test_box3d.py 83.1 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
3
import pytest
4
import torch
liyinhao's avatar
liyinhao committed
5
import unittest
6

liyinhao's avatar
liyinhao committed
7
from mmdet3d.core.bbox import (BaseInstance3DBoxes, Box3DMode,
8
9
10
                               CameraInstance3DBoxes, Coord3DMode,
                               DepthInstance3DBoxes, LiDARInstance3DBoxes,
                               bbox3d2roi, bbox3d_mapping_back)
liyinhao's avatar
liyinhao committed
11
12
13
14
from mmdet3d.core.bbox.structures.utils import (get_box_type, limit_period,
                                                points_cam2img,
                                                rotation_3d_in_axis,
                                                xywhr2xyxyr)
15
from mmdet3d.core.points import CameraPoints, DepthPoints, LiDARPoints
liyinhao's avatar
liyinhao committed
16
17


yinchimaoliang's avatar
yinchimaoliang committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def test_bbox3d_mapping_back():
    bboxes = BaseInstance3DBoxes(
        [[
            -5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 2.06200000e+00,
            4.40900000e+00, 1.54800000e+00, -1.48801203e+00
        ],
         [
             -2.66751588e+01, 5.59499564e+00, -9.14345860e-01, 3.43000000e-01,
             4.58000000e-01, 7.82000000e-01, -4.62759755e+00
         ],
         [
             -5.80979675e+00, 3.54092357e+01, 2.00889888e-01, 2.39600000e+00,
             3.96900000e+00, 1.73200000e+00, -4.65203216e+00
         ],
         [
             -3.13086877e+01, 1.09007628e+00, -1.94612112e-01, 1.94400000e+00,
             3.85700000e+00, 1.72300000e+00, -2.81427027e+00
         ]])
    new_bboxes = bbox3d_mapping_back(bboxes, 1.1, True, True)
    expected_new_bboxes = torch.tensor(
        [[-4.7657, 36.3827, 0.2705, 1.8745, 4.0082, 1.4073, -1.4880],
         [-24.2501, 5.0864, -0.8312, 0.3118, 0.4164, 0.7109, -4.6276],
         [-5.2816, 32.1902, 0.1826, 2.1782, 3.6082, 1.5745, -4.6520],
         [-28.4624, 0.9910, -0.1769, 1.7673, 3.5064, 1.5664, -2.8143]])
    assert torch.allclose(new_bboxes.tensor, expected_new_bboxes, atol=1e-4)


def test_bbox3d2roi():
    bbox_0 = torch.tensor(
        [[-5.2422, 4.0020, 2.9757, 2.0620, 4.4090, 1.5480, -1.4880],
         [-5.8097, 3.5409, 2.0088, 2.3960, 3.9690, 1.7320, -4.6520]])
    bbox_1 = torch.tensor(
        [[-2.6675, 5.5949, -9.1434, 3.4300, 4.5800, 7.8200, -4.6275],
         [-3.1308, 1.0900, -1.9461, 1.9440, 3.8570, 1.7230, -2.8142]])
    bbox_list = [bbox_0, bbox_1]
    rois = bbox3d2roi(bbox_list)
    expected_rois = torch.tensor(
        [[0.0000, -5.2422, 4.0020, 2.9757, 2.0620, 4.4090, 1.5480, -1.4880],
         [0.0000, -5.8097, 3.5409, 2.0088, 2.3960, 3.9690, 1.7320, -4.6520],
         [1.0000, -2.6675, 5.5949, -9.1434, 3.4300, 4.5800, 7.8200, -4.6275],
         [1.0000, -3.1308, 1.0900, -1.9461, 1.9440, 3.8570, 1.7230, -2.8142]])
    assert torch.all(torch.eq(rois, expected_rois))


liyinhao's avatar
liyinhao committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
def test_base_boxes3d():
    # test empty initialization
    empty_boxes = []
    boxes = BaseInstance3DBoxes(empty_boxes)
    assert boxes.tensor.shape[0] == 0
    assert boxes.tensor.shape[1] == 7

    # Test init with origin
    gravity_center_box = np.array(
        [[
            -5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 2.06200000e+00,
            4.40900000e+00, 1.54800000e+00, -1.48801203e+00
        ],
         [
             -2.66751588e+01, 5.59499564e+00, -9.14345860e-01, 3.43000000e-01,
             4.58000000e-01, 7.82000000e-01, -4.62759755e+00
         ],
         [
             -5.80979675e+00, 3.54092357e+01, 2.00889888e-01, 2.39600000e+00,
             3.96900000e+00, 1.73200000e+00, -4.65203216e+00
         ],
         [
             -3.13086877e+01, 1.09007628e+00, -1.94612112e-01, 1.94400000e+00,
             3.85700000e+00, 1.72300000e+00, -2.81427027e+00
         ]],
        dtype=np.float32)

    bottom_center_box = BaseInstance3DBoxes(
        gravity_center_box, origin=(0.5, 0.5, 0.5))

    assert bottom_center_box.yaw.shape[0] == 4
93
94
95


def test_lidar_boxes3d():
zhangwenwei's avatar
zhangwenwei committed
96
97
98
99
100
101
    # test empty initialization
    empty_boxes = []
    boxes = LiDARInstance3DBoxes(empty_boxes)
    assert boxes.tensor.shape[0] == 0
    assert boxes.tensor.shape[1] == 7

zhangwenwei's avatar
zhangwenwei committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    # Test init with origin
    gravity_center_box = np.array(
        [[
            -5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 2.06200000e+00,
            4.40900000e+00, 1.54800000e+00, -1.48801203e+00
        ],
         [
             -2.66751588e+01, 5.59499564e+00, -9.14345860e-01, 3.43000000e-01,
             4.58000000e-01, 7.82000000e-01, -4.62759755e+00
         ],
         [
             -5.80979675e+00, 3.54092357e+01, 2.00889888e-01, 2.39600000e+00,
             3.96900000e+00, 1.73200000e+00, -4.65203216e+00
         ],
         [
             -3.13086877e+01, 1.09007628e+00, -1.94612112e-01, 1.94400000e+00,
             3.85700000e+00, 1.72300000e+00, -2.81427027e+00
         ]],
        dtype=np.float32)
    bottom_center_box = LiDARInstance3DBoxes(
wuyuefeng's avatar
wuyuefeng committed
122
        gravity_center_box, origin=(0.5, 0.5, 0.5))
zhangwenwei's avatar
zhangwenwei committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    expected_tensor = torch.tensor(
        [[
            -5.24223238e+00, 4.00209696e+01, -4.76429619e-01, 2.06200000e+00,
            4.40900000e+00, 1.54800000e+00, -1.48801203e+00
        ],
         [
             -2.66751588e+01, 5.59499564e+00, -1.30534586e+00, 3.43000000e-01,
             4.58000000e-01, 7.82000000e-01, -4.62759755e+00
         ],
         [
             -5.80979675e+00, 3.54092357e+01, -6.65110112e-01, 2.39600000e+00,
             3.96900000e+00, 1.73200000e+00, -4.65203216e+00
         ],
         [
             -3.13086877e+01, 1.09007628e+00, -1.05611211e+00, 1.94400000e+00,
             3.85700000e+00, 1.72300000e+00, -2.81427027e+00
         ]])
    assert torch.allclose(expected_tensor, bottom_center_box.tensor)

142
    # Test init with numpy array
143
144
145
146
147
148
149
150
151
    np_boxes = np.array([[
        1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65,
        1.48 - 0.13603681398218053 * 4
    ],
                         [
                             8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57,
                             1.62 - 0.13603681398218053 * 4
                         ]],
                        dtype=np.float32)
152
153
154
    boxes_1 = LiDARInstance3DBoxes(np_boxes)
    assert torch.allclose(boxes_1.tensor, torch.from_numpy(np_boxes))

zhangwenwei's avatar
zhangwenwei committed
155
156
157
158
159
160
    # test properties
    assert boxes_1.volume.size(0) == 2
    assert (boxes_1.center == boxes_1.bottom_center).all()
    assert repr(boxes) == (
        'LiDARInstance3DBoxes(\n    tensor([], size=(0, 7)))')

