert(
        camera_boxes.tensor[0].numpy().tolist(), Box3DMode.CAM,
        Box3DMode.LIDAR,
        rt_mat.inverse().numpy())
    assert np.allclose(np.array(cam_to_lidar_box), expected_tensor[0].numpy())

wuyuefeng's avatar
wuyuefeng committed
683
684
685
686
687
688
    # test convert from depth to lidar
    depth_boxes = torch.tensor(
        [[2.4593, 2.5870, -0.4321, 0.8597, 0.6193, 1.0204, 3.0693],
         [1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601]],
        dtype=torch.float32)
    depth_boxes = DepthInstance3DBoxes(depth_boxes)
zhangwenwei's avatar
zhangwenwei committed
689
690
691
692
    depth_to_lidar_box = depth_boxes.convert_to(Box3DMode.LIDAR)
    expected_box = depth_to_lidar_box.convert_to(Box3DMode.DEPTH)
    assert torch.equal(depth_boxes.tensor, expected_box.tensor)

wuyuefeng's avatar
wuyuefeng committed
693
694
695
696
697
698
699
700
701
702
    lidar_to_depth_box = Box3DMode.convert(depth_to_lidar_box, Box3DMode.LIDAR,
                                           Box3DMode.DEPTH)
    assert torch.allclose(depth_boxes.tensor, lidar_to_depth_box.tensor)
    assert torch.allclose(depth_boxes.volume, lidar_to_depth_box.volume)

    # test convert from depth to camera
    depth_to_cam_box = Box3DMode.convert(depth_boxes, Box3DMode.DEPTH,
                                         Box3DMode.CAM)
    cam_to_depth_box = Box3DMode.convert(depth_to_cam_box, Box3DMode.CAM,
                                         Box3DMode.DEPTH)
zhangwenwei's avatar
zhangwenwei committed
703
704
    expected_tensor = depth_to_cam_box.convert_to(Box3DMode.DEPTH)
    assert torch.equal(expected_tensor.tensor, cam_to_depth_box.tensor)
wuyuefeng's avatar
wuyuefeng committed
705
706
707
708
709
710
711
    assert torch.allclose(depth_boxes.tensor, cam_to_depth_box.tensor)
    assert torch.allclose(depth_boxes.volume, cam_to_depth_box.volume)

    with pytest.raises(NotImplementedError):
        # assert invalid convert mode
        Box3DMode.convert(depth_boxes, Box3DMode.DEPTH, 3)

zhangwenwei's avatar
zhangwenwei committed
712
713
714

def test_camera_boxes3d():
    # Test init with numpy array
715
716
717
718
719
720
721
722
723
    np_boxes = np.array([[
        1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65,
        1.48 - 0.13603681398218053 * 4 - 2 * np.pi
    ],
                         [
                             8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57,
                             1.62 - 0.13603681398218053 * 4 - 2 * np.pi
                         ]],
                        dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
724
725
726
727
728
729
730
731
732
733
734
735
736

    boxes_1 = Box3DMode.convert(
        LiDARInstance3DBoxes(np_boxes), Box3DMode.LIDAR, Box3DMode.CAM)
    assert isinstance(boxes_1, CameraInstance3DBoxes)

    cam_np_boxes = Box3DMode.convert(np_boxes, Box3DMode.LIDAR, Box3DMode.CAM)
    assert torch.allclose(boxes_1.tensor,
                          boxes_1.tensor.new_tensor(cam_np_boxes))

    # test init with torch.Tensor
    th_boxes = torch.tensor(
        [[
            28.29669987, -0.5557558, -1.30332506, 1.47000003, 2.23000002,
737
            1.48000002, -1.57000005 - 0.13603681398218053 * 4 - 2 * np.pi
zhangwenwei's avatar
zhangwenwei committed
738
739
740
        ],
         [
             26.66901946, 21.82302134, -1.73605708, 1.55999994, 3.48000002,
741
             1.39999998, -1.69000006 - 0.13603681398218053 * 4 - 2 * np.pi
zhangwenwei's avatar
zhangwenwei committed
742
743
744
         ],
         [
             31.31977974, 8.16214412, -1.62177875, 1.74000001, 3.76999998,
745
             1.48000002, 2.78999996 - 0.13603681398218053 * 4 - 2 * np.pi
zhangwenwei's avatar
zhangwenwei committed
746
747
748
749
750
751
752
753
754
755
756
757
         ]],
        dtype=torch.float32)
    cam_th_boxes = Box3DMode.convert(th_boxes, Box3DMode.LIDAR, Box3DMode.CAM)
    boxes_2 = CameraInstance3DBoxes(cam_th_boxes)
    assert torch.allclose(boxes_2.tensor, cam_th_boxes)

    # test clone/to/device
    boxes_2 = boxes_2.clone()
    boxes_1 = boxes_1.to(boxes_2.device)

    # test box concatenation
    expected_tensor = Box3DMode.convert(
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
        torch.tensor([[
            1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65,
            1.48 - 0.13603681398218053 * 4 - 2 * np.pi
        ],
                      [
                          8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57,
                          1.62 - 0.13603681398218053 * 4 - 2 * np.pi
                      ],
                      [
                          28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48,
                          -1.57 - 0.13603681398218053 * 4 - 2 * np.pi
                      ],
                      [
                          26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4,
                          -1.69 - 0.13603681398218053 * 4 - 2 * np.pi
                      ],
                      [
                          31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48,
                          2.79 - 0.13603681398218053 * 4 - 2 * np.pi
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
zhangwenwei's avatar
zhangwenwei committed
778
779
780
781
    boxes = CameraInstance3DBoxes.cat([boxes_1, boxes_2])
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box flip
liyinhao's avatar
liyinhao committed
782
783
784
    points = torch.tensor([[0.6762, 1.4658, 1.2559], [0.8784, 1.3857, 4.7814],
                           [-0.2517, 0.9697, 6.7053], [0.5520, 0.5265, 0.6533],
                           [-0.5358, 1.4741, 4.5870]])
zhangwenwei's avatar
zhangwenwei committed
785
    expected_tensor = Box3DMode.convert(
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
        torch.tensor([[
            1.7802081, -2.516249, -1.7501148, 1.75, 3.39, 1.65,
            1.6615927 + 0.13603681398218053 * 4 - np.pi
        ],
                      [
                          8.959413, -2.4567227, -1.6357126, 1.54, 4.01, 1.57,
                          1.5215927 + 0.13603681398218053 * 4 - np.pi
                      ],
                      [
                          28.2967, 0.5557558, -1.303325, 1.47, 2.23, 1.48,
                          4.7115927 + 0.13603681398218053 * 4 - np.pi
                      ],
                      [
                          26.66902, -21.82302, -1.736057, 1.56, 3.48, 1.4,
                          4.8315926 + 0.13603681398218053 * 4 - np.pi
                      ],
                      [
                          31.31978, -8.162144, -1.6217787, 1.74, 3.77, 1.48,
                          0.35159278 + 0.13603681398218053 * 4 - np.pi
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
liyinhao's avatar
liyinhao committed
806
807
808
809
810
811
    points = boxes.flip('horizontal', points)
    expected_points = torch.tensor([[-0.6762, 1.4658, 1.2559],
                                    [-0.8784, 1.3857, 4.7814],
                                    [0.2517, 0.9697, 6.7053],
                                    [-0.5520, 0.5265, 0.6533],
                                    [0.5358, 1.4741, 4.5870]])
812
813
814
815
816

    yaw_normalized_tensor = boxes.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
817
    assert torch.allclose(points, expected_points, 1e-3)
zhangwenwei's avatar
zhangwenwei committed
818

