test_box3d.py 75.8 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
3
import pytest
4
import torch
liyinhao's avatar
liyinhao committed
5
import unittest
6

liyinhao's avatar
liyinhao committed
7
8
from mmdet3d.core.bbox import (BaseInstance3DBoxes, Box3DMode,
                               CameraInstance3DBoxes, DepthInstance3DBoxes,
yinchimaoliang's avatar
yinchimaoliang committed
9
10
                               LiDARInstance3DBoxes, bbox3d2roi,
                               bbox3d_mapping_back)
liyinhao's avatar
liyinhao committed
11
12
13
14
from mmdet3d.core.bbox.structures.utils import (get_box_type, limit_period,
                                                points_cam2img,
                                                rotation_3d_in_axis,
                                                xywhr2xyxyr)
15
from mmdet3d.core.points import CameraPoints, DepthPoints, LiDARPoints
liyinhao's avatar
liyinhao committed
16
17


yinchimaoliang's avatar
yinchimaoliang committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def test_bbox3d_mapping_back():
    bboxes = BaseInstance3DBoxes(
        [[
            -5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 2.06200000e+00,
            4.40900000e+00, 1.54800000e+00, -1.48801203e+00
        ],
         [
             -2.66751588e+01, 5.59499564e+00, -9.14345860e-01, 3.43000000e-01,
             4.58000000e-01, 7.82000000e-01, -4.62759755e+00
         ],
         [
             -5.80979675e+00, 3.54092357e+01, 2.00889888e-01, 2.39600000e+00,
             3.96900000e+00, 1.73200000e+00, -4.65203216e+00
         ],
         [
             -3.13086877e+01, 1.09007628e+00, -1.94612112e-01, 1.94400000e+00,
             3.85700000e+00, 1.72300000e+00, -2.81427027e+00
         ]])
    new_bboxes = bbox3d_mapping_back(bboxes, 1.1, True, True)
    expected_new_bboxes = torch.tensor(
        [[-4.7657, 36.3827, 0.2705, 1.8745, 4.0082, 1.4073, -1.4880],
         [-24.2501, 5.0864, -0.8312, 0.3118, 0.4164, 0.7109, -4.6276],
         [-5.2816, 32.1902, 0.1826, 2.1782, 3.6082, 1.5745, -4.6520],
         [-28.4624, 0.9910, -0.1769, 1.7673, 3.5064, 1.5664, -2.8143]])
    assert torch.allclose(new_bboxes.tensor, expected_new_bboxes, atol=1e-4)


def test_bbox3d2roi():
    bbox_0 = torch.tensor(
        [[-5.2422, 4.0020, 2.9757, 2.0620, 4.4090, 1.5480, -1.4880],
         [-5.8097, 3.5409, 2.0088, 2.3960, 3.9690, 1.7320, -4.6520]])
    bbox_1 = torch.tensor(
        [[-2.6675, 5.5949, -9.1434, 3.4300, 4.5800, 7.8200, -4.6275],
         [-3.1308, 1.0900, -1.9461, 1.9440, 3.8570, 1.7230, -2.8142]])
    bbox_list = [bbox_0, bbox_1]
    rois = bbox3d2roi(bbox_list)
    expected_rois = torch.tensor(
        [[0.0000, -5.2422, 4.0020, 2.9757, 2.0620, 4.4090, 1.5480, -1.4880],
         [0.0000, -5.8097, 3.5409, 2.0088, 2.3960, 3.9690, 1.7320, -4.6520],
         [1.0000, -2.6675, 5.5949, -9.1434, 3.4300, 4.5800, 7.8200, -4.6275],
         [1.0000, -3.1308, 1.0900, -1.9461, 1.9440, 3.8570, 1.7230, -2.8142]])
    assert torch.all(torch.eq(rois, expected_rois))


liyinhao's avatar
liyinhao committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
def test_base_boxes3d():
    # test empty initialization
    empty_boxes = []
    boxes = BaseInstance3DBoxes(empty_boxes)
    assert boxes.tensor.shape[0] == 0
    assert boxes.tensor.shape[1] == 7

    # Test init with origin
    gravity_center_box = np.array(
        [[
            -5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 2.06200000e+00,
            4.40900000e+00, 1.54800000e+00, -1.48801203e+00
        ],
         [
             -2.66751588e+01, 5.59499564e+00, -9.14345860e-01, 3.43000000e-01,
             4.58000000e-01, 7.82000000e-01, -4.62759755e+00
         ],
         [
             -5.80979675e+00, 3.54092357e+01, 2.00889888e-01, 2.39600000e+00,
             3.96900000e+00, 1.73200000e+00, -4.65203216e+00
         ],
         [
             -3.13086877e+01, 1.09007628e+00, -1.94612112e-01, 1.94400000e+00,
             3.85700000e+00, 1.72300000e+00, -2.81427027e+00
         ]],
        dtype=np.float32)

    bottom_center_box = BaseInstance3DBoxes(
        gravity_center_box, origin=(0.5, 0.5, 0.5))

    assert bottom_center_box.yaw.shape[0] == 4
93
94
95


def test_lidar_boxes3d():
zhangwenwei's avatar
zhangwenwei committed
96
97
98
99
100
101
    # test empty initialization
    empty_boxes = []
    boxes = LiDARInstance3DBoxes(empty_boxes)
    assert boxes.tensor.shape[0] == 0
    assert boxes.tensor.shape[1] == 7

zhangwenwei's avatar
zhangwenwei committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    # Test init with origin
    gravity_center_box = np.array(
        [[
            -5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 2.06200000e+00,
            4.40900000e+00, 1.54800000e+00, -1.48801203e+00
        ],
         [
             -2.66751588e+01, 5.59499564e+00, -9.14345860e-01, 3.43000000e-01,
             4.58000000e-01, 7.82000000e-01, -4.62759755e+00
         ],
         [
             -5.80979675e+00, 3.54092357e+01, 2.00889888e-01, 2.39600000e+00,
             3.96900000e+00, 1.73200000e+00, -4.65203216e+00
         ],
         [
             -3.13086877e+01, 1.09007628e+00, -1.94612112e-01, 1.94400000e+00,
             3.85700000e+00, 1.72300000e+00, -2.81427027e+00
         ]],
        dtype=np.float32)
    bottom_center_box = LiDARInstance3DBoxes(
wuyuefeng's avatar
wuyuefeng committed
122
        gravity_center_box, origin=(0.5, 0.5, 0.5))
zhangwenwei's avatar
zhangwenwei committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    expected_tensor = torch.tensor(
        [[
            -5.24223238e+00, 4.00209696e+01, -4.76429619e-01, 2.06200000e+00,
            4.40900000e+00, 1.54800000e+00, -1.48801203e+00
        ],
         [
             -2.66751588e+01, 5.59499564e+00, -1.30534586e+00, 3.43000000e-01,
             4.58000000e-01, 7.82000000e-01, -4.62759755e+00
         ],
         [
             -5.80979675e+00, 3.54092357e+01, -6.65110112e-01, 2.39600000e+00,
             3.96900000e+00, 1.73200000e+00, -4.65203216e+00
         ],
         [
             -3.13086877e+01, 1.09007628e+00, -1.05611211e+00, 1.94400000e+00,
             3.85700000e+00, 1.72300000e+00, -2.81427027e+00
         ]])
    assert torch.allclose(expected_tensor, bottom_center_box.tensor)

142
    # Test init with numpy array
143
144
145
146
147
148
149
150
151
    np_boxes = np.array([[
        1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65,
        1.48 - 0.13603681398218053 * 4
    ],
                         [
                             8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57,
                             1.62 - 0.13603681398218053 * 4
                         ]],
                        dtype=np.float32)
152
153
154
    boxes_1 = LiDARInstance3DBoxes(np_boxes)
    assert torch.allclose(boxes_1.tensor, torch.from_numpy(np_boxes))

zhangwenwei's avatar
zhangwenwei committed
155
156
157
158
159
160
    # test properties
    assert boxes_1.volume.size(0) == 2
    assert (boxes_1.center == boxes_1.bottom_center).all()
    assert repr(boxes) == (
        'LiDARInstance3DBoxes(\n    tensor([], size=(0, 7)))')

161
162
163
164
    # test init with torch.Tensor
    th_boxes = torch.tensor(
        [[
            28.29669987, -0.5557558, -1.30332506, 1.47000003, 2.23000002,
165
            1.48000002, -1.57000005 - 0.13603681398218053 * 4
166
167
168
        ],
         [
             26.66901946, 21.82302134, -1.73605708, 1.55999994, 3.48000002,
169
             1.39999998, -1.69000006 - 0.13603681398218053 * 4
170
171
172
         ],
         [
             31.31977974, 8.16214412, -1.62177875, 1.74000001, 3.76999998,
173
             1.48000002, 2.78999996 - 0.13603681398218053 * 4
174
175
176
177
178
179
180
181
182
183
         ]],
        dtype=torch.float32)
    boxes_2 = LiDARInstance3DBoxes(th_boxes)
    assert torch.allclose(boxes_2.tensor, th_boxes)

    # test clone/to/device
    boxes_2 = boxes_2.clone()
    boxes_1 = boxes_1.to(boxes_2.device)

    # test box concatenation
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    expected_tensor = torch.tensor([[
        1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65,
        1.48 - 0.13603681398218053 * 4
    ],
                                    [
                                        8.959413, 2.4567227, -1.6357126, 1.54,
                                        4.01, 1.57,
                                        1.62 - 0.13603681398218053 * 4
                                    ],
                                    [
                                        28.2967, -0.5557558, -1.303325, 1.47,
                                        2.23, 1.48,
                                        -1.57 - 0.13603681398218053 * 4
                                    ],
                                    [
                                        26.66902, 21.82302, -1.736057, 1.56,
                                        3.48, 1.4,
                                        -1.69 - 0.13603681398218053 * 4
                                    ],
                                    [
                                        31.31978, 8.162144, -1.6217787, 1.74,
                                        3.77, 1.48,
                                        2.79 - 0.13603681398218053 * 4
                                    ]])
208
209
    boxes = LiDARInstance3DBoxes.cat([boxes_1, boxes_2])
    assert torch.allclose(boxes.tensor, expected_tensor)
zhangwenwei's avatar
zhangwenwei committed
210
211
212
213
    # concatenate empty list
    empty_boxes = LiDARInstance3DBoxes.cat([])
    assert empty_boxes.tensor.shape[0] == 0
    assert empty_boxes.tensor.shape[-1] == 7
214
215