161
162
163
164
    # test init with torch.Tensor
    th_boxes = torch.tensor(
        [[
            28.29669987, -0.5557558, -1.30332506, 1.47000003, 2.23000002,
165
            1.48000002, -1.57000005 - 0.13603681398218053 * 4
166
167
168
        ],
         [
             26.66901946, 21.82302134, -1.73605708, 1.55999994, 3.48000002,
169
             1.39999998, -1.69000006 - 0.13603681398218053 * 4
170
171
172
         ],
         [
             31.31977974, 8.16214412, -1.62177875, 1.74000001, 3.76999998,
173
             1.48000002, 2.78999996 - 0.13603681398218053 * 4
174
175
176
177
178
179
180
181
182
183
         ]],
        dtype=torch.float32)
    boxes_2 = LiDARInstance3DBoxes(th_boxes)
    assert torch.allclose(boxes_2.tensor, th_boxes)

    # test clone/to/device
    boxes_2 = boxes_2.clone()
    boxes_1 = boxes_1.to(boxes_2.device)

    # test box concatenation
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    expected_tensor = torch.tensor([[
        1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65,
        1.48 - 0.13603681398218053 * 4
    ],
                                    [
                                        8.959413, 2.4567227, -1.6357126, 1.54,
                                        4.01, 1.57,
                                        1.62 - 0.13603681398218053 * 4
                                    ],
                                    [
                                        28.2967, -0.5557558, -1.303325, 1.47,
                                        2.23, 1.48,
                                        -1.57 - 0.13603681398218053 * 4
                                    ],
                                    [
                                        26.66902, 21.82302, -1.736057, 1.56,
                                        3.48, 1.4,
                                        -1.69 - 0.13603681398218053 * 4
                                    ],
                                    [
                                        31.31978, 8.162144, -1.6217787, 1.74,
                                        3.77, 1.48,
                                        2.79 - 0.13603681398218053 * 4
                                    ]])
208
209
    boxes = LiDARInstance3DBoxes.cat([boxes_1, boxes_2])
    assert torch.allclose(boxes.tensor, expected_tensor)
zhangwenwei's avatar
zhangwenwei committed
210
211
212
213
    # concatenate empty list
    empty_boxes = LiDARInstance3DBoxes.cat([])
    assert empty_boxes.tensor.shape[0] == 0
    assert empty_boxes.tensor.shape[-1] == 7
214
215

    # test box flip
liyinhao's avatar
liyinhao committed
216
217
218
219
220
    points = torch.tensor([[1.2559, -0.6762, -1.4658],
                           [4.7814, -0.8784,
                            -1.3857], [6.7053, 0.2517, -0.9697],
                           [0.6533, -0.5520, -0.5265],
                           [4.5870, 0.5358, -1.4741]])
221
    expected_tensor = torch.tensor(
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        [[
            1.7802081, -2.516249, -1.7501148, 1.75, 3.39, 1.65,
            1.6615927 - np.pi + 0.13603681398218053 * 4
        ],
         [
             8.959413, -2.4567227, -1.6357126, 1.54, 4.01, 1.57,
             1.5215927 - np.pi + 0.13603681398218053 * 4
         ],
         [
             28.2967, 0.5557558, -1.303325, 1.47, 2.23, 1.48,
             4.7115927 - np.pi + 0.13603681398218053 * 4
         ],
         [
             26.66902, -21.82302, -1.736057, 1.56, 3.48, 1.4,
             4.8315926 - np.pi + 0.13603681398218053 * 4
         ],
         [
             31.31978, -8.162144, -1.6217787, 1.74, 3.77, 1.48,
             0.35159278 - np.pi + 0.13603681398218053 * 4
         ]])
liyinhao's avatar
liyinhao committed
242
243
244
245
246
247
    expected_points = torch.tensor([[1.2559, 0.6762, -1.4658],
                                    [4.7814, 0.8784, -1.3857],
                                    [6.7053, -0.2517, -0.9697],
                                    [0.6533, 0.5520, -0.5265],
                                    [4.5870, -0.5358, -1.4741]])
    points = boxes.flip('horizontal', points)
248
    assert torch.allclose(boxes.tensor, expected_tensor)
liyinhao's avatar
liyinhao committed
249
    assert torch.allclose(points, expected_points, 1e-3)
250

wuyuefeng's avatar
wuyuefeng committed
251
    expected_tensor = torch.tensor(
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        [[
            -1.7802, -2.5162, -1.7501, 1.7500, 3.3900, 1.6500,
            -1.6616 + np.pi * 2 - 0.13603681398218053 * 4
        ],
         [
             -8.9594, -2.4567, -1.6357, 1.5400, 4.0100, 1.5700,
             -1.5216 + np.pi * 2 - 0.13603681398218053 * 4
         ],
         [
             -28.2967, 0.5558, -1.3033, 1.4700, 2.2300, 1.4800,
             -4.7116 + np.pi * 2 - 0.13603681398218053 * 4
         ],
         [
             -26.6690, -21.8230, -1.7361, 1.5600, 3.4800, 1.4000,
             -4.8316 + np.pi * 2 - 0.13603681398218053 * 4
         ],
         [
             -31.3198, -8.1621, -1.6218, 1.7400, 3.7700, 1.4800,
             -0.3516 + np.pi * 2 - 0.13603681398218053 * 4
         ]])
wuyuefeng's avatar
wuyuefeng committed
272
    boxes_flip_vert = boxes.clone()
liyinhao's avatar
liyinhao committed
273
274
275
276
277
278
    points = boxes_flip_vert.flip('vertical', points)
    expected_points = torch.tensor([[-1.2559, 0.6762, -1.4658],
                                    [-4.7814, 0.8784, -1.3857],
                                    [-6.7053, -0.2517, -0.9697],
                                    [-0.6533, 0.5520, -0.5265],
                                    [-4.5870, -0.5358, -1.4741]])
wuyuefeng's avatar
wuyuefeng committed
279
    assert torch.allclose(boxes_flip_vert.tensor, expected_tensor, 1e-4)
liyinhao's avatar
liyinhao committed
280
    assert torch.allclose(points, expected_points)
wuyuefeng's avatar
wuyuefeng committed
281

282
    # test box rotation
283
    # with input torch.Tensor points and angle
284
    expected_tensor = torch.tensor(
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        [[
            1.4225, -2.7344, -1.7501, 1.7500, 3.3900, 1.6500,
            1.7976 - np.pi + 0.13603681398218053 * 2
        ],
         [
             8.5435, -3.6491, -1.6357, 1.5400, 4.0100, 1.5700,
             1.6576 - np.pi + 0.13603681398218053 * 2
         ],
         [
             28.1106, -3.2869, -1.3033, 1.4700, 2.2300, 1.4800,
             4.8476 - np.pi + 0.13603681398218053 * 2
         ],
         [
             23.4630, -25.2382, -1.7361, 1.5600, 3.4800, 1.4000,
             4.9676 - np.pi + 0.13603681398218053 * 2
         ],
         [
             29.9235, -12.3342, -1.6218, 1.7400, 3.7700, 1.4800,
             0.4876 - np.pi + 0.13603681398218053 * 2
         ]])
    points, rot_mat_T = boxes.rotate(-0.13603681398218053, points)
liyinhao's avatar
liyinhao committed
306
307
308
309
310
311
312
313
314
315
316
317
    expected_points = torch.tensor([[-1.1526, 0.8403, -1.4658],
                                    [-4.6181, 1.5187, -1.3857],
                                    [-6.6775, 0.6600, -0.9697],
                                    [-0.5724, 0.6355, -0.5265],
                                    [-4.6173, 0.0912, -1.4741]])
    expected_rot_mat_T = torch.tensor([[0.9908, -0.1356, 0.0000],
                                       [0.1356, 0.9908, 0.0000],
                                       [0.0000, 0.0000, 1.0000]])
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)

318
    # with input torch.Tensor points and rotation matrix
319
    points, rot_mat_T = boxes.rotate(0.13603681398218053, points)  # back
320
321
322
323
324
325
326
327
    rot_mat = np.array([[0.99076125, -0.13561762, 0.],
                        [0.13561762, 0.99076125, 0.], [0., 0., 1.]])
    points, rot_mat_T = boxes.rotate(rot_mat, points)
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)