wuyuefeng's avatar
wuyuefeng committed
819
    expected_tensor = torch.tensor(
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
        [[
            2.5162, 1.7501, -1.7802, 1.7500, 1.6500, 3.3900,
            1.6616 + 0.13603681398218053 * 4 - np.pi / 2
        ],
         [
             2.4567, 1.6357, -8.9594, 1.5400, 1.5700, 4.0100,
             1.5216 + 0.13603681398218053 * 4 - np.pi / 2
         ],
         [
             -0.5558, 1.3033, -28.2967, 1.4700, 1.4800, 2.2300,
             4.7116 + 0.13603681398218053 * 4 - np.pi / 2
         ],
         [
             21.8230, 1.7361, -26.6690, 1.5600, 1.4000, 3.4800,
             4.8316 + 0.13603681398218053 * 4 - np.pi / 2
         ],
         [
             8.1621, 1.6218, -31.3198, 1.7400, 1.4800, 3.7700,
             0.3516 + 0.13603681398218053 * 4 - np.pi / 2
         ]])
wuyuefeng's avatar
wuyuefeng committed
840
    boxes_flip_vert = boxes.clone()
liyinhao's avatar
liyinhao committed
841
842
843
844
845
846
    points = boxes_flip_vert.flip('vertical', points)
    expected_points = torch.tensor([[-0.6762, 1.4658, -1.2559],
                                    [-0.8784, 1.3857, -4.7814],
                                    [0.2517, 0.9697, -6.7053],
                                    [-0.5520, 0.5265, -0.6533],
                                    [0.5358, 1.4741, -4.5870]])
847
848
849
850
851
852
853

    yaw_normalized_tensor = boxes_flip_vert.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    expected_tensor[:, -1:] = limit_period(
        expected_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor, 1e-4)
liyinhao's avatar
liyinhao committed
854
    assert torch.allclose(points, expected_points)
wuyuefeng's avatar
wuyuefeng committed
855

zhangwenwei's avatar
zhangwenwei committed
856
    # test box rotation
857
    # with input torch.Tensor points and angle
zhangwenwei's avatar
zhangwenwei committed
858
    expected_tensor = Box3DMode.convert(
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
        torch.tensor([[
            1.4225, -2.7344, -1.7501, 1.7500, 3.3900, 1.6500,
            1.7976 + 0.13603681398218053 * 2 - np.pi
        ],
                      [
                          8.5435, -3.6491, -1.6357, 1.5400, 4.0100, 1.5700,
                          1.6576 + 0.13603681398218053 * 2 - np.pi
                      ],
                      [
                          28.1106, -3.2869, -1.3033, 1.4700, 2.2300, 1.4800,
                          4.8476 + 0.13603681398218053 * 2 - np.pi
                      ],
                      [
                          23.4630, -25.2382, -1.7361, 1.5600, 3.4800, 1.4000,
                          4.9676 + 0.13603681398218053 * 2 - np.pi
                      ],
                      [
                          29.9235, -12.3342, -1.6218, 1.7400, 3.7700, 1.4800,
                          0.4876 + 0.13603681398218053 * 2 - np.pi
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
liyinhao's avatar
liyinhao committed
879
880
881
882
883
884
885
886
887
    points, rot_mat_T = boxes.rotate(torch.tensor(0.13603681398218053), points)
    expected_points = torch.tensor([[-0.8403, 1.4658, -1.1526],
                                    [-1.5187, 1.3857, -4.6181],
                                    [-0.6600, 0.9697, -6.6775],
                                    [-0.6355, 0.5265, -0.5724],
                                    [-0.0912, 1.4741, -4.6173]])
    expected_rot_mat_T = torch.tensor([[0.9908, 0.0000, -0.1356],
                                       [0.0000, 1.0000, 0.0000],
                                       [0.1356, 0.0000, 0.9908]])
888
889
890
891
892
893
    yaw_normalized_tensor = boxes.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    expected_tensor[:, -1:] = limit_period(
        expected_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
894
895
896
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)

897
898
899
900
901
902
    # with input torch.Tensor points and rotation matrix
    points, rot_mat_T = boxes.rotate(
        torch.tensor(-0.13603681398218053), points)  # back
    rot_mat = np.array([[0.99076125, 0., -0.13561762], [0., 1., 0.],
                        [0.13561762, 0., 0.99076125]])
    points, rot_mat_T = boxes.rotate(rot_mat, points)
903
904
905
906
    yaw_normalized_tensor = boxes.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor, 1e-3)
907
908
909
910
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)

    # with input np.ndarray points and angle
liyinhao's avatar
liyinhao committed
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
    points_np = np.array([[0.6762, 1.2559, -1.4658, 2.5359],
                          [0.8784, 4.7814, -1.3857, 0.7167],
                          [-0.2517, 6.7053, -0.9697, 0.5599],
                          [0.5520, 0.6533, -0.5265, 1.0032],
                          [-0.5358, 4.5870, -1.4741, 0.0556]])
    points_np, rot_mat_T_np = boxes.rotate(
        torch.tensor(0.13603681398218053), points_np)
    expected_points_np = np.array([[0.4712, 1.2559, -1.5440, 2.5359],
                                   [0.6824, 4.7814, -1.4920, 0.7167],
                                   [-0.3809, 6.7053, -0.9266, 0.5599],
                                   [0.4755, 0.6533, -0.5965, 1.0032],
                                   [-0.7308, 4.5870, -1.3878, 0.0556]])
    expected_rot_mat_T_np = np.array([[0.9908, 0.0000, -0.1356],
                                      [0.0000, 1.0000, 0.0000],
                                      [0.1356, 0.0000, 0.9908]])

    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)
zhangwenwei's avatar
zhangwenwei committed
929

930
931
932
933
934
935
936
937
938
    # with input CameraPoints and rotation matrix
    points_np, rot_mat_T_np = boxes.rotate(
        torch.tensor(-0.13603681398218053), points_np)
    camera_points = CameraPoints(points_np, points_dim=4)
    camera_points, rot_mat_T_np = boxes.rotate(rot_mat, camera_points)
    points_np = camera_points.tensor.numpy()
    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)

zhangwenwei's avatar
zhangwenwei committed
939
940
941
942
    # test box scaling
    expected_tensor = Box3DMode.convert(
        torch.tensor([[
            1.0443488, -2.9183323, -1.7599131, 1.7597977, 3.4089797, 1.6592377,
943
            1.9336663 - np.pi
zhangwenwei's avatar
zhangwenwei committed
944
945
946
        ],
                      [
                          8.014273, -4.8007393, -1.6448704, 1.5486219,
947
                          4.0324507, 1.57879, 1.7936664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
948
949
950
                      ],
                      [
                          27.558605, -7.1084175, -1.310622, 1.4782301,
951
                          2.242485, 1.488286, 4.9836664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
952
953
954
                      ],
                      [
                          19.934517, -28.344835, -1.7457767, 1.5687338,
955
                          3.4994833, 1.4078381, 5.1036663 - np.pi
zhangwenwei's avatar
zhangwenwei committed
956
957
958
                      ],
                      [
                          28.130915, -16.369587, -1.6308585, 1.7497417,
959
                          3.791107, 1.488286, 0.6236664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
960
961
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
    boxes.scale(1.00559866335275)
962
963
964
965
966
967
    yaw_normalized_tensor = boxes.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    expected_tensor[:, -1:] = limit_period(
        expected_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor)
zhangwenwei's avatar
zhangwenwei committed
968
969
970
971
972

    # test box translation
    expected_tensor = Box3DMode.convert(
        torch.tensor([[
            1.1281544, -3.0507944, -1.9169292, 1.7597977, 3.4089797, 1.6592377,
973
            1.9336663 - np.pi
zhangwenwei's avatar
zhangwenwei committed
974
975
976
        ],
                      [
                          8.098079, -4.9332013, -1.8018866, 1.5486219,
977
                          4.0324507, 1.57879, 1.7936664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
978
979
980
                      ],
                      [
                          27.64241, -7.2408795, -1.4676381, 1.4782301,
981
                          2.242485, 1.488286, 4.9836664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
982
983
984
                      ],
                      [
                          20.018322, -28.477297, -1.9027928, 1.5687338,
985
                          3.4994833, 1.4078381, 5.1036663 - np.pi
zhangwenwei's avatar
zhangwenwei committed
986
987
988
                      ],
                      [
                          28.21472, -16.502048, -1.7878747, 1.7497417,
989
                          3.791107, 1.488286, 0.6236664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
990
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
zhangwenwei's avatar
zhangwenwei committed
991
    boxes.translate(torch.tensor([0.13246193, 0.15701613, 0.0838056]))
992
993
994
995
996
997
    yaw_normalized_tensor = boxes.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    expected_tensor[:, -1:] = limit_period(
        expected_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor)
zhangwenwei's avatar
zhangwenwei committed
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010