    # test box flip
liyinhao's avatar
liyinhao committed
216
217
218
219
220
    points = torch.tensor([[1.2559, -0.6762, -1.4658],
                           [4.7814, -0.8784,
                            -1.3857], [6.7053, 0.2517, -0.9697],
                           [0.6533, -0.5520, -0.5265],
                           [4.5870, 0.5358, -1.4741]])
221
    expected_tensor = torch.tensor(
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        [[
            1.7802081, -2.516249, -1.7501148, 1.75, 3.39, 1.65,
            1.6615927 - np.pi + 0.13603681398218053 * 4
        ],
         [
             8.959413, -2.4567227, -1.6357126, 1.54, 4.01, 1.57,
             1.5215927 - np.pi + 0.13603681398218053 * 4
         ],
         [
             28.2967, 0.5557558, -1.303325, 1.47, 2.23, 1.48,
             4.7115927 - np.pi + 0.13603681398218053 * 4
         ],
         [
             26.66902, -21.82302, -1.736057, 1.56, 3.48, 1.4,
             4.8315926 - np.pi + 0.13603681398218053 * 4
         ],
         [
             31.31978, -8.162144, -1.6217787, 1.74, 3.77, 1.48,
             0.35159278 - np.pi + 0.13603681398218053 * 4
         ]])
liyinhao's avatar
liyinhao committed
242
243
244
245
246
247
    expected_points = torch.tensor([[1.2559, 0.6762, -1.4658],
                                    [4.7814, 0.8784, -1.3857],
                                    [6.7053, -0.2517, -0.9697],
                                    [0.6533, 0.5520, -0.5265],
                                    [4.5870, -0.5358, -1.4741]])
    points = boxes.flip('horizontal', points)
248
    assert torch.allclose(boxes.tensor, expected_tensor)
liyinhao's avatar
liyinhao committed
249
    assert torch.allclose(points, expected_points, 1e-3)
250

wuyuefeng's avatar
wuyuefeng committed
251
    expected_tensor = torch.tensor(
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        [[
            -1.7802, -2.5162, -1.7501, 1.7500, 3.3900, 1.6500,
            -1.6616 + np.pi * 2 - 0.13603681398218053 * 4
        ],
         [
             -8.9594, -2.4567, -1.6357, 1.5400, 4.0100, 1.5700,
             -1.5216 + np.pi * 2 - 0.13603681398218053 * 4
         ],
         [
             -28.2967, 0.5558, -1.3033, 1.4700, 2.2300, 1.4800,
             -4.7116 + np.pi * 2 - 0.13603681398218053 * 4
         ],
         [
             -26.6690, -21.8230, -1.7361, 1.5600, 3.4800, 1.4000,
             -4.8316 + np.pi * 2 - 0.13603681398218053 * 4
         ],
         [
             -31.3198, -8.1621, -1.6218, 1.7400, 3.7700, 1.4800,
             -0.3516 + np.pi * 2 - 0.13603681398218053 * 4
         ]])
wuyuefeng's avatar
wuyuefeng committed
272
    boxes_flip_vert = boxes.clone()
liyinhao's avatar
liyinhao committed
273
274
275
276
277
278
    points = boxes_flip_vert.flip('vertical', points)
    expected_points = torch.tensor([[-1.2559, 0.6762, -1.4658],
                                    [-4.7814, 0.8784, -1.3857],
                                    [-6.7053, -0.2517, -0.9697],
                                    [-0.6533, 0.5520, -0.5265],
                                    [-4.5870, -0.5358, -1.4741]])
wuyuefeng's avatar
wuyuefeng committed
279
    assert torch.allclose(boxes_flip_vert.tensor, expected_tensor, 1e-4)
liyinhao's avatar
liyinhao committed
280
    assert torch.allclose(points, expected_points)
wuyuefeng's avatar
wuyuefeng committed
281

282
    # test box rotation
283
    # with input torch.Tensor points and angle
284
    expected_tensor = torch.tensor(
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        [[
            1.4225, -2.7344, -1.7501, 1.7500, 3.3900, 1.6500,
            1.7976 - np.pi + 0.13603681398218053 * 2
        ],
         [
             8.5435, -3.6491, -1.6357, 1.5400, 4.0100, 1.5700,
             1.6576 - np.pi + 0.13603681398218053 * 2
         ],
         [
             28.1106, -3.2869, -1.3033, 1.4700, 2.2300, 1.4800,
             4.8476 - np.pi + 0.13603681398218053 * 2
         ],
         [
             23.4630, -25.2382, -1.7361, 1.5600, 3.4800, 1.4000,
             4.9676 - np.pi + 0.13603681398218053 * 2
         ],
         [
             29.9235, -12.3342, -1.6218, 1.7400, 3.7700, 1.4800,
             0.4876 - np.pi + 0.13603681398218053 * 2
         ]])
    points, rot_mat_T = boxes.rotate(-0.13603681398218053, points)
liyinhao's avatar
liyinhao committed
306
307
308
309
310
311
312
313
314
315
316
317
    expected_points = torch.tensor([[-1.1526, 0.8403, -1.4658],
                                    [-4.6181, 1.5187, -1.3857],
                                    [-6.6775, 0.6600, -0.9697],
                                    [-0.5724, 0.6355, -0.5265],
                                    [-4.6173, 0.0912, -1.4741]])
    expected_rot_mat_T = torch.tensor([[0.9908, -0.1356, 0.0000],
                                       [0.1356, 0.9908, 0.0000],
                                       [0.0000, 0.0000, 1.0000]])
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)

318
    # with input torch.Tensor points and rotation matrix
319
    points, rot_mat_T = boxes.rotate(0.13603681398218053, points)  # back
320
321
322
323
324
325
326
327
    rot_mat = np.array([[0.99076125, -0.13561762, 0.],
                        [0.13561762, 0.99076125, 0.], [0., 0., 1.]])
    points, rot_mat_T = boxes.rotate(rot_mat, points)
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)

    # with input np.ndarray points and angle
liyinhao's avatar
liyinhao committed
328
329
330
331
332
    points_np = np.array([[-1.0280, 0.9888,
                           -1.4658], [-4.3695, 2.1310, -1.3857],
                          [-6.5263, 1.5595,
                           -0.9697], [-0.4809, 0.7073, -0.5265],
                          [-4.5623, 0.7166, -1.4741]])
333
    points_np, rot_mat_T_np = boxes.rotate(-0.13603681398218053, points_np)
liyinhao's avatar
liyinhao committed
334
335
336
337
338
339
340
341
342
343
344
    expected_points_np = np.array([[-0.8844, 1.1191, -1.4658],
                                   [-4.0401, 2.7039, -1.3857],
                                   [-6.2545, 2.4302, -0.9697],
                                   [-0.3805, 0.7660, -0.5265],
                                   [-4.4230, 1.3287, -1.4741]])
    expected_rot_mat_T_np = np.array([[0.9908, -0.1356, 0.0000],
                                      [0.1356, 0.9908, 0.0000],
                                      [0.0000, 0.0000, 1.0000]])

    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)
345

346
    # with input LiDARPoints and rotation matrix
347
    points_np, rot_mat_T_np = boxes.rotate(0.13603681398218053, points_np)
348
349
350
351
352
353
354
    lidar_points = LiDARPoints(points_np)
    lidar_points, rot_mat_T_np = boxes.rotate(rot_mat, lidar_points)
    points_np = lidar_points.tensor.numpy()

    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)

355
356
357
    # test box scaling
    expected_tensor = torch.tensor([[
        1.0443488, -2.9183323, -1.7599131, 1.7597977, 3.4089797, 1.6592377,
358
        1.9336663 - np.pi
359
360
361
362
    ],
                                    [
                                        8.014273, -4.8007393, -1.6448704,
                                        1.5486219, 4.0324507, 1.57879,
363
                                        1.7936664 - np.pi
364
365
366
367
                                    ],
                                    [
                                        27.558605, -7.1084175, -1.310622,
                                        1.4782301, 2.242485, 1.488286,
368
                                        4.9836664 - np.pi
369
370
371
372
                                    ],
                                    [
                                        19.934517, -28.344835, -1.7457767,
                                        1.5687338, 3.4994833, 1.4078381,
373
                                        5.1036663 - np.pi
374
375
376
377
                                    ],
                                    [
                                        28.130915, -16.369587, -1.6308585,
                                        1.7497417, 3.791107, 1.488286,
378
                                        0.6236664 - np.pi
379
380
381
382
383
384
385
                                    ]])
    boxes.scale(1.00559866335275)
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box translation
    expected_tensor = torch.tensor([[
        1.1281544, -3.0507944, -1.9169292, 1.7597977, 3.4089797, 1.6592377,
386
        1.9336663 - np.pi
387
388
389
390
    ],
                                    [
                                        8.098079, -4.9332013, -1.8018866,
                                        1.5486219, 4.0324507, 1.57879,
391
                                        1.7936664 - np.pi
392
393
394
395
                                    ],
                                    [
                                        27.64241, -7.2408795, -1.4676381,
                                        1.4782301, 2.242485, 1.488286,
396
                                        4.9836664 - np.pi
397
398
399
400
                                    ],
                                    [
                                        20.018322, -28.477297, -1.9027928,
                                        1.5687338, 3.4994833, 1.4078381,
401
                                        5.1036663 - np.pi
402
403
404
405
                                    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
406
                                        0.6236664 - np.pi
407
408
409
410
411
412
413
414
415
416
417
                                    ]])
    boxes.translate([0.0838056, -0.13246193, -0.15701613])
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test bbox in_range_bev
    expected_tensor = torch.tensor([1, 1, 1, 1, 1], dtype=torch.bool)
    mask = boxes.in_range_bev([0., -40., 70.4, 40.])
    assert (mask == expected_tensor).all()
    mask = boxes.nonempty()
    assert (mask == expected_tensor).all()

zhangwenwei's avatar
zhangwenwei committed
418
419
420
421
422
    # test bbox in_range
    expected_tensor = torch.tensor([1, 1, 0, 0, 0], dtype=torch.bool)
    mask = boxes.in_range_3d([0, -20, -2, 22, 2, 5])
    assert (mask == expected_tensor).all()

423
424
425
426
    # test bbox indexing
    index_boxes = boxes[2:5]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
427
        4.9836664 - np.pi
428
429
430
431
    ],
                                    [
                                        20.018322, -28.477297, -1.9027928,
                                        1.5687338, 3.4994833, 1.4078381,
432
                                        5.1036663 - np.pi
433
434
435
436
                                    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
437
                                        0.6236664 - np.pi
438
439
440
441
442
443
444
                                    ]])
    assert len(index_boxes) == 3
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    index_boxes = boxes[2]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
445
        4.9836664 - np.pi
446
447
448
449
450
451
452
    ]])
    assert len(index_boxes) == 1
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    index_boxes = boxes[[2, 4]]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
453
        4.9836664 - np.pi
454
455
456
457
    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
458
                                        0.6236664 - np.pi
459
460
461
462
463
464
465
                                    ]])
    assert len(index_boxes) == 2
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    # test iteration
    for i, box in enumerate(index_boxes):
        torch.allclose(box, expected_tensor[i])
zhangwenwei's avatar
zhangwenwei committed
466
467
468
469
470
471
472
473
474
475
476
477
478

    # test properties
    assert torch.allclose(boxes.bottom_center, boxes.tensor[:, :3])
    expected_tensor = (
        boxes.tensor[:, :3] - boxes.tensor[:, 3:6] *
        (torch.tensor([0.5, 0.5, 0]) - torch.tensor([0.5, 0.5, 0.5])))
    assert torch.allclose(boxes.gravity_center, expected_tensor)

    boxes.limit_yaw()
    assert (boxes.tensor[:, 6] <= np.pi / 2).all()
    assert (boxes.tensor[:, 6] >= -np.pi / 2).all()