    # with input np.ndarray points and angle
liyinhao's avatar
liyinhao committed
328
329
330
331
332
    points_np = np.array([[-1.0280, 0.9888,
                           -1.4658], [-4.3695, 2.1310, -1.3857],
                          [-6.5263, 1.5595,
                           -0.9697], [-0.4809, 0.7073, -0.5265],
                          [-4.5623, 0.7166, -1.4741]])
333
    points_np, rot_mat_T_np = boxes.rotate(-0.13603681398218053, points_np)
liyinhao's avatar
liyinhao committed
334
335
336
337
338
339
340
341
342
343
344
    expected_points_np = np.array([[-0.8844, 1.1191, -1.4658],
                                   [-4.0401, 2.7039, -1.3857],
                                   [-6.2545, 2.4302, -0.9697],
                                   [-0.3805, 0.7660, -0.5265],
                                   [-4.4230, 1.3287, -1.4741]])
    expected_rot_mat_T_np = np.array([[0.9908, -0.1356, 0.0000],
                                      [0.1356, 0.9908, 0.0000],
                                      [0.0000, 0.0000, 1.0000]])

    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)
345

346
    # with input LiDARPoints and rotation matrix
347
    points_np, rot_mat_T_np = boxes.rotate(0.13603681398218053, points_np)
348
349
350
351
352
353
354
    lidar_points = LiDARPoints(points_np)
    lidar_points, rot_mat_T_np = boxes.rotate(rot_mat, lidar_points)
    points_np = lidar_points.tensor.numpy()

    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)

355
356
357
    # test box scaling
    expected_tensor = torch.tensor([[
        1.0443488, -2.9183323, -1.7599131, 1.7597977, 3.4089797, 1.6592377,
358
        1.9336663 - np.pi
359
360
361
362
    ],
                                    [
                                        8.014273, -4.8007393, -1.6448704,
                                        1.5486219, 4.0324507, 1.57879,
363
                                        1.7936664 - np.pi
364
365
366
367
                                    ],
                                    [
                                        27.558605, -7.1084175, -1.310622,
                                        1.4782301, 2.242485, 1.488286,
368
                                        4.9836664 - np.pi
369
370
371
372
                                    ],
                                    [
                                        19.934517, -28.344835, -1.7457767,
                                        1.5687338, 3.4994833, 1.4078381,
373
                                        5.1036663 - np.pi
374
375
376
377
                                    ],
                                    [
                                        28.130915, -16.369587, -1.6308585,
                                        1.7497417, 3.791107, 1.488286,
378
                                        0.6236664 - np.pi
379
380
381
382
383
384
385
                                    ]])
    boxes.scale(1.00559866335275)
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box translation
    expected_tensor = torch.tensor([[
        1.1281544, -3.0507944, -1.9169292, 1.7597977, 3.4089797, 1.6592377,
386
        1.9336663 - np.pi
387
388
389
390
    ],
                                    [
                                        8.098079, -4.9332013, -1.8018866,
                                        1.5486219, 4.0324507, 1.57879,
391
                                        1.7936664 - np.pi
392
393
394
395
                                    ],
                                    [
                                        27.64241, -7.2408795, -1.4676381,
                                        1.4782301, 2.242485, 1.488286,
396
                                        4.9836664 - np.pi
397
398
399
400
                                    ],
                                    [
                                        20.018322, -28.477297, -1.9027928,
                                        1.5687338, 3.4994833, 1.4078381,
401
                                        5.1036663 - np.pi
402
403
404
405
                                    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
406
                                        0.6236664 - np.pi
407
408
409
410
411
                                    ]])
    boxes.translate([0.0838056, -0.13246193, -0.15701613])
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test bbox in_range_bev
412
413
414
415
416
417
418
    expected_tensor = torch.tensor(
        [[1.1282, -3.0508, 1.7598, 3.4090, -1.2079],
         [8.0981, -4.9332, 1.5486, 4.0325, -1.3479],
         [27.6424, -7.2409, 1.4782, 2.2425, 1.8421],
         [20.0183, -28.4773, 1.5687, 3.4995, 1.9621],
         [28.2147, -16.5020, 1.7497, 3.7911, -2.5179]])
    assert torch.allclose(boxes.bev, expected_tensor, atol=1e-3)
419
420
421
422
423
424
    expected_tensor = torch.tensor([1, 1, 1, 1, 1], dtype=torch.bool)
    mask = boxes.in_range_bev([0., -40., 70.4, 40.])
    assert (mask == expected_tensor).all()
    mask = boxes.nonempty()
    assert (mask == expected_tensor).all()

zhangwenwei's avatar
zhangwenwei committed
425
426
427
428
429
    # test bbox in_range
    expected_tensor = torch.tensor([1, 1, 0, 0, 0], dtype=torch.bool)
    mask = boxes.in_range_3d([0, -20, -2, 22, 2, 5])
    assert (mask == expected_tensor).all()

430
431
432
433
    # test bbox indexing
    index_boxes = boxes[2:5]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
434
        4.9836664 - np.pi
435
436
437
438
    ],
                                    [
                                        20.018322, -28.477297, -1.9027928,
                                        1.5687338, 3.4994833, 1.4078381,
439
                                        5.1036663 - np.pi
440
441
442
443
                                    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
444
                                        0.6236664 - np.pi
445
446
447
448
449
450
451
                                    ]])
    assert len(index_boxes) == 3
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    index_boxes = boxes[2]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
452
        4.9836664 - np.pi
453
454
455
456
457
458
459
    ]])
    assert len(index_boxes) == 1
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    index_boxes = boxes[[2, 4]]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
460
        4.9836664 - np.pi
461
462
463
464
    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
465
                                        0.6236664 - np.pi
466
467
468
469
470
471
472
                                    ]])
    assert len(index_boxes) == 2
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    # test iteration
    for i, box in enumerate(index_boxes):
        torch.allclose(box, expected_tensor[i])
zhangwenwei's avatar
zhangwenwei committed
473
474
475
476
477
478
479
480
481
482
483
484
485

    # test properties
    assert torch.allclose(boxes.bottom_center, boxes.tensor[:, :3])
    expected_tensor = (
        boxes.tensor[:, :3] - boxes.tensor[:, 3:6] *
        (torch.tensor([0.5, 0.5, 0]) - torch.tensor([0.5, 0.5, 0.5])))
    assert torch.allclose(boxes.gravity_center, expected_tensor)

    boxes.limit_yaw()
    assert (boxes.tensor[:, 6] <= np.pi / 2).all()
    assert (boxes.tensor[:, 6] >= -np.pi / 2).all()

    Box3DMode.convert(boxes, Box3DMode.LIDAR, Box3DMode.LIDAR)
486
487
    expected_tensor = boxes.tensor.clone()
    assert torch.allclose(expected_tensor, boxes.tensor)
zhangwenwei's avatar
zhangwenwei committed
488
489
490
491

    boxes.flip()
    boxes.flip()
    boxes.limit_yaw()
492
    assert torch.allclose(expected_tensor, boxes.tensor)
zhangwenwei's avatar
zhangwenwei committed
493
494
495
496
497
498
499
500

    # test nearest_bev
    expected_tensor = torch.tensor([[-0.5763, -3.9307, 2.8326, -2.1709],
                                    [6.0819, -5.7075, 10.1143, -4.1589],
                                    [26.5212, -7.9800, 28.7637, -6.5018],
                                    [18.2686, -29.2617, 21.7681, -27.6929],
                                    [27.3398, -18.3976, 29.0896, -14.6065]])
    assert torch.allclose(
wuyuefeng's avatar
wuyuefeng committed
501
        boxes.nearest_bev, expected_tensor, rtol=1e-4, atol=1e-7)
zhangwenwei's avatar
zhangwenwei committed
502