    # test bbox in_range_bev
    expected_tensor = torch.tensor([1, 1, 1, 1, 1], dtype=torch.bool)
    mask = boxes.in_range_bev([0., -40., 70.4, 40.])
    assert (mask == expected_tensor).all()
    mask = boxes.nonempty()
    assert (mask == expected_tensor).all()

    # test bbox in_range
    expected_tensor = torch.tensor([1, 1, 0, 0, 0], dtype=torch.bool)
    mask = boxes.in_range_3d([-2, -5, 0, 20, 2, 22])
    assert (mask == expected_tensor).all()

1011
1012
1013
1014
1015
1016
1017
1018
    expected_tensor = torch.tensor(
        [[3.0508, 1.1282, 1.7598, 3.4090, -5.9203],
         [4.9332, 8.0981, 1.5486, 4.0325, -6.0603],
         [7.2409, 27.6424, 1.4782, 2.2425, -2.8703],
         [28.4773, 20.0183, 1.5687, 3.4995, -2.7503],
         [16.5020, 28.2147, 1.7497, 3.7911, -0.9471]])
    assert torch.allclose(boxes.bev, expected_tensor, atol=1e-3)

zhangwenwei's avatar
zhangwenwei committed
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
    # test properties
    assert torch.allclose(boxes.bottom_center, boxes.tensor[:, :3])
    expected_tensor = (
        boxes.tensor[:, :3] - boxes.tensor[:, 3:6] *
        (torch.tensor([0.5, 1.0, 0.5]) - torch.tensor([0.5, 0.5, 0.5])))
    assert torch.allclose(boxes.gravity_center, expected_tensor)

    boxes.limit_yaw()
    assert (boxes.tensor[:, 6] <= np.pi / 2).all()
    assert (boxes.tensor[:, 6] >= -np.pi / 2).all()

    Box3DMode.convert(boxes, Box3DMode.LIDAR, Box3DMode.LIDAR)
1031
1032
    expected_tensor = boxes.tensor.clone()
    assert torch.allclose(expected_tensor, boxes.tensor)
zhangwenwei's avatar
zhangwenwei committed
1033
1034
1035
1036

    boxes.flip()
    boxes.flip()
    boxes.limit_yaw()
1037
    assert torch.allclose(expected_tensor, boxes.tensor)
zhangwenwei's avatar
zhangwenwei committed
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051

    # test nearest_bev
    # BEV box in lidar coordinates (x, y)
    lidar_expected_tensor = torch.tensor(
        [[-0.5763, -3.9307, 2.8326, -2.1709],
         [6.0819, -5.7075, 10.1143, -4.1589],
         [26.5212, -7.9800, 28.7637, -6.5018],
         [18.2686, -29.2617, 21.7681, -27.6929],
         [27.3398, -18.3976, 29.0896, -14.6065]])
    # BEV box in camera coordinate (-y, x)
    expected_tensor = lidar_expected_tensor.clone()
    expected_tensor[:, 0::2] = -lidar_expected_tensor[:, [3, 1]]
    expected_tensor[:, 1::2] = lidar_expected_tensor[:, 0::2]
    assert torch.allclose(
wuyuefeng's avatar
wuyuefeng committed
1052
        boxes.nearest_bev, expected_tensor, rtol=1e-4, atol=1e-7)
zhangwenwei's avatar
zhangwenwei committed
1053

1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
    expected_tensor = torch.tensor([[[2.8332e+00, 2.5769e-01, -7.7767e-01],
                                     [1.6232e+00, 2.5769e-01, 2.4093e+00],
                                     [1.6232e+00, 1.9169e+00, 2.4093e+00],
                                     [2.8332e+00, 1.9169e+00, -7.7767e-01],
                                     [4.4784e+00, 2.5769e-01, -1.5302e-01],
                                     [3.2684e+00, 2.5769e-01, 3.0340e+00],
                                     [3.2684e+00, 1.9169e+00, 3.0340e+00],
                                     [4.4784e+00, 1.9169e+00, -1.5302e-01]],
                                    [[4.6237e+00, 2.2310e-01, 5.9606e+00],
                                     [3.7324e+00, 2.2310e-01, 9.8933e+00],
                                     [3.7324e+00, 1.8019e+00, 9.8933e+00],
                                     [4.6237e+00, 1.8019e+00, 5.9606e+00],
                                     [6.1340e+00, 2.2310e-01, 6.3029e+00],
                                     [5.2427e+00, 2.2310e-01, 1.0236e+01],
                                     [5.2427e+00, 1.8019e+00, 1.0236e+01],
                                     [6.1340e+00, 1.8019e+00, 6.3029e+00]],
                                    [[6.8292e+00, -2.0648e-02, 2.6364e+01],
                                     [6.2283e+00, -2.0648e-02, 2.8525e+01],
                                     [6.2283e+00, 1.4676e+00, 2.8525e+01],
                                     [6.8292e+00, 1.4676e+00, 2.6364e+01],
                                     [8.2534e+00, -2.0648e-02, 2.6760e+01],
                                     [7.6525e+00, -2.0648e-02, 2.8921e+01],
                                     [7.6525e+00, 1.4676e+00, 2.8921e+01],
                                     [8.2534e+00, 1.4676e+00, 2.6760e+01]],
                                    [[2.8420e+01, 4.9495e-01, 1.8102e+01],
                                     [2.7085e+01, 4.9495e-01, 2.1337e+01],
                                     [2.7085e+01, 1.9028e+00, 2.1337e+01],
                                     [2.8420e+01, 1.9028e+00, 1.8102e+01],
                                     [2.9870e+01, 4.9495e-01, 1.8700e+01],
                                     [2.8535e+01, 4.9495e-01, 2.1935e+01],
                                     [2.8535e+01, 1.9028e+00, 2.1935e+01],
                                     [2.9870e+01, 1.9028e+00, 1.8700e+01]],
                                    [[1.4452e+01, 2.9959e-01, 2.7818e+01],
                                     [1.7530e+01, 2.9959e-01, 3.0032e+01],
                                     [1.7530e+01, 1.7879e+00, 3.0032e+01],
                                     [1.4452e+01, 1.7879e+00, 2.7818e+01],
                                     [1.5474e+01, 2.9959e-01, 2.6398e+01],
                                     [1.8552e+01, 2.9959e-01, 2.8612e+01],
                                     [1.8552e+01, 1.7879e+00, 2.8612e+01],
                                     [1.5474e+01, 1.7879e+00, 2.6398e+01]]])

    assert torch.allclose(boxes.corners, expected_tensor, rtol=1e-3, atol=1e-4)

    th_boxes = torch.tensor(
        [[
            28.29669987, -0.5557558, -1.30332506, 1.47000003, 2.23000002,
            1.48000002, -1.57000005
        ],
         [
             26.66901946, 21.82302134, -1.73605708, 1.55999994, 3.48000002,
             1.39999998, -1.69000006
         ],
         [
             31.31977974, 8.16214412, -1.62177875, 1.74000001, 3.76999998,
             1.48000002, 2.78999996
         ]],
        dtype=torch.float32)
1111

1112
1113
1114
1115
1116
1117
1118
1119
1120
    # test init with a given origin
    boxes_origin_given = CameraInstance3DBoxes(
        th_boxes.clone(), box_dim=7, origin=(0.5, 0.5, 0.5))
    expected_tensor = th_boxes.clone()
    expected_tensor[:, :3] = th_boxes[:, :3] + th_boxes[:, 3:6] * (
        th_boxes.new_tensor((0.5, 1.0, 0.5)) - th_boxes.new_tensor(
            (0.5, 0.5, 0.5)))
    assert torch.allclose(boxes_origin_given.tensor, expected_tensor)

1121
1122

def test_boxes3d_overlaps():
1123
1124
1125
1126
1127
    """Test the iou calculation of boxes in different modes.