    Box3DMode.convert(boxes, Box3DMode.LIDAR, Box3DMode.LIDAR)
479
480
    expected_tensor = boxes.tensor.clone()
    assert torch.allclose(expected_tensor, boxes.tensor)
zhangwenwei's avatar
zhangwenwei committed
481
482
483
484

    boxes.flip()
    boxes.flip()
    boxes.limit_yaw()
485
    assert torch.allclose(expected_tensor, boxes.tensor)
zhangwenwei's avatar
zhangwenwei committed
486
487
488
489
490
491
492
493

    # test nearest_bev
    expected_tensor = torch.tensor([[-0.5763, -3.9307, 2.8326, -2.1709],
                                    [6.0819, -5.7075, 10.1143, -4.1589],
                                    [26.5212, -7.9800, 28.7637, -6.5018],
                                    [18.2686, -29.2617, 21.7681, -27.6929],
                                    [27.3398, -18.3976, 29.0896, -14.6065]])
    assert torch.allclose(
wuyuefeng's avatar
wuyuefeng committed
494
        boxes.nearest_bev, expected_tensor, rtol=1e-4, atol=1e-7)
zhangwenwei's avatar
zhangwenwei committed
495

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
    expected_tensor = torch.tensor([[[-7.7767e-01, -2.8332e+00, -1.9169e+00],
                                     [-7.7767e-01, -2.8332e+00, -2.5769e-01],
                                     [2.4093e+00, -1.6232e+00, -2.5769e-01],
                                     [2.4093e+00, -1.6232e+00, -1.9169e+00],
                                     [-1.5301e-01, -4.4784e+00, -1.9169e+00],
                                     [-1.5301e-01, -4.4784e+00, -2.5769e-01],
                                     [3.0340e+00, -3.2684e+00, -2.5769e-01],
                                     [3.0340e+00, -3.2684e+00, -1.9169e+00]],
                                    [[5.9606e+00, -4.6237e+00, -1.8019e+00],
                                     [5.9606e+00, -4.6237e+00, -2.2310e-01],
                                     [9.8933e+00, -3.7324e+00, -2.2310e-01],
                                     [9.8933e+00, -3.7324e+00, -1.8019e+00],
                                     [6.3029e+00, -6.1340e+00, -1.8019e+00],
                                     [6.3029e+00, -6.1340e+00, -2.2310e-01],
                                     [1.0236e+01, -5.2427e+00, -2.2310e-01],
                                     [1.0236e+01, -5.2427e+00, -1.8019e+00]],
                                    [[2.6364e+01, -6.8292e+00, -1.4676e+00],
                                     [2.6364e+01, -6.8292e+00, 2.0648e-02],
                                     [2.8525e+01, -6.2283e+00, 2.0648e-02],
                                     [2.8525e+01, -6.2283e+00, -1.4676e+00],
                                     [2.6760e+01, -8.2534e+00, -1.4676e+00],
                                     [2.6760e+01, -8.2534e+00, 2.0648e-02],
                                     [2.8921e+01, -7.6525e+00, 2.0648e-02],
                                     [2.8921e+01, -7.6525e+00, -1.4676e+00]],
                                    [[1.8102e+01, -2.8420e+01, -1.9028e+00],
                                     [1.8102e+01, -2.8420e+01, -4.9495e-01],
                                     [2.1337e+01, -2.7085e+01, -4.9495e-01],
                                     [2.1337e+01, -2.7085e+01, -1.9028e+00],
                                     [1.8700e+01, -2.9870e+01, -1.9028e+00],
                                     [1.8700e+01, -2.9870e+01, -4.9495e-01],
                                     [2.1935e+01, -2.8535e+01, -4.9495e-01],
                                     [2.1935e+01, -2.8535e+01, -1.9028e+00]],
                                    [[2.8612e+01, -1.8552e+01, -1.7879e+00],
                                     [2.8612e+01, -1.8552e+01, -2.9959e-01],
                                     [2.6398e+01, -1.5474e+01, -2.9959e-01],
                                     [2.6398e+01, -1.5474e+01, -1.7879e+00],
                                     [3.0032e+01, -1.7530e+01, -1.7879e+00],
                                     [3.0032e+01, -1.7530e+01, -2.9959e-01],
                                     [2.7818e+01, -1.4452e+01, -2.9959e-01],
                                     [2.7818e+01, -1.4452e+01, -1.7879e+00]]])

zhangwenwei's avatar
zhangwenwei committed
537
    assert torch.allclose(boxes.corners, expected_tensor, rtol=1e-4, atol=1e-7)
zhangwenwei's avatar
zhangwenwei committed
538

wuyuefeng's avatar
wuyuefeng committed
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
    # test new_box
    new_box1 = boxes.new_box([[1, 2, 3, 4, 5, 6, 7]])
    assert torch.allclose(
        new_box1.tensor,
        torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=boxes.tensor.dtype))
    assert new_box1.device == boxes.device
    assert new_box1.with_yaw == boxes.with_yaw
    assert new_box1.box_dim == boxes.box_dim

    new_box2 = boxes.new_box(np.array([[1, 2, 3, 4, 5, 6, 7]]))
    assert torch.allclose(
        new_box2.tensor,
        torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=boxes.tensor.dtype))

    new_box3 = boxes.new_box(torch.tensor([[1, 2, 3, 4, 5, 6, 7]]))
    assert torch.allclose(
        new_box3.tensor,
        torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=boxes.tensor.dtype))

zhangwenwei's avatar
zhangwenwei committed
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

def test_boxes_conversion():
    """Test the conversion of boxes between different modes.

    ComandLine:
        xdoctest tests/test_box3d.py::test_boxes_conversion zero
    """
    lidar_boxes = LiDARInstance3DBoxes(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62],
         [28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48, -1.57],
         [26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4, -1.69],
         [31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48, 2.79]])
    cam_box_tensor = Box3DMode.convert(lidar_boxes.tensor, Box3DMode.LIDAR,
                                       Box3DMode.CAM)
zhangwenwei's avatar
zhangwenwei committed
573
574
    expected_box = lidar_boxes.convert_to(Box3DMode.CAM)
    assert torch.equal(expected_box.tensor, cam_box_tensor)
575
576
577
578

    # Some properties should be the same
    cam_boxes = CameraInstance3DBoxes(cam_box_tensor)
    assert torch.equal(cam_boxes.height, lidar_boxes.height)
zhangwenwei's avatar
zhangwenwei committed
579
580
581
    assert torch.equal(cam_boxes.top_height, -lidar_boxes.top_height)
    assert torch.equal(cam_boxes.bottom_height, -lidar_boxes.bottom_height)
    assert torch.allclose(cam_boxes.volume, lidar_boxes.volume)
582

zhangwenwei's avatar
zhangwenwei committed
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
    lidar_box_tensor = Box3DMode.convert(cam_box_tensor, Box3DMode.CAM,
                                         Box3DMode.LIDAR)
    expected_tensor = torch.tensor(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62],
         [28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48, -1.57],
         [26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4, -1.69],
         [31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48, 2.79]])

    assert torch.allclose(expected_tensor, lidar_box_tensor)
    assert torch.allclose(lidar_boxes.tensor, lidar_box_tensor)

    depth_box_tensor = Box3DMode.convert(cam_box_tensor, Box3DMode.CAM,
                                         Box3DMode.DEPTH)
    depth_to_cam_box_tensor = Box3DMode.convert(depth_box_tensor,
                                                Box3DMode.DEPTH, Box3DMode.CAM)
    assert torch.allclose(cam_box_tensor, depth_to_cam_box_tensor)

zhangwenwei's avatar
zhangwenwei committed
601
602
603
    # test similar mode conversion
    same_results = Box3DMode.convert(depth_box_tensor, Box3DMode.DEPTH,
                                     Box3DMode.DEPTH)
zhangwenwei's avatar
zhangwenwei committed
604
    assert torch.equal(same_results, depth_box_tensor)
zhangwenwei's avatar
zhangwenwei committed
605

zhangwenwei's avatar
zhangwenwei committed
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
    # test conversion with a given rt_mat
    camera_boxes = CameraInstance3DBoxes(
        [[0.06, 1.77, 21.4, 3.2, 1.61, 1.66, -1.54],
         [6.59, 1.53, 6.76, 12.78, 3.66, 2.28, 1.55],
         [6.71, 1.59, 22.18, 14.73, 3.64, 2.32, 1.59],
         [7.11, 1.58, 34.54, 10.04, 3.61, 2.32, 1.61],
         [7.78, 1.65, 45.95, 12.83, 3.63, 2.34, 1.64]])

    rect = torch.tensor(
        [[0.9999239, 0.00983776, -0.00744505, 0.],
         [-0.0098698, 0.9999421, -0.00427846, 0.],
         [0.00740253, 0.00435161, 0.9999631, 0.], [0., 0., 0., 1.]],
        dtype=torch.float32)

    Trv2c = torch.tensor(
        [[7.533745e-03, -9.999714e-01, -6.166020e-04, -4.069766e-03],
         [1.480249e-02, 7.280733e-04, -9.998902e-01, -7.631618e-02],
         [9.998621e-01, 7.523790e-03, 1.480755e-02, -2.717806e-01],
         [0.000000e+00, 0.000000e+00, 0.000000e+00, 1.000000e+00]],
        dtype=torch.float32)

627
    # coord sys refactor (reverse sign of yaw)
zhangwenwei's avatar
zhangwenwei committed
628
629
    expected_tensor = torch.tensor(
        [[
630
631
            2.16902434e+01, -4.06038554e-02, -1.61906639e+00, 3.20000005e+00,
            1.65999997e+00, 1.61000001e+00, 1.53999996e+00 - np.pi / 2
zhangwenwei's avatar
zhangwenwei committed
632
633
        ],
         [
634
635
             7.05006905e+00, -6.57459601e+00, -1.60107949e+00, 1.27799997e+01,
             2.27999997e+00, 3.66000009e+00, -1.54999995e+00 - np.pi / 2
zhangwenwei's avatar
zhangwenwei committed
636
637
         ],
         [
638
639
             2.24698818e+01, -6.69203759e+00, -1.50118145e+00, 1.47299995e+01,
             2.31999993e+00, 3.64000010e+00, -1.59000003e+00 + 3 * np.pi / 2
zhangwenwei's avatar
zhangwenwei committed
640
641
         ],
         [
642
643
             3.48291965e+01, -7.09058388e+00, -1.36622983e+00, 1.00400000e+01,
             2.31999993e+00, 3.60999990e+00, -1.61000001e+00 + 3 * np.pi / 2
zhangwenwei's avatar
zhangwenwei committed
644
645
         ],
         [
646
647
             4.62394617e+01, -7.75838800e+00, -1.32405020e+00, 1.28299999e+01,
             2.33999991e+00, 3.63000011e+00, -1.63999999e+00 + 3 * np.pi / 2
zhangwenwei's avatar
zhangwenwei committed
648
649
650
651
         ]],
        dtype=torch.float32)

    rt_mat = rect @ Trv2c
zhangwenwei's avatar
zhangwenwei committed
652
653
    # test coversion with Box type
    cam_to_lidar_box = Box3DMode.convert(camera_boxes, Box3DMode.CAM,
zhangwenwei's avatar
zhangwenwei committed
654
                                         Box3DMode.LIDAR, rt_mat.inverse())
zhangwenwei's avatar
zhangwenwei committed
655
    assert torch.allclose(cam_to_lidar_box.tensor, expected_tensor)
zhangwenwei's avatar
zhangwenwei committed
656

zhangwenwei's avatar
zhangwenwei committed
657
658
659
    lidar_to_cam_box = Box3DMode.convert(cam_to_lidar_box.tensor,
                                         Box3DMode.LIDAR, Box3DMode.CAM,
                                         rt_mat)
zhangwenwei's avatar
zhangwenwei committed
660
    assert torch.allclose(lidar_to_cam_box, camera_boxes.tensor)
zhangwenwei's avatar
zhangwenwei committed
661
662
663
664
665
666
667
668
669
670
671
672
673
674