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
    expected_tensor = torch.tensor([[[-7.7767e-01, -2.8332e+00, -1.9169e+00],
                                     [-7.7767e-01, -2.8332e+00, -2.5769e-01],
                                     [2.4093e+00, -1.6232e+00, -2.5769e-01],
                                     [2.4093e+00, -1.6232e+00, -1.9169e+00],
                                     [-1.5301e-01, -4.4784e+00, -1.9169e+00],
                                     [-1.5301e-01, -4.4784e+00, -2.5769e-01],
                                     [3.0340e+00, -3.2684e+00, -2.5769e-01],
                                     [3.0340e+00, -3.2684e+00, -1.9169e+00]],
                                    [[5.9606e+00, -4.6237e+00, -1.8019e+00],
                                     [5.9606e+00, -4.6237e+00, -2.2310e-01],
                                     [9.8933e+00, -3.7324e+00, -2.2310e-01],
                                     [9.8933e+00, -3.7324e+00, -1.8019e+00],
                                     [6.3029e+00, -6.1340e+00, -1.8019e+00],
                                     [6.3029e+00, -6.1340e+00, -2.2310e-01],
                                     [1.0236e+01, -5.2427e+00, -2.2310e-01],
                                     [1.0236e+01, -5.2427e+00, -1.8019e+00]],
                                    [[2.6364e+01, -6.8292e+00, -1.4676e+00],
                                     [2.6364e+01, -6.8292e+00, 2.0648e-02],
                                     [2.8525e+01, -6.2283e+00, 2.0648e-02],
                                     [2.8525e+01, -6.2283e+00, -1.4676e+00],
                                     [2.6760e+01, -8.2534e+00, -1.4676e+00],
                                     [2.6760e+01, -8.2534e+00, 2.0648e-02],
                                     [2.8921e+01, -7.6525e+00, 2.0648e-02],
                                     [2.8921e+01, -7.6525e+00, -1.4676e+00]],
                                    [[1.8102e+01, -2.8420e+01, -1.9028e+00],
                                     [1.8102e+01, -2.8420e+01, -4.9495e-01],
                                     [2.1337e+01, -2.7085e+01, -4.9495e-01],
                                     [2.1337e+01, -2.7085e+01, -1.9028e+00],
                                     [1.8700e+01, -2.9870e+01, -1.9028e+00],
                                     [1.8700e+01, -2.9870e+01, -4.9495e-01],
                                     [2.1935e+01, -2.8535e+01, -4.9495e-01],
                                     [2.1935e+01, -2.8535e+01, -1.9028e+00]],
                                    [[2.8612e+01, -1.8552e+01, -1.7879e+00],
                                     [2.8612e+01, -1.8552e+01, -2.9959e-01],
                                     [2.6398e+01, -1.5474e+01, -2.9959e-01],
                                     [2.6398e+01, -1.5474e+01, -1.7879e+00],
                                     [3.0032e+01, -1.7530e+01, -1.7879e+00],
                                     [3.0032e+01, -1.7530e+01, -2.9959e-01],
                                     [2.7818e+01, -1.4452e+01, -2.9959e-01],
                                     [2.7818e+01, -1.4452e+01, -1.7879e+00]]])

zhangwenwei's avatar
zhangwenwei committed
544
    assert torch.allclose(boxes.corners, expected_tensor, rtol=1e-4, atol=1e-7)
zhangwenwei's avatar
zhangwenwei committed
545

wuyuefeng's avatar
wuyuefeng committed
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
    # test new_box
    new_box1 = boxes.new_box([[1, 2, 3, 4, 5, 6, 7]])
    assert torch.allclose(
        new_box1.tensor,
        torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=boxes.tensor.dtype))
    assert new_box1.device == boxes.device
    assert new_box1.with_yaw == boxes.with_yaw
    assert new_box1.box_dim == boxes.box_dim

    new_box2 = boxes.new_box(np.array([[1, 2, 3, 4, 5, 6, 7]]))
    assert torch.allclose(
        new_box2.tensor,
        torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=boxes.tensor.dtype))

    new_box3 = boxes.new_box(torch.tensor([[1, 2, 3, 4, 5, 6, 7]]))
    assert torch.allclose(
        new_box3.tensor,
        torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=boxes.tensor.dtype))

zhangwenwei's avatar
zhangwenwei committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

def test_boxes_conversion():
    """Test the conversion of boxes between different modes.

    ComandLine:
        xdoctest tests/test_box3d.py::test_boxes_conversion zero
    """
    lidar_boxes = LiDARInstance3DBoxes(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62],
         [28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48, -1.57],
         [26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4, -1.69],
         [31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48, 2.79]])
    cam_box_tensor = Box3DMode.convert(lidar_boxes.tensor, Box3DMode.LIDAR,
                                       Box3DMode.CAM)
zhangwenwei's avatar
zhangwenwei committed
580
581
    expected_box = lidar_boxes.convert_to(Box3DMode.CAM)
    assert torch.equal(expected_box.tensor, cam_box_tensor)
582
583
584
585

    # Some properties should be the same
    cam_boxes = CameraInstance3DBoxes(cam_box_tensor)
    assert torch.equal(cam_boxes.height, lidar_boxes.height)
zhangwenwei's avatar
zhangwenwei committed
586
587
588
    assert torch.equal(cam_boxes.top_height, -lidar_boxes.top_height)
    assert torch.equal(cam_boxes.bottom_height, -lidar_boxes.bottom_height)
    assert torch.allclose(cam_boxes.volume, lidar_boxes.volume)
589

zhangwenwei's avatar
zhangwenwei committed
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
    lidar_box_tensor = Box3DMode.convert(cam_box_tensor, Box3DMode.CAM,
                                         Box3DMode.LIDAR)
    expected_tensor = torch.tensor(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62],
         [28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48, -1.57],
         [26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4, -1.69],
         [31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48, 2.79]])

    assert torch.allclose(expected_tensor, lidar_box_tensor)
    assert torch.allclose(lidar_boxes.tensor, lidar_box_tensor)

    depth_box_tensor = Box3DMode.convert(cam_box_tensor, Box3DMode.CAM,
                                         Box3DMode.DEPTH)
    depth_to_cam_box_tensor = Box3DMode.convert(depth_box_tensor,
                                                Box3DMode.DEPTH, Box3DMode.CAM)
    assert torch.allclose(cam_box_tensor, depth_to_cam_box_tensor)

zhangwenwei's avatar
zhangwenwei committed
608
609
610
    # test similar mode conversion
    same_results = Box3DMode.convert(depth_box_tensor, Box3DMode.DEPTH,
                                     Box3DMode.DEPTH)
zhangwenwei's avatar
zhangwenwei committed
611
    assert torch.equal(same_results, depth_box_tensor)
zhangwenwei's avatar
zhangwenwei committed
612

zhangwenwei's avatar
zhangwenwei committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
    # test conversion with a given rt_mat
    camera_boxes = CameraInstance3DBoxes(
        [[0.06, 1.77, 21.4, 3.2, 1.61, 1.66, -1.54],
         [6.59, 1.53, 6.76, 12.78, 3.66, 2.28, 1.55],
         [6.71, 1.59, 22.18, 14.73, 3.64, 2.32, 1.59],
         [7.11, 1.58, 34.54, 10.04, 3.61, 2.32, 1.61],
         [7.78, 1.65, 45.95, 12.83, 3.63, 2.34, 1.64]])

    rect = torch.tensor(
        [[0.9999239, 0.00983776, -0.00744505, 0.],
         [-0.0098698, 0.9999421, -0.00427846, 0.],
         [0.00740253, 0.00435161, 0.9999631, 0.], [0., 0., 0., 1.]],
        dtype=torch.float32)

    Trv2c = torch.tensor(
        [[7.533745e-03, -9.999714e-01, -6.166020e-04, -4.069766e-03],
         [1.480249e-02, 7.280733e-04, -9.998902e-01, -7.631618e-02],
         [9.998621e-01, 7.523790e-03, 1.480755e-02, -2.717806e-01],
         [0.000000e+00, 0.000000e+00, 0.000000e+00, 1.000000e+00]],
        dtype=torch.float32)