    ComandLine:
        xdoctest tests/test_box3d.py::test_boxes3d_overlaps zero
    """
1128
1129
1130
1131
1132
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    # Test LiDAR boxes 3D overlaps
    boxes1_tensor = torch.tensor(
1133
1134
1135
1136
        [[1.8, -2.5, -1.8, 1.75, 3.39, 1.65, -1.6615927],
         [8.9, -2.5, -1.6, 1.54, 4.01, 1.57, -1.5215927],
         [28.3, 0.5, -1.3, 1.47, 2.23, 1.48, -4.7115927],
         [31.3, -8.2, -1.6, 1.74, 3.77, 1.48, -0.35]],
1137
1138
1139
        device='cuda')
    boxes1 = LiDARInstance3DBoxes(boxes1_tensor)

1140
1141
1142
1143
    boxes2_tensor = torch.tensor([[1.2, -3.0, -1.9, 1.8, 3.4, 1.7, -1.9],
                                  [8.1, -2.9, -1.8, 1.5, 4.1, 1.6, -1.8],
                                  [31.3, -8.2, -1.6, 1.74, 3.77, 1.48, -0.35],
                                  [20.1, -28.5, -1.9, 1.6, 3.5, 1.4, -5.1]],
1144
1145
1146
                                 device='cuda')
    boxes2 = LiDARInstance3DBoxes(boxes2_tensor)

liyinhao's avatar
liyinhao committed
1147
    expected_iou_tensor = torch.tensor(
1148
1149
1150
        [[0.3710, 0.0000, 0.0000, 0.0000], [0.0000, 0.3322, 0.0000, 0.0000],
         [0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 1.0000, 0.0000]],
        device='cuda')
liyinhao's avatar
liyinhao committed
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
    overlaps_3d_iou = boxes1.overlaps(boxes1, boxes2)
    assert torch.allclose(
        expected_iou_tensor, overlaps_3d_iou, rtol=1e-4, atol=1e-7)

    expected_iof_tensor = torch.tensor(
        [[0.5582, 0.0000, 0.0000, 0.0000], [0.0000, 0.5025, 0.0000, 0.0000],
         [0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 1.0000, 0.0000]],
        device='cuda')
    overlaps_3d_iof = boxes1.overlaps(boxes1, boxes2, mode='iof')
    assert torch.allclose(
        expected_iof_tensor, overlaps_3d_iof, rtol=1e-4, atol=1e-7)
1162

liyinhao's avatar
liyinhao committed
1163
1164
1165
1166
1167
    empty_boxes = []
    boxes3 = LiDARInstance3DBoxes(empty_boxes)
    overlaps_3d_empty = boxes1.overlaps(boxes3, boxes2)
    assert overlaps_3d_empty.shape[0] == 0
    assert overlaps_3d_empty.shape[1] == 4
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
    # Test camera boxes 3D overlaps
    cam_boxes1_tensor = Box3DMode.convert(boxes1_tensor, Box3DMode.LIDAR,
                                          Box3DMode.CAM)
    cam_boxes1 = CameraInstance3DBoxes(cam_boxes1_tensor)

    cam_boxes2_tensor = Box3DMode.convert(boxes2_tensor, Box3DMode.LIDAR,
                                          Box3DMode.CAM)
    cam_boxes2 = CameraInstance3DBoxes(cam_boxes2_tensor)
    cam_overlaps_3d = cam_boxes1.overlaps(cam_boxes1, cam_boxes2)

1178
1179
    # same boxes under different coordinates should have the same iou
    assert torch.allclose(
1180
1181
1182
        expected_iou_tensor, cam_overlaps_3d, rtol=1e-3, atol=1e-4)
    assert torch.allclose(
        cam_overlaps_3d, overlaps_3d_iou, rtol=1e-3, atol=1e-4)
1183
1184
1185
1186
1187

    with pytest.raises(AssertionError):
        cam_boxes1.overlaps(cam_boxes1, boxes1)
    with pytest.raises(AssertionError):
        boxes1.overlaps(cam_boxes1, boxes1)
wuyuefeng's avatar
wuyuefeng committed
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235


def test_depth_boxes3d():
    # test empty initialization
    empty_boxes = []
    boxes = DepthInstance3DBoxes(empty_boxes)
    assert boxes.tensor.shape[0] == 0
    assert boxes.tensor.shape[1] == 7

    # Test init with numpy array
    np_boxes = np.array(
        [[1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601],
         [2.3262, 3.3065, --0.44255, 0.8234, 0.5325, 1.0099, 2.9971]],
        dtype=np.float32)
    boxes_1 = DepthInstance3DBoxes(np_boxes)
    assert torch.allclose(boxes_1.tensor, torch.from_numpy(np_boxes))

    # test properties

    assert boxes_1.volume.size(0) == 2
    assert (boxes_1.center == boxes_1.bottom_center).all()
    expected_tensor = torch.tensor([[1.4856, 2.5299, -0.1093],
                                    [2.3262, 3.3065, 0.9475]])
    assert torch.allclose(boxes_1.gravity_center, expected_tensor)
    expected_tensor = torch.tensor([[1.4856, 2.5299, 0.9385, 2.1404, 3.0601],
                                    [2.3262, 3.3065, 0.8234, 0.5325, 2.9971]])
    assert torch.allclose(boxes_1.bev, expected_tensor)
    expected_tensor = torch.tensor([[1.0164, 1.4597, 1.9548, 3.6001],
                                    [1.9145, 3.0402, 2.7379, 3.5728]])
    assert torch.allclose(boxes_1.nearest_bev, expected_tensor, 1e-4)
    assert repr(boxes) == (
        'DepthInstance3DBoxes(\n    tensor([], size=(0, 7)))')

    # test init with torch.Tensor
    th_boxes = torch.tensor(
        [[2.4593, 2.5870, -0.4321, 0.8597, 0.6193, 1.0204, 3.0693],
         [1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601]],
        dtype=torch.float32)
    boxes_2 = DepthInstance3DBoxes(th_boxes)
    assert torch.allclose(boxes_2.tensor, th_boxes)

    # test clone/to/device
    boxes_2 = boxes_2.clone()
    boxes_1 = boxes_1.to(boxes_2.device)

    # test box concatenation
    expected_tensor = torch.tensor(
        [[1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601],
1236
         [2.3262, 3.3065, 0.44255, 0.8234, 0.5325, 1.0099, 2.9971],
wuyuefeng's avatar
wuyuefeng committed
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
         [2.4593, 2.5870, -0.4321, 0.8597, 0.6193, 1.0204, 3.0693],
         [1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601]])
    boxes = DepthInstance3DBoxes.cat([boxes_1, boxes_2])
    assert torch.allclose(boxes.tensor, expected_tensor)
    # concatenate empty list
    empty_boxes = DepthInstance3DBoxes.cat([])
    assert empty_boxes.tensor.shape[0] == 0
    assert empty_boxes.tensor.shape[-1] == 7