    # test numpy convert
    cam_to_lidar_box = Box3DMode.convert(camera_boxes.tensor.numpy(),
                                         Box3DMode.CAM, Box3DMode.LIDAR,
                                         rt_mat.inverse().numpy())
    assert np.allclose(cam_to_lidar_box, expected_tensor.numpy())

    # test list convert
    cam_to_lidar_box = Box3DMode.convert(
        camera_boxes.tensor[0].numpy().tolist(), Box3DMode.CAM,
        Box3DMode.LIDAR,
        rt_mat.inverse().numpy())
    assert np.allclose(np.array(cam_to_lidar_box), expected_tensor[0].numpy())

wuyuefeng's avatar
wuyuefeng committed
675
676
677
678
679
680
    # test convert from depth to lidar
    depth_boxes = torch.tensor(
        [[2.4593, 2.5870, -0.4321, 0.8597, 0.6193, 1.0204, 3.0693],
         [1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601]],
        dtype=torch.float32)
    depth_boxes = DepthInstance3DBoxes(depth_boxes)
zhangwenwei's avatar
zhangwenwei committed
681
682
683
684
    depth_to_lidar_box = depth_boxes.convert_to(Box3DMode.LIDAR)
    expected_box = depth_to_lidar_box.convert_to(Box3DMode.DEPTH)
    assert torch.equal(depth_boxes.tensor, expected_box.tensor)

wuyuefeng's avatar
wuyuefeng committed
685
686
687
688
689
690
691
692
693
694
    lidar_to_depth_box = Box3DMode.convert(depth_to_lidar_box, Box3DMode.LIDAR,
                                           Box3DMode.DEPTH)
    assert torch.allclose(depth_boxes.tensor, lidar_to_depth_box.tensor)
    assert torch.allclose(depth_boxes.volume, lidar_to_depth_box.volume)

    # test convert from depth to camera
    depth_to_cam_box = Box3DMode.convert(depth_boxes, Box3DMode.DEPTH,
                                         Box3DMode.CAM)
    cam_to_depth_box = Box3DMode.convert(depth_to_cam_box, Box3DMode.CAM,
                                         Box3DMode.DEPTH)
zhangwenwei's avatar
zhangwenwei committed
695
696
    expected_tensor = depth_to_cam_box.convert_to(Box3DMode.DEPTH)
    assert torch.equal(expected_tensor.tensor, cam_to_depth_box.tensor)
wuyuefeng's avatar
wuyuefeng committed
697
698
699
700
701
702
703
    assert torch.allclose(depth_boxes.tensor, cam_to_depth_box.tensor)
    assert torch.allclose(depth_boxes.volume, cam_to_depth_box.volume)

    with pytest.raises(NotImplementedError):
        # assert invalid convert mode
        Box3DMode.convert(depth_boxes, Box3DMode.DEPTH, 3)

zhangwenwei's avatar
zhangwenwei committed
704
705
706

def test_camera_boxes3d():
    # Test init with numpy array
707
708
709
710
711
712
713
714
715
    np_boxes = np.array([[
        1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65,
        1.48 - 0.13603681398218053 * 4 - 2 * np.pi
    ],
                         [
                             8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57,
                             1.62 - 0.13603681398218053 * 4 - 2 * np.pi
                         ]],
                        dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
716
717
718
719
720
721
722
723
724
725
726
727
728

    boxes_1 = Box3DMode.convert(
        LiDARInstance3DBoxes(np_boxes), Box3DMode.LIDAR, Box3DMode.CAM)
    assert isinstance(boxes_1, CameraInstance3DBoxes)

    cam_np_boxes = Box3DMode.convert(np_boxes, Box3DMode.LIDAR, Box3DMode.CAM)
    assert torch.allclose(boxes_1.tensor,
                          boxes_1.tensor.new_tensor(cam_np_boxes))

    # test init with torch.Tensor
    th_boxes = torch.tensor(
        [[
            28.29669987, -0.5557558, -1.30332506, 1.47000003, 2.23000002,
729
            1.48000002, -1.57000005 - 0.13603681398218053 * 4 - 2 * np.pi
zhangwenwei's avatar
zhangwenwei committed
730
731
732
        ],
         [
             26.66901946, 21.82302134, -1.73605708, 1.55999994, 3.48000002,
733
             1.39999998, -1.69000006 - 0.13603681398218053 * 4 - 2 * np.pi
zhangwenwei's avatar
zhangwenwei committed
734
735
736
         ],
         [
             31.31977974, 8.16214412, -1.62177875, 1.74000001, 3.76999998,
737
             1.48000002, 2.78999996 - 0.13603681398218053 * 4 - 2 * np.pi
zhangwenwei's avatar
zhangwenwei committed
738
739
740
741
742
743
744
745
746
747
748
749
         ]],
        dtype=torch.float32)
    cam_th_boxes = Box3DMode.convert(th_boxes, Box3DMode.LIDAR, Box3DMode.CAM)
    boxes_2 = CameraInstance3DBoxes(cam_th_boxes)
    assert torch.allclose(boxes_2.tensor, cam_th_boxes)

    # test clone/to/device
    boxes_2 = boxes_2.clone()
    boxes_1 = boxes_1.to(boxes_2.device)

    # test box concatenation
    expected_tensor = Box3DMode.convert(
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
        torch.tensor([[
            1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65,
            1.48 - 0.13603681398218053 * 4 - 2 * np.pi
        ],
                      [
                          8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57,
                          1.62 - 0.13603681398218053 * 4 - 2 * np.pi
                      ],
                      [
                          28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48,
                          -1.57 - 0.13603681398218053 * 4 - 2 * np.pi
                      ],
                      [
                          26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4,
                          -1.69 - 0.13603681398218053 * 4 - 2 * np.pi
                      ],
                      [
                          31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48,
                          2.79 - 0.13603681398218053 * 4 - 2 * np.pi
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
zhangwenwei's avatar
zhangwenwei committed
770
771
772
773
    boxes = CameraInstance3DBoxes.cat([boxes_1, boxes_2])
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box flip
liyinhao's avatar
liyinhao committed
774
775
776
    points = torch.tensor([[0.6762, 1.4658, 1.2559], [0.8784, 1.3857, 4.7814],
                           [-0.2517, 0.9697, 6.7053], [0.5520, 0.5265, 0.6533],
                           [-0.5358, 1.4741, 4.5870]])
zhangwenwei's avatar
zhangwenwei committed
777
    expected_tensor = Box3DMode.convert(
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
        torch.tensor([[
            1.7802081, -2.516249, -1.7501148, 1.75, 3.39, 1.65,
            1.6615927 + 0.13603681398218053 * 4 - np.pi
        ],
                      [
                          8.959413, -2.4567227, -1.6357126, 1.54, 4.01, 1.57,
                          1.5215927 + 0.13603681398218053 * 4 - np.pi
                      ],
                      [
                          28.2967, 0.5557558, -1.303325, 1.47, 2.23, 1.48,
                          4.7115927 + 0.13603681398218053 * 4 - np.pi
                      ],
                      [
                          26.66902, -21.82302, -1.736057, 1.56, 3.48, 1.4,
                          4.8315926 + 0.13603681398218053 * 4 - np.pi
                      ],
                      [
                          31.31978, -8.162144, -1.6217787, 1.74, 3.77, 1.48,
                          0.35159278 + 0.13603681398218053 * 4 - np.pi
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
liyinhao's avatar
liyinhao committed
798
799
800
801
802
803
    points = boxes.flip('horizontal', points)
    expected_points = torch.tensor([[-0.6762, 1.4658, 1.2559],
                                    [-0.8784, 1.3857, 4.7814],
                                    [0.2517, 0.9697, 6.7053],
                                    [-0.5520, 0.5265, 0.6533],
                                    [0.5358, 1.4741, 4.5870]])
804
805
806
807
808

    yaw_normalized_tensor = boxes.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
809
    assert torch.allclose(points, expected_points, 1e-3)
zhangwenwei's avatar
zhangwenwei committed
810

wuyuefeng's avatar
wuyuefeng committed
811
    expected_tensor = torch.tensor(
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
        [[
            2.5162, 1.7501, -1.7802, 1.7500, 1.6500, 3.3900,
            1.6616 + 0.13603681398218053 * 4 - np.pi / 2
        ],
         [
             2.4567, 1.6357, -8.9594, 1.5400, 1.5700, 4.0100,
             1.5216 + 0.13603681398218053 * 4 - np.pi / 2
         ],
         [
             -0.5558, 1.3033, -28.2967, 1.4700, 1.4800, 2.2300,
             4.7116 + 0.13603681398218053 * 4 - np.pi / 2
         ],
         [
             21.8230, 1.7361, -26.6690, 1.5600, 1.4000, 3.4800,
             4.8316 + 0.13603681398218053 * 4 - np.pi / 2
         ],
         [
             8.1621, 1.6218, -31.3198, 1.7400, 1.4800, 3.7700,
             0.3516 + 0.13603681398218053 * 4 - np.pi / 2
         ]])
wuyuefeng's avatar
wuyuefeng committed
832
    boxes_flip_vert = boxes.clone()
liyinhao's avatar
liyinhao committed
833
834
835
836
837
838
    points = boxes_flip_vert.flip('vertical', points)
    expected_points = torch.tensor([[-0.6762, 1.4658, -1.2559],
                                    [-0.8784, 1.3857, -4.7814],
                                    [0.2517, 0.9697, -6.7053],
                                    [-0.5520, 0.5265, -0.6533],
                                    [0.5358, 1.4741, -4.5870]])
839
840
841
842
843
844
845

    yaw_normalized_tensor = boxes_flip_vert.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    expected_tensor[:, -1:] = limit_period(
        expected_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor, 1e-4)
liyinhao's avatar
liyinhao committed
846
    assert torch.allclose(points, expected_points)
wuyuefeng's avatar
wuyuefeng committed
847

zhangwenwei's avatar
zhangwenwei committed
848
    # test box rotation
849
    # with input torch.Tensor points and angle
zhangwenwei's avatar
zhangwenwei committed
850
    expected_tensor = Box3DMode.convert(
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
        torch.tensor([[
            1.4225, -2.7344, -1.7501, 1.7500, 3.3900, 1.6500,
            1.7976 + 0.13603681398218053 * 2 - np.pi
        ],
                      [
                          8.5435, -3.6491, -1.6357, 1.5400, 4.0100, 1.5700,
                          1.6576 + 0.13603681398218053 * 2 - np.pi
                      ],
                      [
                          28.1106, -3.2869, -1.3033, 1.4700, 2.2300, 1.4800,
                          4.8476 + 0.13603681398218053 * 2 - np.pi
                      ],
                      [
                          23.4630, -25.2382, -1.7361, 1.5600, 3.4800, 1.4000,
                          4.9676 + 0.13603681398218053 * 2 - np.pi
                      ],
                      [
                          29.9235, -12.3342, -1.6218, 1.7400, 3.7700, 1.4800,
                          0.4876 + 0.13603681398218053 * 2 - np.pi
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
liyinhao's avatar
liyinhao committed
871
872
873
874
875
876
877
878
879
    points, rot_mat_T = boxes.rotate(torch.tensor(0.13603681398218053), points)
    expected_points = torch.tensor([[-0.8403, 1.4658, -1.1526],
                                    [-1.5187, 1.3857, -4.6181],
                                    [-0.6600, 0.9697, -6.6775],
                                    [-0.6355, 0.5265, -0.5724],
                                    [-0.0912, 1.4741, -4.6173]])
    expected_rot_mat_T = torch.tensor([[0.9908, 0.0000, -0.1356],
                                       [0.0000, 1.0000, 0.0000],
                                       [0.1356, 0.0000, 0.9908]])
880
881
882
883
884
885
    yaw_normalized_tensor = boxes.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    expected_tensor[:, -1:] = limit_period(
        expected_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
886
887
888
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)