634
    # coord sys refactor (reverse sign of yaw)
zhangwenwei's avatar
zhangwenwei committed
635
636
    expected_tensor = torch.tensor(
        [[
637
638
            2.16902434e+01, -4.06038554e-02, -1.61906639e+00, 3.20000005e+00,
            1.65999997e+00, 1.61000001e+00, 1.53999996e+00 - np.pi / 2
zhangwenwei's avatar
zhangwenwei committed
639
640
        ],
         [
641
642
             7.05006905e+00, -6.57459601e+00, -1.60107949e+00, 1.27799997e+01,
             2.27999997e+00, 3.66000009e+00, -1.54999995e+00 - np.pi / 2
zhangwenwei's avatar
zhangwenwei committed
643
644
         ],
         [
645
646
             2.24698818e+01, -6.69203759e+00, -1.50118145e+00, 1.47299995e+01,
             2.31999993e+00, 3.64000010e+00, -1.59000003e+00 + 3 * np.pi / 2
zhangwenwei's avatar
zhangwenwei committed
647
648
         ],
         [
649
650
             3.48291965e+01, -7.09058388e+00, -1.36622983e+00, 1.00400000e+01,
             2.31999993e+00, 3.60999990e+00, -1.61000001e+00 + 3 * np.pi / 2
zhangwenwei's avatar
zhangwenwei committed
651
652
         ],
         [
653
654
             4.62394617e+01, -7.75838800e+00, -1.32405020e+00, 1.28299999e+01,
             2.33999991e+00, 3.63000011e+00, -1.63999999e+00 + 3 * np.pi / 2
zhangwenwei's avatar
zhangwenwei committed
655
656
657
658
         ]],
        dtype=torch.float32)

    rt_mat = rect @ Trv2c
zhangwenwei's avatar
zhangwenwei committed
659
660
    # test coversion with Box type
    cam_to_lidar_box = Box3DMode.convert(camera_boxes, Box3DMode.CAM,
zhangwenwei's avatar
zhangwenwei committed
661
                                         Box3DMode.LIDAR, rt_mat.inverse())
zhangwenwei's avatar
zhangwenwei committed
662
    assert torch.allclose(cam_to_lidar_box.tensor, expected_tensor)
zhangwenwei's avatar
zhangwenwei committed
663

zhangwenwei's avatar
zhangwenwei committed
664
665
666
    lidar_to_cam_box = Box3DMode.convert(cam_to_lidar_box.tensor,
                                         Box3DMode.LIDAR, Box3DMode.CAM,
                                         rt_mat)
zhangwenwei's avatar
zhangwenwei committed
667
    assert torch.allclose(lidar_to_cam_box, camera_boxes.tensor)
zhangwenwei's avatar
zhangwenwei committed
668
669
670
671
672
673
674
675
676
677
678
679
680
681

    # test numpy convert
    cam_to_lidar_box = Box3DMode.convert(camera_boxes.tensor.numpy(),
                                         Box3DMode.CAM, Box3DMode.LIDAR,
                                         rt_mat.inverse().numpy())
    assert np.allclose(cam_to_lidar_box, expected_tensor.numpy())

    # test list convert
    cam_to_lidar_box = Box3DMode.convert(
        camera_boxes.tensor[0].numpy().tolist(), Box3DMode.CAM,
        Box3DMode.LIDAR,
        rt_mat.inverse().numpy())
    assert np.allclose(np.array(cam_to_lidar_box), expected_tensor[0].numpy())

wuyuefeng's avatar
wuyuefeng committed
682
683
684
685
686
687
    # test convert from depth to lidar
    depth_boxes = torch.tensor(
        [[2.4593, 2.5870, -0.4321, 0.8597, 0.6193, 1.0204, 3.0693],
         [1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601]],
        dtype=torch.float32)
    depth_boxes = DepthInstance3DBoxes(depth_boxes)
zhangwenwei's avatar
zhangwenwei committed
688
689
690
691
    depth_to_lidar_box = depth_boxes.convert_to(Box3DMode.LIDAR)
    expected_box = depth_to_lidar_box.convert_to(Box3DMode.DEPTH)
    assert torch.equal(depth_boxes.tensor, expected_box.tensor)

wuyuefeng's avatar
wuyuefeng committed
692
693
694
695
696
697
698
699
700
701
    lidar_to_depth_box = Box3DMode.convert(depth_to_lidar_box, Box3DMode.LIDAR,
                                           Box3DMode.DEPTH)
    assert torch.allclose(depth_boxes.tensor, lidar_to_depth_box.tensor)
    assert torch.allclose(depth_boxes.volume, lidar_to_depth_box.volume)

    # test convert from depth to camera
    depth_to_cam_box = Box3DMode.convert(depth_boxes, Box3DMode.DEPTH,
                                         Box3DMode.CAM)
    cam_to_depth_box = Box3DMode.convert(depth_to_cam_box, Box3DMode.CAM,
                                         Box3DMode.DEPTH)
zhangwenwei's avatar
zhangwenwei committed
702
703
    expected_tensor = depth_to_cam_box.convert_to(Box3DMode.DEPTH)
    assert torch.equal(expected_tensor.tensor, cam_to_depth_box.tensor)
wuyuefeng's avatar
wuyuefeng committed
704
705
706
707
708
709
710
    assert torch.allclose(depth_boxes.tensor, cam_to_depth_box.tensor)
    assert torch.allclose(depth_boxes.volume, cam_to_depth_box.volume)

    with pytest.raises(NotImplementedError):
        # assert invalid convert mode
        Box3DMode.convert(depth_boxes, Box3DMode.DEPTH, 3)

zhangwenwei's avatar
zhangwenwei committed
711
712
713

def test_camera_boxes3d():
    # Test init with numpy array
714
715
716
717
718
719
720
721
722
    np_boxes = np.array([[
        1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65,
        1.48 - 0.13603681398218053 * 4 - 2 * np.pi
    ],
                         [
                             8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57,
                             1.62 - 0.13603681398218053 * 4 - 2 * np.pi
                         ]],
                        dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
723
724
725
726
727
728
729
730
731
732
733
734
735

    boxes_1 = Box3DMode.convert(
        LiDARInstance3DBoxes(np_boxes), Box3DMode.LIDAR, Box3DMode.CAM)
    assert isinstance(boxes_1, CameraInstance3DBoxes)

    cam_np_boxes = Box3DMode.convert(np_boxes, Box3DMode.LIDAR, Box3DMode.CAM)
    assert torch.allclose(boxes_1.tensor,
                          boxes_1.tensor.new_tensor(cam_np_boxes))

    # test init with torch.Tensor
    th_boxes = torch.tensor(
        [[
            28.29669987, -0.5557558, -1.30332506, 1.47000003, 2.23000002,
736
            1.48000002, -1.57000005 - 0.13603681398218053 * 4 - 2 * np.pi
zhangwenwei's avatar
zhangwenwei committed
737
738
739
        ],
         [
             26.66901946, 21.82302134, -1.73605708, 1.55999994, 3.48000002,
740
             1.39999998, -1.69000006 - 0.13603681398218053 * 4 - 2 * np.pi
zhangwenwei's avatar
zhangwenwei committed
741
742
743
         ],
         [
             31.31977974, 8.16214412, -1.62177875, 1.74000001, 3.76999998,
744
             1.48000002, 2.78999996 - 0.13603681398218053 * 4 - 2 * np.pi
zhangwenwei's avatar
zhangwenwei committed
745
746
747
748
749
750
751
752
753
754
755
756
         ]],
        dtype=torch.float32)
    cam_th_boxes = Box3DMode.convert(th_boxes, Box3DMode.LIDAR, Box3DMode.CAM)
    boxes_2 = CameraInstance3DBoxes(cam_th_boxes)
    assert torch.allclose(boxes_2.tensor, cam_th_boxes)