    # test box flip
liyinhao's avatar
liyinhao committed
1247
1248
1249
1250
1251
    points = torch.tensor([[0.6762, 1.2559, -1.4658, 2.5359],
                           [0.8784, 4.7814, -1.3857, 0.7167],
                           [-0.2517, 6.7053, -0.9697, 0.5599],
                           [0.5520, 0.6533, -0.5265, 1.0032],
                           [-0.5358, 4.5870, -1.4741, 0.0556]])
wuyuefeng's avatar
wuyuefeng committed
1252
1253
1254
1255
1256
    expected_tensor = torch.tensor(
        [[-1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 0.0815],
         [-2.3262, 3.3065, 0.4426, 0.8234, 0.5325, 1.0099, 0.1445],
         [-2.4593, 2.5870, -0.4321, 0.8597, 0.6193, 1.0204, 0.0723],
         [-1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 0.0815]])
liyinhao's avatar
liyinhao committed
1257
1258
1259
1260
1261
1262
    points = boxes.flip(bev_direction='horizontal', points=points)
    expected_points = torch.tensor([[-0.6762, 1.2559, -1.4658, 2.5359],
                                    [-0.8784, 4.7814, -1.3857, 0.7167],
                                    [0.2517, 6.7053, -0.9697, 0.5599],
                                    [-0.5520, 0.6533, -0.5265, 1.0032],
                                    [0.5358, 4.5870, -1.4741, 0.0556]])
wuyuefeng's avatar
wuyuefeng committed
1263
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
1264
    assert torch.allclose(points, expected_points)
wuyuefeng's avatar
wuyuefeng committed
1265
1266
1267
1268
1269
    expected_tensor = torch.tensor(
        [[-1.4856, -2.5299, -0.5570, 0.9385, 2.1404, 0.8954, -0.0815],
         [-2.3262, -3.3065, 0.4426, 0.8234, 0.5325, 1.0099, -0.1445],
         [-2.4593, -2.5870, -0.4321, 0.8597, 0.6193, 1.0204, -0.0723],
         [-1.4856, -2.5299, -0.5570, 0.9385, 2.1404, 0.8954, -0.0815]])
liyinhao's avatar
liyinhao committed
1270
1271
1272
1273
1274
1275
    points = boxes.flip(bev_direction='vertical', points=points)
    expected_points = torch.tensor([[-0.6762, -1.2559, -1.4658, 2.5359],
                                    [-0.8784, -4.7814, -1.3857, 0.7167],
                                    [0.2517, -6.7053, -0.9697, 0.5599],
                                    [-0.5520, -0.6533, -0.5265, 1.0032],
                                    [0.5358, -4.5870, -1.4741, 0.0556]])
wuyuefeng's avatar
wuyuefeng committed
1276
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
1277
    assert torch.allclose(points, expected_points)
1278

wuyuefeng's avatar
wuyuefeng committed
1279
    # test box rotation
1280
    # with input torch.Tensor points and angle
wuyuefeng's avatar
wuyuefeng committed
1281
1282
    boxes_rot = boxes.clone()
    expected_tensor = torch.tensor(
liyinhao's avatar
liyinhao committed
1283
1284
1285
1286
        [[-1.5434, -2.4951, -0.5570, 0.9385, 2.1404, 0.8954, -0.0585],
         [-2.4016, -3.2521, 0.4426, 0.8234, 0.5325, 1.0099, -0.1215],
         [-2.5181, -2.5298, -0.4321, 0.8597, 0.6193, 1.0204, -0.0493],
         [-1.5434, -2.4951, -0.5570, 0.9385, 2.1404, 0.8954, -0.0585]])
1287
    expected_tensor[:, -1:] -= 0.022998953275003075 * 2
1288
    points, rot_mat_T = boxes_rot.rotate(-0.022998953275003075, points)
liyinhao's avatar
liyinhao committed
1289
1290
1291
1292
1293
1294
1295
1296
    expected_points = torch.tensor([[-0.7049, -1.2400, -1.4658, 2.5359],
                                    [-0.9881, -4.7599, -1.3857, 0.7167],
                                    [0.0974, -6.7093, -0.9697, 0.5599],
                                    [-0.5669, -0.6404, -0.5265, 1.0032],
                                    [0.4302, -4.5981, -1.4741, 0.0556]])
    expected_rot_mat_T = torch.tensor([[0.9997, -0.0230, 0.0000],
                                       [0.0230, 0.9997, 0.0000],
                                       [0.0000, 0.0000, 1.0000]])
wuyuefeng's avatar
wuyuefeng committed
1297
    assert torch.allclose(boxes_rot.tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
1298
    assert torch.allclose(points, expected_points, 1e-3)
1299
1300
1301
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)

    # with input torch.Tensor points and rotation matrix
1302
    points, rot_mat_T = boxes.rotate(-0.022998953275003075, points)  # back
1303
1304
1305
    rot_mat = np.array([[0.99973554, 0.02299693, 0.],
                        [-0.02299693, 0.99973554, 0.], [0., 0., 1.]])
    points, rot_mat_T = boxes.rotate(rot_mat, points)
1306
1307
1308
    expected_rot_mat_T = torch.tensor([[0.99973554, 0.02299693, 0.0000],
                                       [-0.02299693, 0.99973554, 0.0000],
                                       [0.0000, 0.0000, 1.0000]])
1309
1310
1311
    assert torch.allclose(boxes_rot.tensor, expected_tensor, 1e-3)
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)
liyinhao's avatar
liyinhao committed
1312

1313
    # with input np.ndarray points and angle
liyinhao's avatar
liyinhao committed
1314
1315
1316
1317
1318
    points_np = np.array([[0.6762, 1.2559, -1.4658, 2.5359],
                          [0.8784, 4.7814, -1.3857, 0.7167],
                          [-0.2517, 6.7053, -0.9697, 0.5599],
                          [0.5520, 0.6533, -0.5265, 1.0032],
                          [-0.5358, 4.5870, -1.4741, 0.0556]])
1319
    points_np, rot_mat_T_np = boxes.rotate(-0.022998953275003075, points_np)
liyinhao's avatar
liyinhao committed
1320
1321
1322
1323
1324
    expected_points_np = np.array([[0.7049, 1.2400, -1.4658, 2.5359],
                                   [0.9881, 4.7599, -1.3857, 0.7167],
                                   [-0.0974, 6.7093, -0.9697, 0.5599],
                                   [0.5669, 0.6404, -0.5265, 1.0032],
                                   [-0.4302, 4.5981, -1.4741, 0.0556]])
1325
1326
    expected_rot_mat_T_np = np.array([[0.99973554, -0.02299693, 0.0000],
                                      [0.02299693, 0.99973554, 0.0000],
liyinhao's avatar
liyinhao committed
1327
1328
1329
1330
1331
1332
                                      [0.0000, 0.0000, 1.0000]])
    expected_tensor = torch.tensor(
        [[-1.5434, -2.4951, -0.5570, 0.9385, 2.1404, 0.8954, -0.0585],
         [-2.4016, -3.2521, 0.4426, 0.8234, 0.5325, 1.0099, -0.1215],
         [-2.5181, -2.5298, -0.4321, 0.8597, 0.6193, 1.0204, -0.0493],
         [-1.5434, -2.4951, -0.5570, 0.9385, 2.1404, 0.8954, -0.0585]])
1333
    expected_tensor[:, -1:] -= 0.022998953275003075 * 2
liyinhao's avatar
liyinhao committed
1334
1335
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
    assert np.allclose(points_np, expected_points_np, 1e-3)
1336
1337
1338
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)

    # with input DepthPoints and rotation matrix
1339
    points_np, rot_mat_T_np = boxes.rotate(-0.022998953275003075, points_np)
1340
1341
1342
    depth_points = DepthPoints(points_np, points_dim=4)
    depth_points, rot_mat_T_np = boxes.rotate(rot_mat, depth_points)
    points_np = depth_points.tensor.numpy()
1343
    expected_rot_mat_T_np = expected_rot_mat_T_np.T
1344
1345
1346
1347
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)