889
890
891
892
893
894
    # with input torch.Tensor points and rotation matrix
    points, rot_mat_T = boxes.rotate(
        torch.tensor(-0.13603681398218053), points)  # back
    rot_mat = np.array([[0.99076125, 0., -0.13561762], [0., 1., 0.],
                        [0.13561762, 0., 0.99076125]])
    points, rot_mat_T = boxes.rotate(rot_mat, points)
895
896
897
898
    yaw_normalized_tensor = boxes.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor, 1e-3)
899
900
901
902
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)

    # with input np.ndarray points and angle
liyinhao's avatar
liyinhao committed
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
    points_np = np.array([[0.6762, 1.2559, -1.4658, 2.5359],
                          [0.8784, 4.7814, -1.3857, 0.7167],
                          [-0.2517, 6.7053, -0.9697, 0.5599],
                          [0.5520, 0.6533, -0.5265, 1.0032],
                          [-0.5358, 4.5870, -1.4741, 0.0556]])
    points_np, rot_mat_T_np = boxes.rotate(
        torch.tensor(0.13603681398218053), points_np)
    expected_points_np = np.array([[0.4712, 1.2559, -1.5440, 2.5359],
                                   [0.6824, 4.7814, -1.4920, 0.7167],
                                   [-0.3809, 6.7053, -0.9266, 0.5599],
                                   [0.4755, 0.6533, -0.5965, 1.0032],
                                   [-0.7308, 4.5870, -1.3878, 0.0556]])
    expected_rot_mat_T_np = np.array([[0.9908, 0.0000, -0.1356],
                                      [0.0000, 1.0000, 0.0000],
                                      [0.1356, 0.0000, 0.9908]])

    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)
zhangwenwei's avatar
zhangwenwei committed
921

922
923
924
925
926
927
928
929
930
    # with input CameraPoints and rotation matrix
    points_np, rot_mat_T_np = boxes.rotate(
        torch.tensor(-0.13603681398218053), points_np)
    camera_points = CameraPoints(points_np, points_dim=4)
    camera_points, rot_mat_T_np = boxes.rotate(rot_mat, camera_points)
    points_np = camera_points.tensor.numpy()
    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)

zhangwenwei's avatar
zhangwenwei committed
931
932
933
934
    # test box scaling
    expected_tensor = Box3DMode.convert(
        torch.tensor([[
            1.0443488, -2.9183323, -1.7599131, 1.7597977, 3.4089797, 1.6592377,
935
            1.9336663 - np.pi
zhangwenwei's avatar
zhangwenwei committed
936
937
938
        ],
                      [
                          8.014273, -4.8007393, -1.6448704, 1.5486219,
939
                          4.0324507, 1.57879, 1.7936664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
940
941
942
                      ],
                      [
                          27.558605, -7.1084175, -1.310622, 1.4782301,
943
                          2.242485, 1.488286, 4.9836664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
944
945
946
                      ],
                      [
                          19.934517, -28.344835, -1.7457767, 1.5687338,
947
                          3.4994833, 1.4078381, 5.1036663 - np.pi
zhangwenwei's avatar
zhangwenwei committed
948
949
950
                      ],
                      [
                          28.130915, -16.369587, -1.6308585, 1.7497417,
951
                          3.791107, 1.488286, 0.6236664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
952
953
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
    boxes.scale(1.00559866335275)
954
955
956
957
958
959
    yaw_normalized_tensor = boxes.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    expected_tensor[:, -1:] = limit_period(
        expected_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor)
zhangwenwei's avatar
zhangwenwei committed
960
961
962
963
964

    # test box translation
    expected_tensor = Box3DMode.convert(
        torch.tensor([[
            1.1281544, -3.0507944, -1.9169292, 1.7597977, 3.4089797, 1.6592377,
965
            1.9336663 - np.pi
zhangwenwei's avatar
zhangwenwei committed
966
967
968
        ],
                      [
                          8.098079, -4.9332013, -1.8018866, 1.5486219,
969
                          4.0324507, 1.57879, 1.7936664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
970
971
972
                      ],
                      [
                          27.64241, -7.2408795, -1.4676381, 1.4782301,
973
                          2.242485, 1.488286, 4.9836664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
974
975
976
                      ],
                      [
                          20.018322, -28.477297, -1.9027928, 1.5687338,
977
                          3.4994833, 1.4078381, 5.1036663 - np.pi
zhangwenwei's avatar
zhangwenwei committed
978
979
980
                      ],
                      [
                          28.21472, -16.502048, -1.7878747, 1.7497417,
981
                          3.791107, 1.488286, 0.6236664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
982
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
zhangwenwei's avatar
zhangwenwei committed
983
    boxes.translate(torch.tensor([0.13246193, 0.15701613, 0.0838056]))
984
985
986
987
988
989
    yaw_normalized_tensor = boxes.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    expected_tensor[:, -1:] = limit_period(
        expected_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor)
zhangwenwei's avatar
zhangwenwei committed
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014

    # test bbox in_range_bev
    expected_tensor = torch.tensor([1, 1, 1, 1, 1], dtype=torch.bool)
    mask = boxes.in_range_bev([0., -40., 70.4, 40.])
    assert (mask == expected_tensor).all()
    mask = boxes.nonempty()
    assert (mask == expected_tensor).all()

    # test bbox in_range
    expected_tensor = torch.tensor([1, 1, 0, 0, 0], dtype=torch.bool)
    mask = boxes.in_range_3d([-2, -5, 0, 20, 2, 22])
    assert (mask == expected_tensor).all()

    # test properties
    assert torch.allclose(boxes.bottom_center, boxes.tensor[:, :3])
    expected_tensor = (
        boxes.tensor[:, :3] - boxes.tensor[:, 3:6] *
        (torch.tensor([0.5, 1.0, 0.5]) - torch.tensor([0.5, 0.5, 0.5])))
    assert torch.allclose(boxes.gravity_center, expected_tensor)

    boxes.limit_yaw()
    assert (boxes.tensor[:, 6] <= np.pi / 2).all()
    assert (boxes.tensor[:, 6] >= -np.pi / 2).all()

    Box3DMode.convert(boxes, Box3DMode.LIDAR, Box3DMode.LIDAR)
1015
1016
    expected_tensor = boxes.tensor.clone()
    assert torch.allclose(expected_tensor, boxes.tensor)
zhangwenwei's avatar
zhangwenwei committed
1017
1018
1019
1020

    boxes.flip()
    boxes.flip()
    boxes.limit_yaw()
1021
    assert torch.allclose(expected_tensor, boxes.tensor)
zhangwenwei's avatar
zhangwenwei committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035

    # test nearest_bev
    # BEV box in lidar coordinates (x, y)
    lidar_expected_tensor = torch.tensor(
        [[-0.5763, -3.9307, 2.8326, -2.1709],
         [6.0819, -5.7075, 10.1143, -4.1589],
         [26.5212, -7.9800, 28.7637, -6.5018],
         [18.2686, -29.2617, 21.7681, -27.6929],
         [27.3398, -18.3976, 29.0896, -14.6065]])
    # BEV box in camera coordinate (-y, x)
    expected_tensor = lidar_expected_tensor.clone()
    expected_tensor[:, 0::2] = -lidar_expected_tensor[:, [3, 1]]
    expected_tensor[:, 1::2] = lidar_expected_tensor[:, 0::2]
    assert torch.allclose(
wuyuefeng's avatar
wuyuefeng committed
1036
        boxes.nearest_bev, expected_tensor, rtol=1e-4, atol=1e-7)
zhangwenwei's avatar
zhangwenwei committed
1037

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
    expected_tensor = torch.tensor([[[2.8332e+00, 2.5769e-01, -7.7767e-01],
                                     [1.6232e+00, 2.5769e-01, 2.4093e+00],
                                     [1.6232e+00, 1.9169e+00, 2.4093e+00],
                                     [2.8332e+00, 1.9169e+00, -7.7767e-01],
                                     [4.4784e+00, 2.5769e-01, -1.5302e-01],
                                     [3.2684e+00, 2.5769e-01, 3.0340e+00],
                                     [3.2684e+00, 1.9169e+00, 3.0340e+00],
                                     [4.4784e+00, 1.9169e+00, -1.5302e-01]],
                                    [[4.6237e+00, 2.2310e-01, 5.9606e+00],
                                     [3.7324e+00, 2.2310e-01, 9.8933e+00],
                                     [3.7324e+00, 1.8019e+00, 9.8933e+00],
                                     [4.6237e+00, 1.8019e+00, 5.9606e+00],
                                     [6.1340e+00, 2.2310e-01, 6.3029e+00],
                                     [5.2427e+00, 2.2310e-01, 1.0236e+01],
                                     [5.2427e+00, 1.8019e+00, 1.0236e+01],
                                     [6.1340e+00, 1.8019e+00, 6.3029e+00]],
                                    [[6.8292e+00, -2.0648e-02, 2.6364e+01],
                                     [6.2283e+00, -2.0648e-02, 2.8525e+01],
                                     [6.2283e+00, 1.4676e+00, 2.8525e+01],
                                     [6.8292e+00, 1.4676e+00, 2.6364e+01],
                                     [8.2534e+00, -2.0648e-02, 2.6760e+01],
                                     [7.6525e+00, -2.0648e-02, 2.8921e+01],
                                     [7.6525e+00, 1.4676e+00, 2.8921e+01],
                                     [8.2534e+00, 1.4676e+00, 2.6760e+01]],
                                    [[2.8420e+01, 4.9495e-01, 1.8102e+01],
                                     [2.7085e+01, 4.9495e-01, 2.1337e+01],
                                     [2.7085e+01, 1.9028e+00, 2.1337e+01],
                                     [2.8420e+01, 1.9028e+00, 1.8102e+01],
                                     [2.9870e+01, 4.9495e-01, 1.8700e+01],
                                     [2.8535e+01, 4.9495e-01, 2.1935e+01],
                                     [2.8535e+01, 1.9028e+00, 2.1935e+01],
                                     [2.9870e+01, 1.9028e+00, 1.8700e+01]],
                                    [[1.4452e+01, 2.9959e-01, 2.7818e+01],
                                     [1.7530e+01, 2.9959e-01, 3.0032e+01],
                                     [1.7530e+01, 1.7879e+00, 3.0032e+01],
                                     [1.4452e+01, 1.7879e+00, 2.7818e+01],
                                     [1.5474e+01, 2.9959e-01, 2.6398e+01],
                                     [1.8552e+01, 2.9959e-01, 2.8612e+01],
                                     [1.8552e+01, 1.7879e+00, 2.8612e+01],
                                     [1.5474e+01, 1.7879e+00, 2.6398e+01]]])

    assert torch.allclose(boxes.corners, expected_tensor, rtol=1e-3, atol=1e-4)

    th_boxes = torch.tensor(
        [[
            28.29669987, -0.5557558, -1.30332506, 1.47000003, 2.23000002,
            1.48000002, -1.57000005
        ],
         [
             26.66901946, 21.82302134, -1.73605708, 1.55999994, 3.48000002,
             1.39999998, -1.69000006
         ],
         [
             31.31977974, 8.16214412, -1.62177875, 1.74000001, 3.76999998,
             1.48000002, 2.78999996
         ]],
        dtype=torch.float32)
1095