    # test clone/to/device
    boxes_2 = boxes_2.clone()
    boxes_1 = boxes_1.to(boxes_2.device)

    # test box concatenation
    expected_tensor = Box3DMode.convert(
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
        torch.tensor([[
            1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65,
            1.48 - 0.13603681398218053 * 4 - 2 * np.pi
        ],
                      [
                          8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57,
                          1.62 - 0.13603681398218053 * 4 - 2 * np.pi
                      ],
                      [
                          28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48,
                          -1.57 - 0.13603681398218053 * 4 - 2 * np.pi
                      ],
                      [
                          26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4,
                          -1.69 - 0.13603681398218053 * 4 - 2 * np.pi
                      ],
                      [
                          31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48,
                          2.79 - 0.13603681398218053 * 4 - 2 * np.pi
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
zhangwenwei's avatar
zhangwenwei committed
777
778
779
780
    boxes = CameraInstance3DBoxes.cat([boxes_1, boxes_2])
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box flip
liyinhao's avatar
liyinhao committed
781
782
783
    points = torch.tensor([[0.6762, 1.4658, 1.2559], [0.8784, 1.3857, 4.7814],
                           [-0.2517, 0.9697, 6.7053], [0.5520, 0.5265, 0.6533],
                           [-0.5358, 1.4741, 4.5870]])
zhangwenwei's avatar
zhangwenwei committed
784
    expected_tensor = Box3DMode.convert(
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
        torch.tensor([[
            1.7802081, -2.516249, -1.7501148, 1.75, 3.39, 1.65,
            1.6615927 + 0.13603681398218053 * 4 - np.pi
        ],
                      [
                          8.959413, -2.4567227, -1.6357126, 1.54, 4.01, 1.57,
                          1.5215927 + 0.13603681398218053 * 4 - np.pi
                      ],
                      [
                          28.2967, 0.5557558, -1.303325, 1.47, 2.23, 1.48,
                          4.7115927 + 0.13603681398218053 * 4 - np.pi
                      ],
                      [
                          26.66902, -21.82302, -1.736057, 1.56, 3.48, 1.4,
                          4.8315926 + 0.13603681398218053 * 4 - np.pi
                      ],
                      [
                          31.31978, -8.162144, -1.6217787, 1.74, 3.77, 1.48,
                          0.35159278 + 0.13603681398218053 * 4 - np.pi
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
liyinhao's avatar
liyinhao committed
805
806
807
808
809
810
    points = boxes.flip('horizontal', points)
    expected_points = torch.tensor([[-0.6762, 1.4658, 1.2559],
                                    [-0.8784, 1.3857, 4.7814],
                                    [0.2517, 0.9697, 6.7053],
                                    [-0.5520, 0.5265, 0.6533],
                                    [0.5358, 1.4741, 4.5870]])
811
812
813
814
815

    yaw_normalized_tensor = boxes.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
816
    assert torch.allclose(points, expected_points, 1e-3)
zhangwenwei's avatar
zhangwenwei committed
817

wuyuefeng's avatar
wuyuefeng committed
818
    expected_tensor = torch.tensor(
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
        [[
            2.5162, 1.7501, -1.7802, 1.7500, 1.6500, 3.3900,
            1.6616 + 0.13603681398218053 * 4 - np.pi / 2
        ],
         [
             2.4567, 1.6357, -8.9594, 1.5400, 1.5700, 4.0100,
             1.5216 + 0.13603681398218053 * 4 - np.pi / 2
         ],
         [
             -0.5558, 1.3033, -28.2967, 1.4700, 1.4800, 2.2300,
             4.7116 + 0.13603681398218053 * 4 - np.pi / 2
         ],
         [
             21.8230, 1.7361, -26.6690, 1.5600, 1.4000, 3.4800,
             4.8316 + 0.13603681398218053 * 4 - np.pi / 2
         ],
         [
             8.1621, 1.6218, -31.3198, 1.7400, 1.4800, 3.7700,
             0.3516 + 0.13603681398218053 * 4 - np.pi / 2
         ]])
wuyuefeng's avatar
wuyuefeng committed
839
    boxes_flip_vert = boxes.clone()
liyinhao's avatar
liyinhao committed
840
841
842
843
844
845
    points = boxes_flip_vert.flip('vertical', points)
    expected_points = torch.tensor([[-0.6762, 1.4658, -1.2559],
                                    [-0.8784, 1.3857, -4.7814],
                                    [0.2517, 0.9697, -6.7053],
                                    [-0.5520, 0.5265, -0.6533],
                                    [0.5358, 1.4741, -4.5870]])
846
847
848
849
850
851
852

    yaw_normalized_tensor = boxes_flip_vert.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    expected_tensor[:, -1:] = limit_period(
        expected_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor, 1e-4)
liyinhao's avatar
liyinhao committed
853
    assert torch.allclose(points, expected_points)
wuyuefeng's avatar
wuyuefeng committed
854

zhangwenwei's avatar
zhangwenwei committed
855
    # test box rotation
856
    # with input torch.Tensor points and angle
zhangwenwei's avatar
zhangwenwei committed
857
    expected_tensor = Box3DMode.convert(
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
        torch.tensor([[
            1.4225, -2.7344, -1.7501, 1.7500, 3.3900, 1.6500,
            1.7976 + 0.13603681398218053 * 2 - np.pi
        ],
                      [
                          8.5435, -3.6491, -1.6357, 1.5400, 4.0100, 1.5700,
                          1.6576 + 0.13603681398218053 * 2 - np.pi
                      ],
                      [
                          28.1106, -3.2869, -1.3033, 1.4700, 2.2300, 1.4800,
                          4.8476 + 0.13603681398218053 * 2 - np.pi
                      ],
                      [
                          23.4630, -25.2382, -1.7361, 1.5600, 3.4800, 1.4000,
                          4.9676 + 0.13603681398218053 * 2 - np.pi
                      ],
                      [
                          29.9235, -12.3342, -1.6218, 1.7400, 3.7700, 1.4800,
                          0.4876 + 0.13603681398218053 * 2 - np.pi
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
liyinhao's avatar
liyinhao committed
878
879
880
881
882
883
884
885
886
    points, rot_mat_T = boxes.rotate(torch.tensor(0.13603681398218053), points)
    expected_points = torch.tensor([[-0.8403, 1.4658, -1.1526],
                                    [-1.5187, 1.3857, -4.6181],
                                    [-0.6600, 0.9697, -6.6775],
                                    [-0.6355, 0.5265, -0.5724],
                                    [-0.0912, 1.4741, -4.6173]])
    expected_rot_mat_T = torch.tensor([[0.9908, 0.0000, -0.1356],
                                       [0.0000, 1.0000, 0.0000],
                                       [0.1356, 0.0000, 0.9908]])
887
888
889
890
891
892
    yaw_normalized_tensor = boxes.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    expected_tensor[:, -1:] = limit_period(
        expected_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
893
894
895
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)

896
897
898
899
900
901
    # with input torch.Tensor points and rotation matrix
    points, rot_mat_T = boxes.rotate(
        torch.tensor(-0.13603681398218053), points)  # back
    rot_mat = np.array([[0.99076125, 0., -0.13561762], [0., 1., 0.],
                        [0.13561762, 0., 0.99076125]])
    points, rot_mat_T = boxes.rotate(rot_mat, points)
902
903
904
905
    yaw_normalized_tensor = boxes.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor, 1e-3)
906
907
908
909
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)

    # with input np.ndarray points and angle
liyinhao's avatar
liyinhao committed
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
    points_np = np.array([[0.6762, 1.2559, -1.4658, 2.5359],
                          [0.8784, 4.7814, -1.3857, 0.7167],
                          [-0.2517, 6.7053, -0.9697, 0.5599],
                          [0.5520, 0.6533, -0.5265, 1.0032],
                          [-0.5358, 4.5870, -1.4741, 0.0556]])
    points_np, rot_mat_T_np = boxes.rotate(
        torch.tensor(0.13603681398218053), points_np)
    expected_points_np = np.array([[0.4712, 1.2559, -1.5440, 2.5359],
                                   [0.6824, 4.7814, -1.4920, 0.7167],
                                   [-0.3809, 6.7053, -0.9266, 0.5599],
                                   [0.4755, 0.6533, -0.5965, 1.0032],
                                   [-0.7308, 4.5870, -1.3878, 0.0556]])
    expected_rot_mat_T_np = np.array([[0.9908, 0.0000, -0.1356],
                                      [0.0000, 1.0000, 0.0000],
                                      [0.1356, 0.0000, 0.9908]])

    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)
zhangwenwei's avatar
zhangwenwei committed
928