1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
    expected_tensor = torch.tensor([[[-2.1217, -3.5105, -0.5570],
                                     [-2.1217, -3.5105, 0.3384],
                                     [-1.8985, -1.3818, 0.3384],
                                     [-1.8985, -1.3818, -0.5570],
                                     [-1.1883, -3.6084, -0.5570],
                                     [-1.1883, -3.6084, 0.3384],
                                     [-0.9651, -1.4796, 0.3384],
                                     [-0.9651, -1.4796, -0.5570]],
                                    [[-2.8519, -3.4460, 0.4426],
                                     [-2.8519, -3.4460, 1.4525],
                                     [-2.7632, -2.9210, 1.4525],
                                     [-2.7632, -2.9210, 0.4426],
                                     [-2.0401, -3.5833, 0.4426],
                                     [-2.0401, -3.5833, 1.4525],
                                     [-1.9513, -3.0582, 1.4525],
                                     [-1.9513, -3.0582, 0.4426]],
                                    [[-2.9755, -2.7971, -0.4321],
                                     [-2.9755, -2.7971, 0.5883],
                                     [-2.9166, -2.1806, 0.5883],
                                     [-2.9166, -2.1806, -0.4321],
                                     [-2.1197, -2.8789, -0.4321],
                                     [-2.1197, -2.8789, 0.5883],
                                     [-2.0608, -2.2624, 0.5883],
                                     [-2.0608, -2.2624, -0.4321]],
                                    [[-2.1217, -3.5105, -0.5570],
                                     [-2.1217, -3.5105, 0.3384],
                                     [-1.8985, -1.3818, 0.3384],
                                     [-1.8985, -1.3818, -0.5570],
                                     [-1.1883, -3.6084, -0.5570],
                                     [-1.1883, -3.6084, 0.3384],
                                     [-0.9651, -1.4796, 0.3384],
                                     [-0.9651, -1.4796, -0.5570]]])

    assert torch.allclose(boxes.corners, expected_tensor, 1e-3)

wuyuefeng's avatar
wuyuefeng committed
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
    th_boxes = torch.tensor(
        [[0.61211395, 0.8129094, 0.10563634, 1.497534, 0.16927195, 0.27956772],
         [1.430009, 0.49797538, 0.9382923, 0.07694054, 0.9312509, 1.8919173]],
        dtype=torch.float32)
    boxes = DepthInstance3DBoxes(th_boxes, box_dim=6, with_yaw=False)
    expected_tensor = torch.tensor([[
        0.64884546, 0.78390356, 0.10563634, 1.50373348, 0.23795205, 0.27956772,
        0
    ],
                                    [
                                        1.45139421, 0.43169443, 0.93829232,
                                        0.11967964, 0.93380373, 1.89191735, 0
                                    ]])
    boxes_3 = boxes.clone()
    boxes_3.rotate(-0.04599790655000615)
    assert torch.allclose(boxes_3.tensor, expected_tensor)
    boxes.rotate(torch.tensor(-0.04599790655000615))
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test bbox in_range_bev
    expected_tensor = torch.tensor([1, 1], dtype=torch.bool)
    mask = boxes.in_range_bev([0., -40., 70.4, 40.])
    assert (mask == expected_tensor).all()
    mask = boxes.nonempty()
    assert (mask == expected_tensor).all()

1409
1410
1411
1412
1413
    # test bbox in_range
    expected_tensor = torch.tensor([0, 1], dtype=torch.bool)
    mask = boxes.in_range_3d([1, 0, -2, 2, 1, 5])
    assert (mask == expected_tensor).all()

wuyuefeng's avatar
wuyuefeng committed
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
    expected_tensor = torch.tensor([[[-0.1030, 0.6649, 0.1056],
                                     [-0.1030, 0.6649, 0.3852],
                                     [-0.1030, 0.9029, 0.3852],
                                     [-0.1030, 0.9029, 0.1056],
                                     [1.4007, 0.6649, 0.1056],
                                     [1.4007, 0.6649, 0.3852],
                                     [1.4007, 0.9029, 0.3852],
                                     [1.4007, 0.9029, 0.1056]],
                                    [[1.3916, -0.0352, 0.9383],
                                     [1.3916, -0.0352, 2.8302],
                                     [1.3916, 0.8986, 2.8302],
                                     [1.3916, 0.8986, 0.9383],
                                     [1.5112, -0.0352, 0.9383],
                                     [1.5112, -0.0352, 2.8302],
                                     [1.5112, 0.8986, 2.8302],
                                     [1.5112, 0.8986, 0.9383]]])
1430
    assert torch.allclose(boxes.corners, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
1431
1432
1433

    # test points in boxes
    if torch.cuda.is_available():
1434
        box_idxs_of_pts = boxes.points_in_boxes_all(points.cuda())
liyinhao's avatar
liyinhao committed
1435
1436
1437
1438
1439
1440
        expected_idxs_of_pts = torch.tensor(
            [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]],
            device='cuda:0',
            dtype=torch.int32)
        assert torch.all(box_idxs_of_pts == expected_idxs_of_pts)

encore-zhou's avatar
encore-zhou committed
1441
1442
    # test get_surface_line_center
    boxes = torch.tensor(
1443
1444
        [[0.3294, 1.0359, 0.1171, 1.0822, 1.1247, 1.3721, -0.4916],
         [-2.4630, -2.6324, -0.1616, 0.9202, 1.7896, 0.1992, -0.3185]])
encore-zhou's avatar
encore-zhou committed
1445
1446
1447
    boxes = DepthInstance3DBoxes(
        boxes, box_dim=boxes.shape[-1], with_yaw=True, origin=(0.5, 0.5, 0.5))
    surface_center, line_center = boxes.get_surface_line_center()
1448

encore-zhou's avatar
encore-zhou committed
1449
1450
1451
    expected_surface_center = torch.tensor([[0.3294, 1.0359, 0.8031],
                                            [0.3294, 1.0359, -0.5689],
                                            [0.5949, 1.5317, 0.1171],
1452
                                            [0.1533, 0.5018, 0.1171],
encore-zhou's avatar
encore-zhou committed
1453
                                            [0.8064, 0.7805, 0.1171],
1454
1455
1456
1457
1458
1459
                                            [-0.1845, 1.2053, 0.1171],
                                            [-2.4630, -2.6324, -0.0620],
                                            [-2.4630, -2.6324, -0.2612],
                                            [-2.0406, -1.8436, -0.1616],
                                            [-2.7432, -3.4822, -0.1616],
                                            [-2.0574, -2.8496, -0.1616],
encore-zhou's avatar
encore-zhou committed
1460
1461
1462
                                            [-2.9000, -2.4883, -0.1616]])

    expected_line_center = torch.tensor([[0.8064, 0.7805, 0.8031],
1463
                                         [-0.1845, 1.2053, 0.8031],
encore-zhou's avatar
encore-zhou committed
1464
                                         [0.5949, 1.5317, 0.8031],
1465
                                         [0.1533, 0.5018, 0.8031],
encore-zhou's avatar
encore-zhou committed
1466
                                         [0.8064, 0.7805, -0.5689],
1467
                                         [-0.1845, 1.2053, -0.5689],
encore-zhou's avatar
encore-zhou committed
1468
                                         [0.5949, 1.5317, -0.5689],
1469
                                         [0.1533, 0.5018, -0.5689],
encore-zhou's avatar
encore-zhou committed
1470
                                         [1.0719, 1.2762, 0.1171],
1471
                                         [0.6672, 0.3324, 0.1171],
encore-zhou's avatar
encore-zhou committed
1472
                                         [0.1178, 1.7871, 0.1171],
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
                                         [-0.3606, 0.6713, 0.1171],
                                         [-2.0574, -2.8496, -0.0620],
                                         [-2.9000, -2.4883, -0.0620],
                                         [-2.0406, -1.8436, -0.0620],
                                         [-2.7432, -3.4822, -0.0620],
                                         [-2.0574, -2.8496, -0.2612],
                                         [-2.9000, -2.4883, -0.2612],
                                         [-2.0406, -1.8436, -0.2612],
                                         [-2.7432, -3.4822, -0.2612],
                                         [-1.6350, -2.0607, -0.1616],
                                         [-2.3062, -3.6263, -0.1616],
                                         [-2.4462, -1.6264, -0.1616],
encore-zhou's avatar
encore-zhou committed
1485
1486
1487
1488
1489
                                         [-3.1802, -3.3381, -0.1616]])