1096
1097
1098
1099
1100
1101
1102
1103
1104
    # test init with a given origin
    boxes_origin_given = CameraInstance3DBoxes(
        th_boxes.clone(), box_dim=7, origin=(0.5, 0.5, 0.5))
    expected_tensor = th_boxes.clone()
    expected_tensor[:, :3] = th_boxes[:, :3] + th_boxes[:, 3:6] * (
        th_boxes.new_tensor((0.5, 1.0, 0.5)) - th_boxes.new_tensor(
            (0.5, 0.5, 0.5)))
    assert torch.allclose(boxes_origin_given.tensor, expected_tensor)

1105
1106

def test_boxes3d_overlaps():
1107
1108
1109
1110
1111
    """Test the iou calculation of boxes in different modes.

    ComandLine:
        xdoctest tests/test_box3d.py::test_boxes3d_overlaps zero
    """
1112
1113
1114
1115
1116
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    # Test LiDAR boxes 3D overlaps
    boxes1_tensor = torch.tensor(
1117
1118
1119
1120
        [[1.8, -2.5, -1.8, 1.75, 3.39, 1.65, -1.6615927],
         [8.9, -2.5, -1.6, 1.54, 4.01, 1.57, -1.5215927],
         [28.3, 0.5, -1.3, 1.47, 2.23, 1.48, -4.7115927],
         [31.3, -8.2, -1.6, 1.74, 3.77, 1.48, -0.35]],
1121
1122
1123
        device='cuda')
    boxes1 = LiDARInstance3DBoxes(boxes1_tensor)

1124
1125
1126
1127
    boxes2_tensor = torch.tensor([[1.2, -3.0, -1.9, 1.8, 3.4, 1.7, -1.9],
                                  [8.1, -2.9, -1.8, 1.5, 4.1, 1.6, -1.8],
                                  [31.3, -8.2, -1.6, 1.74, 3.77, 1.48, -0.35],
                                  [20.1, -28.5, -1.9, 1.6, 3.5, 1.4, -5.1]],
1128
1129
1130
                                 device='cuda')
    boxes2 = LiDARInstance3DBoxes(boxes2_tensor)

liyinhao's avatar
liyinhao committed
1131
    expected_iou_tensor = torch.tensor(
1132
1133
1134
        [[0.3710, 0.0000, 0.0000, 0.0000], [0.0000, 0.3322, 0.0000, 0.0000],
         [0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 1.0000, 0.0000]],
        device='cuda')
liyinhao's avatar
liyinhao committed
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
    overlaps_3d_iou = boxes1.overlaps(boxes1, boxes2)
    assert torch.allclose(
        expected_iou_tensor, overlaps_3d_iou, rtol=1e-4, atol=1e-7)

    expected_iof_tensor = torch.tensor(
        [[0.5582, 0.0000, 0.0000, 0.0000], [0.0000, 0.5025, 0.0000, 0.0000],
         [0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 1.0000, 0.0000]],
        device='cuda')
    overlaps_3d_iof = boxes1.overlaps(boxes1, boxes2, mode='iof')
    assert torch.allclose(
        expected_iof_tensor, overlaps_3d_iof, rtol=1e-4, atol=1e-7)
1146

liyinhao's avatar
liyinhao committed
1147
1148
1149
1150
1151
    empty_boxes = []
    boxes3 = LiDARInstance3DBoxes(empty_boxes)
    overlaps_3d_empty = boxes1.overlaps(boxes3, boxes2)
    assert overlaps_3d_empty.shape[0] == 0
    assert overlaps_3d_empty.shape[1] == 4
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
    # Test camera boxes 3D overlaps
    cam_boxes1_tensor = Box3DMode.convert(boxes1_tensor, Box3DMode.LIDAR,
                                          Box3DMode.CAM)
    cam_boxes1 = CameraInstance3DBoxes(cam_boxes1_tensor)

    cam_boxes2_tensor = Box3DMode.convert(boxes2_tensor, Box3DMode.LIDAR,
                                          Box3DMode.CAM)
    cam_boxes2 = CameraInstance3DBoxes(cam_boxes2_tensor)
    cam_overlaps_3d = cam_boxes1.overlaps(cam_boxes1, cam_boxes2)

1162
1163
    # same boxes under different coordinates should have the same iou
    assert torch.allclose(
liyinhao's avatar
liyinhao committed
1164
1165
        expected_iou_tensor, cam_overlaps_3d, rtol=1e-4, atol=1e-7)
    assert torch.allclose(cam_overlaps_3d, overlaps_3d_iou)
1166
1167
1168
1169
1170

    with pytest.raises(AssertionError):
        cam_boxes1.overlaps(cam_boxes1, boxes1)
    with pytest.raises(AssertionError):
        boxes1.overlaps(cam_boxes1, boxes1)
wuyuefeng's avatar
wuyuefeng committed
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218


def test_depth_boxes3d():
    # test empty initialization
    empty_boxes = []
    boxes = DepthInstance3DBoxes(empty_boxes)
    assert boxes.tensor.shape[0] == 0
    assert boxes.tensor.shape[1] == 7

    # Test init with numpy array
    np_boxes = np.array(
        [[1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601],
         [2.3262, 3.3065, --0.44255, 0.8234, 0.5325, 1.0099, 2.9971]],
        dtype=np.float32)
    boxes_1 = DepthInstance3DBoxes(np_boxes)
    assert torch.allclose(boxes_1.tensor, torch.from_numpy(np_boxes))

    # test properties

    assert boxes_1.volume.size(0) == 2
    assert (boxes_1.center == boxes_1.bottom_center).all()
    expected_tensor = torch.tensor([[1.4856, 2.5299, -0.1093],
                                    [2.3262, 3.3065, 0.9475]])
    assert torch.allclose(boxes_1.gravity_center, expected_tensor)
    expected_tensor = torch.tensor([[1.4856, 2.5299, 0.9385, 2.1404, 3.0601],
                                    [2.3262, 3.3065, 0.8234, 0.5325, 2.9971]])
    assert torch.allclose(boxes_1.bev, expected_tensor)
    expected_tensor = torch.tensor([[1.0164, 1.4597, 1.9548, 3.6001],
                                    [1.9145, 3.0402, 2.7379, 3.5728]])
    assert torch.allclose(boxes_1.nearest_bev, expected_tensor, 1e-4)
    assert repr(boxes) == (
        'DepthInstance3DBoxes(\n    tensor([], size=(0, 7)))')

    # test init with torch.Tensor
    th_boxes = torch.tensor(
        [[2.4593, 2.5870, -0.4321, 0.8597, 0.6193, 1.0204, 3.0693],
         [1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601]],
        dtype=torch.float32)
    boxes_2 = DepthInstance3DBoxes(th_boxes)
    assert torch.allclose(boxes_2.tensor, th_boxes)

    # test clone/to/device
    boxes_2 = boxes_2.clone()
    boxes_1 = boxes_1.to(boxes_2.device)

    # test box concatenation
    expected_tensor = torch.tensor(
        [[1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601],
1219
         [2.3262, 3.3065, 0.44255, 0.8234, 0.5325, 1.0099, 2.9971],
wuyuefeng's avatar
wuyuefeng committed
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
         [2.4593, 2.5870, -0.4321, 0.8597, 0.6193, 1.0204, 3.0693],
         [1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601]])
    boxes = DepthInstance3DBoxes.cat([boxes_1, boxes_2])
    assert torch.allclose(boxes.tensor, expected_tensor)
    # concatenate empty list
    empty_boxes = DepthInstance3DBoxes.cat([])
    assert empty_boxes.tensor.shape[0] == 0
    assert empty_boxes.tensor.shape[-1] == 7

    # test box flip
liyinhao's avatar
liyinhao committed
1230
1231
1232
1233
1234
    points = torch.tensor([[0.6762, 1.2559, -1.4658, 2.5359],
                           [0.8784, 4.7814, -1.3857, 0.7167],
                           [-0.2517, 6.7053, -0.9697, 0.5599],
                           [0.5520, 0.6533, -0.5265, 1.0032],
                           [-0.5358, 4.5870, -1.4741, 0.0556]])
wuyuefeng's avatar
wuyuefeng committed
1235
1236
1237
1238
1239
    expected_tensor = torch.tensor(
        [[-1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 0.0815],
         [-2.3262, 3.3065, 0.4426, 0.8234, 0.5325, 1.0099, 0.1445],
         [-2.4593, 2.5870, -0.4321, 0.8597, 0.6193, 1.0204, 0.0723],
         [-1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 0.0815]])
liyinhao's avatar
liyinhao committed
1240
1241
1242
1243
1244
1245
    points = boxes.flip(bev_direction='horizontal', points=points)
    expected_points = torch.tensor([[-0.6762, 1.2559, -1.4658, 2.5359],
                                    [-0.8784, 4.7814, -1.3857, 0.7167],
                                    [0.2517, 6.7053, -0.9697, 0.5599],
                                    [-0.5520, 0.6533, -0.5265, 1.0032],
                                    [0.5358, 4.5870, -1.4741, 0.0556]])
wuyuefeng's avatar
wuyuefeng committed
1246
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
1247
    assert torch.allclose(points, expected_points)
wuyuefeng's avatar
wuyuefeng committed
1248
1249
1250
1251
1252
    expected_tensor = torch.tensor(
        [[-1.4856, -2.5299, -0.5570, 0.9385, 2.1404, 0.8954, -0.0815],
         [-2.3262, -3.3065, 0.4426, 0.8234, 0.5325, 1.0099, -0.1445],
         [-2.4593, -2.5870, -0.4321, 0.8597, 0.6193, 1.0204, -0.0723],
         [-1.4856, -2.5299, -0.5570, 0.9385, 2.1404, 0.8954, -0.0815]])
liyinhao's avatar
liyinhao committed
1253
1254
1255
1256
1257
1258
    points = boxes.flip(bev_direction='vertical', points=points)
    expected_points = torch.tensor([[-0.6762, -1.2559, -1.4658, 2.5359],
                                    [-0.8784, -4.7814, -1.3857, 0.7167],
                                    [0.2517, -6.7053, -0.9697, 0.5599],
                                    [-0.5520, -0.6533, -0.5265, 1.0032],
                                    [0.5358, -4.5870, -1.4741, 0.0556]])
wuyuefeng's avatar
wuyuefeng committed
1259
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
1260
    assert torch.allclose(points, expected_points)
1261