929
930
931
932
933
934
935
936
937
    # with input CameraPoints and rotation matrix
    points_np, rot_mat_T_np = boxes.rotate(
        torch.tensor(-0.13603681398218053), points_np)
    camera_points = CameraPoints(points_np, points_dim=4)
    camera_points, rot_mat_T_np = boxes.rotate(rot_mat, camera_points)
    points_np = camera_points.tensor.numpy()
    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)

zhangwenwei's avatar
zhangwenwei committed
938
939
940
941
    # test box scaling
    expected_tensor = Box3DMode.convert(
        torch.tensor([[
            1.0443488, -2.9183323, -1.7599131, 1.7597977, 3.4089797, 1.6592377,
942
            1.9336663 - np.pi
zhangwenwei's avatar
zhangwenwei committed
943
944
945
        ],
                      [
                          8.014273, -4.8007393, -1.6448704, 1.5486219,
946
                          4.0324507, 1.57879, 1.7936664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
947
948
949
                      ],
                      [
                          27.558605, -7.1084175, -1.310622, 1.4782301,
950
                          2.242485, 1.488286, 4.9836664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
951
952
953
                      ],
                      [
                          19.934517, -28.344835, -1.7457767, 1.5687338,
954
                          3.4994833, 1.4078381, 5.1036663 - np.pi
zhangwenwei's avatar
zhangwenwei committed
955
956
957
                      ],
                      [
                          28.130915, -16.369587, -1.6308585, 1.7497417,
958
                          3.791107, 1.488286, 0.6236664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
959
960
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
    boxes.scale(1.00559866335275)
961
962
963
964
965
966
    yaw_normalized_tensor = boxes.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    expected_tensor[:, -1:] = limit_period(
        expected_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor)
zhangwenwei's avatar
zhangwenwei committed
967
968
969
970
971

    # test box translation
    expected_tensor = Box3DMode.convert(
        torch.tensor([[
            1.1281544, -3.0507944, -1.9169292, 1.7597977, 3.4089797, 1.6592377,
972
            1.9336663 - np.pi
zhangwenwei's avatar
zhangwenwei committed
973
974
975
        ],
                      [
                          8.098079, -4.9332013, -1.8018866, 1.5486219,
976
                          4.0324507, 1.57879, 1.7936664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
977
978
979
                      ],
                      [
                          27.64241, -7.2408795, -1.4676381, 1.4782301,
980
                          2.242485, 1.488286, 4.9836664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
981
982
983
                      ],
                      [
                          20.018322, -28.477297, -1.9027928, 1.5687338,
984
                          3.4994833, 1.4078381, 5.1036663 - np.pi
zhangwenwei's avatar
zhangwenwei committed
985
986
987
                      ],
                      [
                          28.21472, -16.502048, -1.7878747, 1.7497417,
988
                          3.791107, 1.488286, 0.6236664 - np.pi
zhangwenwei's avatar
zhangwenwei committed
989
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
zhangwenwei's avatar
zhangwenwei committed
990
    boxes.translate(torch.tensor([0.13246193, 0.15701613, 0.0838056]))
991
992
993
994
995
996
    yaw_normalized_tensor = boxes.tensor.clone()
    yaw_normalized_tensor[:, -1:] = limit_period(
        yaw_normalized_tensor[:, -1:], period=np.pi * 2)
    expected_tensor[:, -1:] = limit_period(
        expected_tensor[:, -1:], period=np.pi * 2)
    assert torch.allclose(yaw_normalized_tensor, expected_tensor)
zhangwenwei's avatar
zhangwenwei committed
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

    # test bbox in_range_bev
    expected_tensor = torch.tensor([1, 1, 1, 1, 1], dtype=torch.bool)
    mask = boxes.in_range_bev([0., -40., 70.4, 40.])
    assert (mask == expected_tensor).all()
    mask = boxes.nonempty()
    assert (mask == expected_tensor).all()

    # test bbox in_range
    expected_tensor = torch.tensor([1, 1, 0, 0, 0], dtype=torch.bool)
    mask = boxes.in_range_3d([-2, -5, 0, 20, 2, 22])
    assert (mask == expected_tensor).all()

1010
1011
1012
1013
1014
1015
1016
1017
    expected_tensor = torch.tensor(
        [[3.0508, 1.1282, 1.7598, 3.4090, -5.9203],
         [4.9332, 8.0981, 1.5486, 4.0325, -6.0603],
         [7.2409, 27.6424, 1.4782, 2.2425, -2.8703],
         [28.4773, 20.0183, 1.5687, 3.4995, -2.7503],
         [16.5020, 28.2147, 1.7497, 3.7911, -0.9471]])
    assert torch.allclose(boxes.bev, expected_tensor, atol=1e-3)

zhangwenwei's avatar
zhangwenwei committed
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
    # test properties
    assert torch.allclose(boxes.bottom_center, boxes.tensor[:, :3])
    expected_tensor = (
        boxes.tensor[:, :3] - boxes.tensor[:, 3:6] *
        (torch.tensor([0.5, 1.0, 0.5]) - torch.tensor([0.5, 0.5, 0.5])))
    assert torch.allclose(boxes.gravity_center, expected_tensor)

    boxes.limit_yaw()
    assert (boxes.tensor[:, 6] <= np.pi / 2).all()
    assert (boxes.tensor[:, 6] >= -np.pi / 2).all()

    Box3DMode.convert(boxes, Box3DMode.LIDAR, Box3DMode.LIDAR)
1030
1031
    expected_tensor = boxes.tensor.clone()
    assert torch.allclose(expected_tensor, boxes.tensor)
zhangwenwei's avatar
zhangwenwei committed
1032
1033
1034
1035

    boxes.flip()
    boxes.flip()
    boxes.limit_yaw()
1036
    assert torch.allclose(expected_tensor, boxes.tensor)
zhangwenwei's avatar
zhangwenwei committed
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

    # test nearest_bev
    # BEV box in lidar coordinates (x, y)
    lidar_expected_tensor = torch.tensor(
        [[-0.5763, -3.9307, 2.8326, -2.1709],
         [6.0819, -5.7075, 10.1143, -4.1589],
         [26.5212, -7.9800, 28.7637, -6.5018],
         [18.2686, -29.2617, 21.7681, -27.6929],
         [27.3398, -18.3976, 29.0896, -14.6065]])
    # BEV box in camera coordinate (-y, x)
    expected_tensor = lidar_expected_tensor.clone()
    expected_tensor[:, 0::2] = -lidar_expected_tensor[:, [3, 1]]
    expected_tensor[:, 1::2] = lidar_expected_tensor[:, 0::2]
    assert torch.allclose(
wuyuefeng's avatar
wuyuefeng committed
1051
        boxes.nearest_bev, expected_tensor, rtol=1e-4, atol=1e-7)
zhangwenwei's avatar
zhangwenwei committed
1052

1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
    expected_tensor = torch.tensor([[[2.8332e+00, 2.5769e-01, -7.7767e-01],
                                     [1.6232e+00, 2.5769e-01, 2.4093e+00],
                                     [1.6232e+00, 1.9169e+00, 2.4093e+00],
                                     [2.8332e+00, 1.9169e+00, -7.7767e-01],
                                     [4.4784e+00, 2.5769e-01, -1.5302e-01],
                                     [3.2684e+00, 2.5769e-01, 3.0340e+00],
                                     [3.2684e+00, 1.9169e+00, 3.0340e+00],
                                     [4.4784e+00, 1.9169e+00, -1.5302e-01]],
                                    [[4.6237e+00, 2.2310e-01, 5.9606e+00],
                                     [3.7324e+00, 2.2310e-01, 9.8933e+00],
                                     [3.7324e+00, 1.8019e+00, 9.8933e+00],
                                     [4.6237e+00, 1.8019e+00, 5.9606e+00],
                                     [6.1340e+00, 2.2310e-01, 6.3029e+00],
                                     [5.2427e+00, 2.2310e-01, 1.0236e+01],
                                     [5.2427e+00, 1.8019e+00, 1.0236e+01],
                                     [6.1340e+00, 1.8019e+00, 6.3029e+00]],
                                    [[6.8292e+00, -2.0648e-02, 2.6364e+01],
                                     [6.2283e+00, -2.0648e-02, 2.8525e+01],
                                     [6.2283e+00, 1.4676e+00, 2.8525e+01],
                                     [6.8292e+00, 1.4676e+00, 2.6364e+01],
                                     [8.2534e+00, -2.0648e-02, 2.6760e+01],
                                     [7.6525e+00, -2.0648e-02, 2.8921e+01],
                                     [7.6525e+00, 1.4676e+00, 2.8921e+01],
                                     [8.2534e+00, 1.4676e+00, 2.6760e+01]],
                                    [[2.8420e+01, 4.9495e-01, 1.8102e+01],
                                     [2.7085e+01, 4.9495e-01, 2.1337e+01],
                                     [2.7085e+01, 1.9028e+00, 2.1337e+01],
                                     [2.8420e+01, 1.9028e+00, 1.8102e+01],
                                     [2.9870e+01, 4.9495e-01, 1.8700e+01],
                                     [2.8535e+01, 4.9495e-01, 2.1935e+01],
                                     [2.8535e+01, 1.9028e+00, 2.1935e+01],
                                     [2.9870e+01, 1.9028e+00, 1.8700e+01]],
                                    [[1.4452e+01, 2.9959e-01, 2.7818e+01],
                                     [1.7530e+01, 2.9959e-01, 3.0032e+01],
                                     [1.7530e+01, 1.7879e+00, 3.0032e+01],
                                     [1.4452e+01, 1.7879e+00, 2.7818e+01],
                                     [1.5474e+01, 2.9959e-01, 2.6398e+01],
                                     [1.8552e+01, 2.9959e-01, 2.8612e+01],
                                     [1.8552e+01, 1.7879e+00, 2.8612e+01],
                                     [1.5474e+01, 1.7879e+00, 2.6398e+01]]])