    assert torch.allclose(surface_center, expected_surface_center, atol=1e-04)
    assert torch.allclose(line_center, expected_line_center, atol=1e-04)

liyinhao's avatar
liyinhao committed
1490
1491

def test_rotation_3d_in_axis():
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
    # clockwise
    points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
                            [-0.4599, -0.0471, 1.8433],
                            [-0.4599, 0.0471, 1.8433]],
                           [[-0.2555, -0.2683, 0.0000],
                            [-0.2555, -0.2683, 0.9072],
                            [-0.2555, 0.2683, 0.9072]]])
    rotated = rotation_3d_in_axis(
        points,
        torch.tensor([-np.pi / 10, np.pi / 10]),
        axis=0,
        clockwise=True)
    expected_rotated = torch.tensor(
        [[[-0.4599, -0.0448, -0.0146], [-0.4599, -0.6144, 1.7385],
          [-0.4599, -0.5248, 1.7676]],
         [[-0.2555, -0.2552, 0.0829], [-0.2555, 0.0252, 0.9457],
          [-0.2555, 0.5355, 0.7799]]],
        dtype=torch.float32)
    assert torch.allclose(rotated, expected_rotated, atol=1e-3)
1511
1512

    # anti-clockwise with return rotation mat
liyinhao's avatar
liyinhao committed
1513
    points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
1514
1515
1516
1517
                            [-0.4599, -0.0471, 1.8433]]])
    rotated = rotation_3d_in_axis(points, torch.tensor([np.pi / 2]), axis=0)
    expected_rotated = torch.tensor([[[-0.4599, 0.0000, -0.0471],
                                      [-0.4599, -1.8433, -0.0471]]])
liyinhao's avatar
liyinhao committed
1518
1519
    assert torch.allclose(rotated, expected_rotated, 1e-3)

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
    points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
                            [-0.4599, -0.0471, 1.8433]]])
    rotated, mat = rotation_3d_in_axis(
        points, torch.tensor([np.pi / 2]), axis=0, return_mat=True)
    expected_rotated = torch.tensor([[[-0.4599, 0.0000, -0.0471],
                                      [-0.4599, -1.8433, -0.0471]]])
    expected_mat = torch.tensor([[[1, 0, 0], [0, 0, 1], [0, -1, 0]]]).float()
    assert torch.allclose(rotated, expected_rotated, atol=1e-6)
    assert torch.allclose(mat, expected_mat, atol=1e-6)

    points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
                            [-0.4599, -0.0471, 1.8433]],
                           [[-0.2555, -0.2683, 0.0000],
                            [-0.2555, -0.2683, 0.9072]]])
    rotated = rotation_3d_in_axis(points, np.pi / 2, axis=0)
    expected_rotated = torch.tensor([[[-0.4599, 0.0000, -0.0471],
                                      [-0.4599, -1.8433, -0.0471]],
                                     [[-0.2555, 0.0000, -0.2683],
                                      [-0.2555, -0.9072, -0.2683]]])
    assert torch.allclose(rotated, expected_rotated, atol=1e-3)

    points = np.array([[[-0.4599, -0.0471, 0.0000], [-0.4599, -0.0471,
                                                     1.8433]],
                       [[-0.2555, -0.2683, 0.0000],
                        [-0.2555, -0.2683, 0.9072]]]).astype(np.float32)

    rotated = rotation_3d_in_axis(points, np.pi / 2, axis=0)
    expected_rotated = np.array([[[-0.4599, 0.0000, -0.0471],
                                  [-0.4599, -1.8433, -0.0471]],
                                 [[-0.2555, 0.0000, -0.2683],
                                  [-0.2555, -0.9072, -0.2683]]])
    assert np.allclose(rotated, expected_rotated, atol=1e-3)

    points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
                            [-0.4599, -0.0471, 1.8433]],
                           [[-0.2555, -0.2683, 0.0000],
                            [-0.2555, -0.2683, 0.9072]]])
    angles = [np.pi / 2, -np.pi / 2]
Yezhen Cong's avatar
Yezhen Cong committed
1558
    rotated = rotation_3d_in_axis(points, angles, axis=0).numpy()
1559
1560
1561
1562
1563
1564
    expected_rotated = np.array([[[-0.4599, 0.0000, -0.0471],
                                  [-0.4599, -1.8433, -0.0471]],
                                 [[-0.2555, 0.0000, 0.2683],
                                  [-0.2555, 0.9072, 0.2683]]])
    assert np.allclose(rotated, expected_rotated, atol=1e-3)

Yezhen Cong's avatar
Yezhen Cong committed
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
    points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
                            [-0.4599, -0.0471, 1.8433]],
                           [[-0.2555, -0.2683, 0.0000],
                            [-0.2555, -0.2683, 0.9072]]])
    angles = [np.pi / 2, -np.pi / 2]
    rotated = rotation_3d_in_axis(points, angles, axis=1).numpy()
    expected_rotated = np.array([[[0.0000, -0.0471, 0.4599],
                                  [1.8433, -0.0471, 0.4599]],
                                 [[0.0000, -0.2683, -0.2555],
                                  [-0.9072, -0.2683, -0.2555]]])
    assert np.allclose(rotated, expected_rotated, atol=1e-3)

    points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
                            [-0.4599, 0.0471, 1.8433]],
                           [[-0.2555, -0.2683, 0.0000],
                            [0.2555, -0.2683, 0.9072]]])
    angles = [np.pi / 2, -np.pi / 2]
    rotated = rotation_3d_in_axis(points, angles, axis=2).numpy()
    expected_rotated = np.array([[[0.0471, -0.4599, 0.0000],
                                  [-0.0471, -0.4599, 1.8433]],
                                 [[-0.2683, 0.2555, 0.0000],
                                  [-0.2683, -0.2555, 0.9072]]])
    assert np.allclose(rotated, expected_rotated, atol=1e-3)

1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
    points = torch.tensor([[[-0.0471, 0.0000], [-0.0471, 1.8433]],
                           [[-0.2683, 0.0000], [-0.2683, 0.9072]]])
    angles = [np.pi / 2, -np.pi / 2]
    rotated = rotation_3d_in_axis(points, angles)
    expected_rotated = np.array([[[0.0000, -0.0471], [-1.8433, -0.0471]],
                                 [[0.0000, 0.2683], [0.9072, 0.2683]]])
    assert np.allclose(rotated, expected_rotated, atol=1e-3)


def test_rotation_2d():
    angles = np.array([3.14])
    corners = np.array([[[-0.235, -0.49], [-0.235, 0.49], [0.235, 0.49],
                         [0.235, -0.49]]])
    corners_rotated = rotation_3d_in_axis(corners, angles)
    expected_corners = np.array([[[0.2357801, 0.48962511],
                                  [0.2342193, -0.49037365],
                                  [-0.2357801, -0.48962511],
                                  [-0.2342193, 0.49037365]]])
    assert np.allclose(corners_rotated, expected_corners)

liyinhao's avatar
liyinhao committed
1609
1610
1611
1612
1613
1614
1615
1616
1617

def test_limit_period():
    torch.manual_seed(0)
    val = torch.rand([5, 1])
    result = limit_period(val)
    expected_result = torch.tensor([[0.4963], [0.7682], [0.0885], [0.1320],
                                    [0.3074]])
    assert torch.allclose(result, expected_result, 1e-3)