wuyuefeng's avatar
wuyuefeng committed
1262
    # test box rotation
1263
    # with input torch.Tensor points and angle
wuyuefeng's avatar
wuyuefeng committed
1264
1265
    boxes_rot = boxes.clone()
    expected_tensor = torch.tensor(
liyinhao's avatar
liyinhao committed
1266
1267
1268
1269
        [[-1.5434, -2.4951, -0.5570, 0.9385, 2.1404, 0.8954, -0.0585],
         [-2.4016, -3.2521, 0.4426, 0.8234, 0.5325, 1.0099, -0.1215],
         [-2.5181, -2.5298, -0.4321, 0.8597, 0.6193, 1.0204, -0.0493],
         [-1.5434, -2.4951, -0.5570, 0.9385, 2.1404, 0.8954, -0.0585]])
1270
    expected_tensor[:, -1:] -= 0.022998953275003075 * 2
1271
    points, rot_mat_T = boxes_rot.rotate(-0.022998953275003075, points)
liyinhao's avatar
liyinhao committed
1272
1273
1274
1275
1276
1277
1278
1279
    expected_points = torch.tensor([[-0.7049, -1.2400, -1.4658, 2.5359],
                                    [-0.9881, -4.7599, -1.3857, 0.7167],
                                    [0.0974, -6.7093, -0.9697, 0.5599],
                                    [-0.5669, -0.6404, -0.5265, 1.0032],
                                    [0.4302, -4.5981, -1.4741, 0.0556]])
    expected_rot_mat_T = torch.tensor([[0.9997, -0.0230, 0.0000],
                                       [0.0230, 0.9997, 0.0000],
                                       [0.0000, 0.0000, 1.0000]])
wuyuefeng's avatar
wuyuefeng committed
1280
    assert torch.allclose(boxes_rot.tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
1281
    assert torch.allclose(points, expected_points, 1e-3)
1282
1283
1284
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)

    # with input torch.Tensor points and rotation matrix
1285
    points, rot_mat_T = boxes.rotate(-0.022998953275003075, points)  # back
1286
1287
1288
    rot_mat = np.array([[0.99973554, 0.02299693, 0.],
                        [-0.02299693, 0.99973554, 0.], [0., 0., 1.]])
    points, rot_mat_T = boxes.rotate(rot_mat, points)
1289
1290
1291
    expected_rot_mat_T = torch.tensor([[0.99973554, 0.02299693, 0.0000],
                                       [-0.02299693, 0.99973554, 0.0000],
                                       [0.0000, 0.0000, 1.0000]])
1292
1293
1294
    assert torch.allclose(boxes_rot.tensor, expected_tensor, 1e-3)
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)
liyinhao's avatar
liyinhao committed
1295

1296
    # with input np.ndarray points and angle
liyinhao's avatar
liyinhao committed
1297
1298
1299
1300
1301
    points_np = np.array([[0.6762, 1.2559, -1.4658, 2.5359],
                          [0.8784, 4.7814, -1.3857, 0.7167],
                          [-0.2517, 6.7053, -0.9697, 0.5599],
                          [0.5520, 0.6533, -0.5265, 1.0032],
                          [-0.5358, 4.5870, -1.4741, 0.0556]])
1302
    points_np, rot_mat_T_np = boxes.rotate(-0.022998953275003075, points_np)
liyinhao's avatar
liyinhao committed
1303
1304
1305
1306
1307
    expected_points_np = np.array([[0.7049, 1.2400, -1.4658, 2.5359],
                                   [0.9881, 4.7599, -1.3857, 0.7167],
                                   [-0.0974, 6.7093, -0.9697, 0.5599],
                                   [0.5669, 0.6404, -0.5265, 1.0032],
                                   [-0.4302, 4.5981, -1.4741, 0.0556]])
1308
1309
    expected_rot_mat_T_np = np.array([[0.99973554, -0.02299693, 0.0000],
                                      [0.02299693, 0.99973554, 0.0000],
liyinhao's avatar
liyinhao committed
1310
1311
1312
1313
1314
1315
                                      [0.0000, 0.0000, 1.0000]])
    expected_tensor = torch.tensor(
        [[-1.5434, -2.4951, -0.5570, 0.9385, 2.1404, 0.8954, -0.0585],
         [-2.4016, -3.2521, 0.4426, 0.8234, 0.5325, 1.0099, -0.1215],
         [-2.5181, -2.5298, -0.4321, 0.8597, 0.6193, 1.0204, -0.0493],
         [-1.5434, -2.4951, -0.5570, 0.9385, 2.1404, 0.8954, -0.0585]])
1316
    expected_tensor[:, -1:] -= 0.022998953275003075 * 2
liyinhao's avatar
liyinhao committed
1317
1318
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
    assert np.allclose(points_np, expected_points_np, 1e-3)
1319
1320
1321
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)

    # with input DepthPoints and rotation matrix
1322
    points_np, rot_mat_T_np = boxes.rotate(-0.022998953275003075, points_np)
1323
1324
1325
    depth_points = DepthPoints(points_np, points_dim=4)
    depth_points, rot_mat_T_np = boxes.rotate(rot_mat, depth_points)
    points_np = depth_points.tensor.numpy()
1326
    expected_rot_mat_T_np = expected_rot_mat_T_np.T
1327
1328
1329
1330
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)

1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
    expected_tensor = torch.tensor([[[-2.1217, -3.5105, -0.5570],
                                     [-2.1217, -3.5105, 0.3384],
                                     [-1.8985, -1.3818, 0.3384],
                                     [-1.8985, -1.3818, -0.5570],
                                     [-1.1883, -3.6084, -0.5570],
                                     [-1.1883, -3.6084, 0.3384],
                                     [-0.9651, -1.4796, 0.3384],
                                     [-0.9651, -1.4796, -0.5570]],
                                    [[-2.8519, -3.4460, 0.4426],
                                     [-2.8519, -3.4460, 1.4525],
                                     [-2.7632, -2.9210, 1.4525],
                                     [-2.7632, -2.9210, 0.4426],
                                     [-2.0401, -3.5833, 0.4426],
                                     [-2.0401, -3.5833, 1.4525],
                                     [-1.9513, -3.0582, 1.4525],
                                     [-1.9513, -3.0582, 0.4426]],
                                    [[-2.9755, -2.7971, -0.4321],
                                     [-2.9755, -2.7971, 0.5883],
                                     [-2.9166, -2.1806, 0.5883],
                                     [-2.9166, -2.1806, -0.4321],
                                     [-2.1197, -2.8789, -0.4321],
                                     [-2.1197, -2.8789, 0.5883],
                                     [-2.0608, -2.2624, 0.5883],
                                     [-2.0608, -2.2624, -0.4321]],
                                    [[-2.1217, -3.5105, -0.5570],
                                     [-2.1217, -3.5105, 0.3384],
                                     [-1.8985, -1.3818, 0.3384],
                                     [-1.8985, -1.3818, -0.5570],
                                     [-1.1883, -3.6084, -0.5570],
                                     [-1.1883, -3.6084, 0.3384],
                                     [-0.9651, -1.4796, 0.3384],
                                     [-0.9651, -1.4796, -0.5570]]])

    assert torch.allclose(boxes.corners, expected_tensor, 1e-3)

wuyuefeng's avatar
wuyuefeng committed
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
    th_boxes = torch.tensor(
        [[0.61211395, 0.8129094, 0.10563634, 1.497534, 0.16927195, 0.27956772],
         [1.430009, 0.49797538, 0.9382923, 0.07694054, 0.9312509, 1.8919173]],
        dtype=torch.float32)
    boxes = DepthInstance3DBoxes(th_boxes, box_dim=6, with_yaw=False)
    expected_tensor = torch.tensor([[
        0.64884546, 0.78390356, 0.10563634, 1.50373348, 0.23795205, 0.27956772,
        0
    ],
                                    [
                                        1.45139421, 0.43169443, 0.93829232,
                                        0.11967964, 0.93380373, 1.89191735, 0
                                    ]])
    boxes_3 = boxes.clone()
    boxes_3.rotate(-0.04599790655000615)
    assert torch.allclose(boxes_3.tensor, expected_tensor)
    boxes.rotate(torch.tensor(-0.04599790655000615))
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test bbox in_range_bev
    expected_tensor = torch.tensor([1, 1], dtype=torch.bool)
    mask = boxes.in_range_bev([0., -40., 70.4, 40.])
    assert (mask == expected_tensor).all()
    mask = boxes.nonempty()
    assert (mask == expected_tensor).all()

    expected_tensor = torch.tensor([[[-0.1030, 0.6649, 0.1056],
                                     [-0.1030, 0.6649, 0.3852],
                                     [-0.1030, 0.9029, 0.3852],
                                     [-0.1030, 0.9029, 0.1056],
                                     [1.4007, 0.6649, 0.1056],
                                     [1.4007, 0.6649, 0.3852],
                                     [1.4007, 0.9029, 0.3852],
                                     [1.4007, 0.9029, 0.1056]],
                                    [[1.3916, -0.0352, 0.9383],
                                     [1.3916, -0.0352, 2.8302],
                                     [1.3916, 0.8986, 2.8302],
                                     [1.3916, 0.8986, 0.9383],
                                     [1.5112, -0.0352, 0.9383],
                                     [1.5112, -0.0352, 2.8302],
                                     [1.5112, 0.8986, 2.8302],
                                     [1.5112, 0.8986, 0.9383]]])
1408
    assert torch.allclose(boxes.corners, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
1409
1410
1411

    # test points in boxes
    if torch.cuda.is_available():
1412
        box_idxs_of_pts = boxes.points_in_boxes_batch(points.cuda())
liyinhao's avatar
liyinhao committed
1413
1414
1415
1416
1417
1418
        expected_idxs_of_pts = torch.tensor(
            [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]],
            device='cuda:0',
            dtype=torch.int32)
        assert torch.all(box_idxs_of_pts == expected_idxs_of_pts)

encore-zhou's avatar
encore-zhou committed
1419
1420
    # test get_surface_line_center
    boxes = torch.tensor(
1421
1422
        [[0.3294, 1.0359, 0.1171, 1.0822, 1.1247, 1.3721, -0.4916],
         [-2.4630, -2.6324, -0.1616, 0.9202, 1.7896, 0.1992, -0.3185]])
encore-zhou's avatar
encore-zhou committed
1423
1424
1425
    boxes = DepthInstance3DBoxes(
        boxes, box_dim=boxes.shape[-1], with_yaw=True, origin=(0.5, 0.5, 0.5))
    surface_center, line_center = boxes.get_surface_line_center()
1426

encore-zhou's avatar
encore-zhou committed
1427
1428
1429
    expected_surface_center = torch.tensor([[0.3294, 1.0359, 0.8031],
                                            [0.3294, 1.0359, -0.5689],
                                            [0.5949, 1.5317, 0.1171],
1430
                                            [0.1533, 0.5018, 0.1171],
encore-zhou's avatar
encore-zhou committed
1431
                                            [0.8064, 0.7805, 0.1171],
1432
1433
1434
1435
1436
1437
                                            [-0.1845, 1.2053, 0.1171],
                                            [-2.4630, -2.6324, -0.0620],
                                            [-2.4630, -2.6324, -0.2612],
                                            [-2.0406, -1.8436, -0.1616],
                                            [-2.7432, -3.4822, -0.1616],
                                            [-2.0574, -2.8496, -0.1616],
encore-zhou's avatar
encore-zhou committed
1438
1439
1440
                                            [-2.9000, -2.4883, -0.1616]])

    expected_line_center = torch.tensor([[0.8064, 0.7805, 0.8031],
1441
                                         [-0.1845, 1.2053, 0.8031],
encore-zhou's avatar
encore-zhou committed
1442
                                         [0.5949, 1.5317, 0.8031],
1443
                                         [0.1533, 0.5018, 0.8031],
encore-zhou's avatar
encore-zhou committed
1444
                                         [0.8064, 0.7805, -0.5689],
1445
                                         [-0.1845, 1.2053, -0.5689],
encore-zhou's avatar
encore-zhou committed
1446
                                         [0.5949, 1.5317, -0.5689],
1447
                                         [0.1533, 0.5018, -0.5689],
encore-zhou's avatar
encore-zhou committed
1448
                                         [1.0719, 1.2762, 0.1171],
1449
                                         [0.6672, 0.3324, 0.1171],
encore-zhou's avatar
encore-zhou committed
1450
                                         [0.1178, 1.7871, 0.1171],
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
                                         [-0.3606, 0.6713, 0.1171],
                                         [-2.0574, -2.8496, -0.0620],
                                         [-2.9000, -2.4883, -0.0620],
                                         [-2.0406, -1.8436, -0.0620],
                                         [-2.7432, -3.4822, -0.0620],
                                         [-2.0574, -2.8496, -0.2612],
                                         [-2.9000, -2.4883, -0.2612],
                                         [-2.0406, -1.8436, -0.2612],
                                         [-2.7432, -3.4822, -0.2612],
                                         [-1.6350, -2.0607, -0.1616],
                                         [-2.3062, -3.6263, -0.1616],
                                         [-2.4462, -1.6264, -0.1616],
encore-zhou's avatar
encore-zhou committed
1463
1464
1465
1466
1467
                                         [-3.1802, -3.3381, -0.1616]])

    assert torch.allclose(surface_center, expected_surface_center, atol=1e-04)
    assert torch.allclose(line_center, expected_line_center, atol=1e-04)

liyinhao's avatar
liyinhao committed
1468
1469

def test_rotation_3d_in_axis():
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
    # # clockwise
    # points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
    #                         [-0.4599, -0.0471, 1.8433],
    #                         [-0.4599, 0.0471, 1.8433]],
    #                        [[-0.2555, -0.2683, 0.0000],
    #                         [-0.2555, -0.2683, 0.9072],
    #                         [-0.2555, 0.2683, 0.9072]]])
    # rotated = rotation_3d_in_axis(
    #     points, torch.tensor([-np.pi / 10, np.pi / 10]),
    # axis=0, clockwise=True)
    # expected_rotated = torch.tensor([[[0.0000, -0.4228, -0.1869],
    #                                   [1.8433, -0.4228, -0.1869],
    #                                   [1.8433, -0.4519, -0.0973]],
    #                                  [[0.0000, -0.3259, -0.1762],
    #                                   [0.9072, -0.3259, -0.1762],
    #                                   [0.9072, -0.1601, 0.3341]]])
    # assert torch.allclose(rotated, expected_rotated, 1e-3)

    # anti-clockwise with return rotation mat
liyinhao's avatar
liyinhao committed
1489
    points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
1490
1491
1492
1493
                            [-0.4599, -0.0471, 1.8433]]])
    rotated = rotation_3d_in_axis(points, torch.tensor([np.pi / 2]), axis=0)
    expected_rotated = torch.tensor([[[-0.4599, 0.0000, -0.0471],
                                      [-0.4599, -1.8433, -0.0471]]])
liyinhao's avatar
liyinhao committed
1494
1495
    assert torch.allclose(rotated, expected_rotated, 1e-3)

1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
    points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
                            [-0.4599, -0.0471, 1.8433]]])
    rotated, mat = rotation_3d_in_axis(
        points, torch.tensor([np.pi / 2]), axis=0, return_mat=True)
    expected_rotated = torch.tensor([[[-0.4599, 0.0000, -0.0471],
                                      [-0.4599, -1.8433, -0.0471]]])
    expected_mat = torch.tensor([[[1, 0, 0], [0, 0, 1], [0, -1, 0]]]).float()
    assert torch.allclose(rotated, expected_rotated, atol=1e-6)
    assert torch.allclose(mat, expected_mat, atol=1e-6)

    points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
                            [-0.4599, -0.0471, 1.8433]],
                           [[-0.2555, -0.2683, 0.0000],
                            [-0.2555, -0.2683, 0.9072]]])
    rotated = rotation_3d_in_axis(points, np.pi / 2, axis=0)
    expected_rotated = torch.tensor([[[-0.4599, 0.0000, -0.0471],
                                      [-0.4599, -1.8433, -0.0471]],
                                     [[-0.2555, 0.0000, -0.2683],
                                      [-0.2555, -0.9072, -0.2683]]])
    assert torch.allclose(rotated, expected_rotated, atol=1e-3)

    points = np.array([[[-0.4599, -0.0471, 0.0000], [-0.4599, -0.0471,
                                                     1.8433]],
                       [[-0.2555, -0.2683, 0.0000],
                        [-0.2555, -0.2683, 0.9072]]]).astype(np.float32)

    rotated = rotation_3d_in_axis(points, np.pi / 2, axis=0)
    expected_rotated = np.array([[[-0.4599, 0.0000, -0.0471],
                                  [-0.4599, -1.8433, -0.0471]],
                                 [[-0.2555, 0.0000, -0.2683],
                                  [-0.2555, -0.9072, -0.2683]]])
    assert np.allclose(rotated, expected_rotated, atol=1e-3)

    points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
                            [-0.4599, -0.0471, 1.8433]],
                           [[-0.2555, -0.2683, 0.0000],
                            [-0.2555, -0.2683, 0.9072]]])
    angles = [np.pi / 2, -np.pi / 2]
    rotated = rotation_3d_in_axis(points, angles, axis=0)
    expected_rotated = np.array([[[-0.4599, 0.0000, -0.0471],
                                  [-0.4599, -1.8433, -0.0471]],
                                 [[-0.2555, 0.0000, 0.2683],
                                  [-0.2555, 0.9072, 0.2683]]])
    assert np.allclose(rotated, expected_rotated, atol=1e-3)

    points = torch.tensor([[[-0.0471, 0.0000], [-0.0471, 1.8433]],
                           [[-0.2683, 0.0000], [-0.2683, 0.9072]]])
    angles = [np.pi / 2, -np.pi / 2]
    rotated = rotation_3d_in_axis(points, angles)
    expected_rotated = np.array([[[0.0000, -0.0471], [-1.8433, -0.0471]],
                                 [[0.0000, 0.2683], [0.9072, 0.2683]]])
    assert np.allclose(rotated, expected_rotated, atol=1e-3)


def test_rotation_2d():
    angles = np.array([3.14])
    corners = np.array([[[-0.235, -0.49], [-0.235, 0.49], [0.235, 0.49],
                         [0.235, -0.49]]])
    corners_rotated = rotation_3d_in_axis(corners, angles)
    expected_corners = np.array([[[0.2357801, 0.48962511],
                                  [0.2342193, -0.49037365],
                                  [-0.2357801, -0.48962511],
                                  [-0.2342193, 0.49037365]]])
    assert np.allclose(corners_rotated, expected_corners)

liyinhao's avatar
liyinhao committed
1561
1562
1563
1564
1565
1566
1567
1568
1569

def test_limit_period():
    torch.manual_seed(0)
    val = torch.rand([5, 1])
    result = limit_period(val)
    expected_result = torch.tensor([[0.4963], [0.7682], [0.0885], [0.1320],
                                    [0.3074]])
    assert torch.allclose(result, expected_result, 1e-3)

1570
1571
1572
1573
1574
    val = val.numpy()
    result = limit_period(val)
    expected_result = expected_result.numpy()
    assert np.allclose(result, expected_result, 1e-3)

liyinhao's avatar
liyinhao committed
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613

def test_xywhr2xyxyr():
    torch.manual_seed(0)
    xywhr = torch.tensor([[1., 2., 3., 4., 5.], [0., 1., 2., 3., 4.]])
    xyxyr = xywhr2xyxyr(xywhr)
    expected_xyxyr = torch.tensor([[-0.5000, 0.0000, 2.5000, 4.0000, 5.0000],
                                   [-1.0000, -0.5000, 1.0000, 2.5000, 4.0000]])

    assert torch.allclose(xyxyr, expected_xyxyr)


class test_get_box_type(unittest.TestCase):

    def test_get_box_type(self):
        box_type_3d, box_mode_3d = get_box_type('camera')
        assert box_type_3d == CameraInstance3DBoxes
        assert box_mode_3d == Box3DMode.CAM

        box_type_3d, box_mode_3d = get_box_type('depth')
        assert box_type_3d == DepthInstance3DBoxes
        assert box_mode_3d == Box3DMode.DEPTH

        box_type_3d, box_mode_3d = get_box_type('lidar')
        assert box_type_3d == LiDARInstance3DBoxes
        assert box_mode_3d == Box3DMode.LIDAR

    def test_bad_box_type(self):
        self.assertRaises(ValueError, get_box_type, 'test')


def test_points_cam2img():
    torch.manual_seed(0)
    points = torch.rand([5, 3])
    proj_mat = torch.rand([4, 4])
    point_2d_res = points_cam2img(points, proj_mat)
    expected_point_2d_res = torch.tensor([[0.5832, 0.6496], [0.6146, 0.7910],
                                          [0.6994, 0.7782], [0.5623, 0.6303],
                                          [0.4359, 0.6532]])
    assert torch.allclose(point_2d_res, expected_point_2d_res, 1e-3)
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624

    points = points.numpy()
    proj_mat = proj_mat.numpy()
    point_2d_res = points_cam2img(points, proj_mat)
    expected_point_2d_res = expected_point_2d_res.numpy()
    assert np.allclose(point_2d_res, expected_point_2d_res, 1e-3)

    points = torch.from_numpy(points)
    point_2d_res = points_cam2img(points, proj_mat)
    expected_point_2d_res = torch.from_numpy(expected_point_2d_res)
    assert torch.allclose(point_2d_res, expected_point_2d_res, 1e-3)