1618
1619
1620
1621
1622
    val = val.numpy()
    result = limit_period(val)
    expected_result = expected_result.numpy()
    assert np.allclose(result, expected_result, 1e-3)

liyinhao's avatar
liyinhao committed
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661

def test_xywhr2xyxyr():
    torch.manual_seed(0)
    xywhr = torch.tensor([[1., 2., 3., 4., 5.], [0., 1., 2., 3., 4.]])
    xyxyr = xywhr2xyxyr(xywhr)
    expected_xyxyr = torch.tensor([[-0.5000, 0.0000, 2.5000, 4.0000, 5.0000],
                                   [-1.0000, -0.5000, 1.0000, 2.5000, 4.0000]])

    assert torch.allclose(xyxyr, expected_xyxyr)


class test_get_box_type(unittest.TestCase):

    def test_get_box_type(self):
        box_type_3d, box_mode_3d = get_box_type('camera')
        assert box_type_3d == CameraInstance3DBoxes
        assert box_mode_3d == Box3DMode.CAM

        box_type_3d, box_mode_3d = get_box_type('depth')
        assert box_type_3d == DepthInstance3DBoxes
        assert box_mode_3d == Box3DMode.DEPTH

        box_type_3d, box_mode_3d = get_box_type('lidar')
        assert box_type_3d == LiDARInstance3DBoxes
        assert box_mode_3d == Box3DMode.LIDAR

    def test_bad_box_type(self):
        self.assertRaises(ValueError, get_box_type, 'test')


def test_points_cam2img():
    torch.manual_seed(0)
    points = torch.rand([5, 3])
    proj_mat = torch.rand([4, 4])
    point_2d_res = points_cam2img(points, proj_mat)
    expected_point_2d_res = torch.tensor([[0.5832, 0.6496], [0.6146, 0.7910],
                                          [0.6994, 0.7782], [0.5623, 0.6303],
                                          [0.4359, 0.6532]])
    assert torch.allclose(point_2d_res, expected_point_2d_res, 1e-3)
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672

    points = points.numpy()
    proj_mat = proj_mat.numpy()
    point_2d_res = points_cam2img(points, proj_mat)
    expected_point_2d_res = expected_point_2d_res.numpy()
    assert np.allclose(point_2d_res, expected_point_2d_res, 1e-3)

    points = torch.from_numpy(points)
    point_2d_res = points_cam2img(points, proj_mat)
    expected_point_2d_res = torch.from_numpy(expected_point_2d_res)
    assert torch.allclose(point_2d_res, expected_point_2d_res, 1e-3)
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797

    point_2d_res = points_cam2img(points, proj_mat, with_depth=True)
    expected_point_2d_res = torch.tensor([[0.5832, 0.6496, 1.7577],
                                          [0.6146, 0.7910, 1.5477],
                                          [0.6994, 0.7782, 2.0091],
                                          [0.5623, 0.6303, 1.8739],
                                          [0.4359, 0.6532, 1.2056]])
    assert torch.allclose(point_2d_res, expected_point_2d_res, 1e-3)


def test_points_in_boxes():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    lidar_pts = torch.tensor([[1.0, 4.3, 0.1], [1.0, 4.4,
                                                0.1], [1.1, 4.3, 0.1],
                              [0.9, 4.3, 0.1], [1.0, -0.3, 0.1],
                              [1.0, -0.4, 0.1], [2.9, 0.1, 6.0],
                              [-0.9, 3.9, 6.0]]).cuda()
    lidar_boxes = torch.tensor([[1.0, 2.0, 0.0, 4.0, 4.0, 6.0, np.pi / 6],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, np.pi / 2],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, 7 * np.pi / 6],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, -np.pi / 6]],
                               dtype=torch.float32).cuda()
    lidar_boxes = LiDARInstance3DBoxes(lidar_boxes)

    point_indices = lidar_boxes.points_in_boxes_all(lidar_pts)
    expected_point_indices = torch.tensor(
        [[1, 0, 1, 1], [0, 0, 0, 0], [1, 0, 1, 0], [0, 0, 0, 1], [1, 0, 1, 1],
         [0, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]],
        dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([8, 4])
    assert (point_indices == expected_point_indices).all()

    lidar_pts = torch.tensor([[1.0, 4.3, 0.1], [1.0, 4.4,
                                                0.1], [1.1, 4.3, 0.1],
                              [0.9, 4.3, 0.1], [1.0, -0.3, 0.1],
                              [1.0, -0.4, 0.1], [2.9, 0.1, 6.0],
                              [-0.9, 3.9, 6.0]]).cuda()
    lidar_boxes = torch.tensor([[1.0, 2.0, 0.0, 4.0, 4.0, 6.0, np.pi / 6],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, np.pi / 2],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, 7 * np.pi / 6],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, -np.pi / 6]],
                               dtype=torch.float32).cuda()
    lidar_boxes = LiDARInstance3DBoxes(lidar_boxes)

    point_indices = lidar_boxes.points_in_boxes_part(lidar_pts)
    expected_point_indices = torch.tensor([0, -1, 0, 3, 0, -1, 1, 1],
                                          dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([8])
    assert (point_indices == expected_point_indices).all()

    depth_boxes = torch.tensor([[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3],
                                [-10.0, 23.0, 16.0, 10, 20, 20, 0.5]],
                               dtype=torch.float32).cuda()
    depth_boxes = DepthInstance3DBoxes(depth_boxes)
    depth_pts = torch.tensor(
        [[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
          [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
          [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [
              -16, -18, 9
          ], [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]]],
        dtype=torch.float32).cuda()

    point_indices = depth_boxes.points_in_boxes_all(depth_pts)
    expected_point_indices = torch.tensor(
        [[1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [0, 0], [0, 0],
         [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]],
        dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([15, 2])
    assert (point_indices == expected_point_indices).all()

    point_indices = depth_boxes.points_in_boxes_part(depth_pts)
    expected_point_indices = torch.tensor(
        [0, 0, 0, 0, 0, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([15])
    assert (point_indices == expected_point_indices).all()

    depth_boxes = torch.tensor([[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3],
                                [-10.0, 23.0, 16.0, 10, 20, 20, 0.5],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, np.pi / 6],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, np.pi / 2],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, 7 * np.pi / 6],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, -np.pi / 6]],
                               dtype=torch.float32).cuda()
    cam_boxes = DepthInstance3DBoxes(depth_boxes).convert_to(Box3DMode.CAM)
    depth_pts = torch.tensor(
        [[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
         [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
         [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9],
         [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4], [1.0, 4.3, 0.1],
         [1.0, 4.4, 0.1], [1.1, 4.3, 0.1], [0.9, 4.3, 0.1], [1.0, -0.3, 0.1],
         [1.0, -0.4, 0.1], [2.9, 0.1, 6.0], [-0.9, 3.9, 6.0]],
        dtype=torch.float32).cuda()

    cam_pts = DepthPoints(depth_pts).convert_to(Coord3DMode.CAM).tensor

    point_indices = cam_boxes.points_in_boxes_all(cam_pts)
    expected_point_indices = torch.tensor(
        [[1, 0, 1, 1, 1, 1], [1, 0, 1, 1, 1, 1], [1, 0, 1, 1, 1, 1],
         [1, 0, 1, 1, 1, 1], [1, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0],
         [0, 0, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0],
         [0, 0, 1, 1, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1],
         [0, 0, 1, 1, 1, 0], [0, 0, 1, 1, 1, 1], [0, 0, 0, 1, 0, 0],
         [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0]],
        dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([23, 6])
    assert (point_indices == expected_point_indices).all()

    point_indices = cam_boxes.points_in_boxes_batch(cam_pts)
    assert (point_indices == expected_point_indices).all()

    point_indices = cam_boxes.points_in_boxes_part(cam_pts)
    expected_point_indices = torch.tensor([
        0, 0, 0, 0, 0, 1, -1, -1, -1, -1, -1, -1, 3, -1, -1, 2, 3, 3, 2, 2, 3,
        0, 0
    ],
                                          dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([23])
    assert (point_indices == expected_point_indices).all()

    point_indices = cam_boxes.points_in_boxes(cam_pts)
    assert (point_indices == expected_point_indices).all()