    assert torch.allclose(boxes.corners, expected_tensor, rtol=1e-3, atol=1e-4)

    th_boxes = torch.tensor(
        [[
            28.29669987, -0.5557558, -1.30332506, 1.47000003, 2.23000002,
            1.48000002, -1.57000005
        ],
         [
             26.66901946, 21.82302134, -1.73605708, 1.55999994, 3.48000002,
             1.39999998, -1.69000006
         ],
         [
             31.31977974, 8.16214412, -1.62177875, 1.74000001, 3.76999998,
             1.48000002, 2.78999996
         ]],
        dtype=torch.float32)
1110

1111
1112
1113
1114
1115
1116
1117
1118
1119
    # test init with a given origin
    boxes_origin_given = CameraInstance3DBoxes(
        th_boxes.clone(), box_dim=7, origin=(0.5, 0.5, 0.5))
    expected_tensor = th_boxes.clone()
    expected_tensor[:, :3] = th_boxes[:, :3] + th_boxes[:, 3:6] * (
        th_boxes.new_tensor((0.5, 1.0, 0.5)) - th_boxes.new_tensor(
            (0.5, 0.5, 0.5)))
    assert torch.allclose(boxes_origin_given.tensor, expected_tensor)

1120
1121

def test_boxes3d_overlaps():
1122
1123
1124
1125
1126
    """Test the iou calculation of boxes in different modes.

    ComandLine:
        xdoctest tests/test_box3d.py::test_boxes3d_overlaps zero
    """
1127
1128
1129
1130
1131
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    # Test LiDAR boxes 3D overlaps
    boxes1_tensor = torch.tensor(
1132
1133
1134
1135
        [[1.8, -2.5, -1.8, 1.75, 3.39, 1.65, -1.6615927],
         [8.9, -2.5, -1.6, 1.54, 4.01, 1.57, -1.5215927],
         [28.3, 0.5, -1.3, 1.47, 2.23, 1.48, -4.7115927],
         [31.3, -8.2, -1.6, 1.74, 3.77, 1.48, -0.35]],
1136
1137
1138
        device='cuda')
    boxes1 = LiDARInstance3DBoxes(boxes1_tensor)

1139
1140
1141
1142
    boxes2_tensor = torch.tensor([[1.2, -3.0, -1.9, 1.8, 3.4, 1.7, -1.9],
                                  [8.1, -2.9, -1.8, 1.5, 4.1, 1.6, -1.8],
                                  [31.3, -8.2, -1.6, 1.74, 3.77, 1.48, -0.35],
                                  [20.1, -28.5, -1.9, 1.6, 3.5, 1.4, -5.1]],
1143
1144
1145
                                 device='cuda')
    boxes2 = LiDARInstance3DBoxes(boxes2_tensor)

liyinhao's avatar
liyinhao committed
1146
    expected_iou_tensor = torch.tensor(
1147
1148
1149
        [[0.3710, 0.0000, 0.0000, 0.0000], [0.0000, 0.3322, 0.0000, 0.0000],
         [0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 1.0000, 0.0000]],
        device='cuda')
liyinhao's avatar
liyinhao committed
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
    overlaps_3d_iou = boxes1.overlaps(boxes1, boxes2)
    assert torch.allclose(
        expected_iou_tensor, overlaps_3d_iou, rtol=1e-4, atol=1e-7)

    expected_iof_tensor = torch.tensor(
        [[0.5582, 0.0000, 0.0000, 0.0000], [0.0000, 0.5025, 0.0000, 0.0000],
         [0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 1.0000, 0.0000]],
        device='cuda')
    overlaps_3d_iof = boxes1.overlaps(boxes1, boxes2, mode='iof')
    assert torch.allclose(
        expected_iof_tensor, overlaps_3d_iof, rtol=1e-4, atol=1e-7)
1161

liyinhao's avatar
liyinhao committed
1162
1163
1164
1165
1166
    empty_boxes = []
    boxes3 = LiDARInstance3DBoxes(empty_boxes)
    overlaps_3d_empty = boxes1.overlaps(boxes3, boxes2)
    assert overlaps_3d_empty.shape[0] == 0
    assert overlaps_3d_empty.shape[1] == 4
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
    # Test camera boxes 3D overlaps
    cam_boxes1_tensor = Box3DMode.convert(boxes1_tensor, Box3DMode.LIDAR,
                                          Box3DMode.CAM)
    cam_boxes1 = CameraInstance3DBoxes(cam_boxes1_tensor)

    cam_boxes2_tensor = Box3DMode.convert(boxes2_tensor, Box3DMode.LIDAR,
                                          Box3DMode.CAM)
    cam_boxes2 = CameraInstance3DBoxes(cam_boxes2_tensor)
    cam_overlaps_3d = cam_boxes1.overlaps(cam_boxes1, cam_boxes2)

1177
1178
    # same boxes under different coordinates should have the same iou
    assert torch.allclose(
liyinhao's avatar
liyinhao committed
1179
1180
        expected_iou_tensor, cam_overlaps_3d, rtol=1e-4, atol=1e-7)
    assert torch.allclose(cam_overlaps_3d, overlaps_3d_iou)
1181
1182
1183
1184
1185

    with pytest.raises(AssertionError):
        cam_boxes1.overlaps(cam_boxes1, boxes1)
    with pytest.raises(AssertionError):
        boxes1.overlaps(cam_boxes1, boxes1)
wuyuefeng's avatar
wuyuefeng committed
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233


def test_depth_boxes3d():
    # test empty initialization
    empty_boxes = []
    boxes = DepthInstance3DBoxes(empty_boxes)
    assert boxes.tensor.shape[0] == 0
    assert boxes.tensor.shape[1] == 7

    # Test init with numpy array
    np_boxes = np.array(
        [[1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601],
         [2.3262, 3.3065, --0.44255, 0.8234, 0.5325, 1.0099, 2.9971]],
        dtype=np.float32)
    boxes_1 = DepthInstance3DBoxes(np_boxes)
    assert torch.allclose(boxes_1.tensor, torch.from_numpy(np_boxes))

    # test properties

    assert boxes_1.volume.size(0) == 2
    assert (boxes_1.center == boxes_1.bottom_center).all()
    expected_tensor = torch.tensor([[1.4856, 2.5299, -0.1093],
                                    [2.3262, 3.3065, 0.9475]])
    assert torch.allclose(boxes_1.gravity_center, expected_tensor)
    expected_tensor = torch.tensor([[1.4856, 2.5299, 0.9385, 2.1404, 3.0601],
                                    [2.3262, 3.3065, 0.8234, 0.5325, 2.9971]])
    assert torch.allclose(boxes_1.bev, expected_tensor)
    expected_tensor = torch.tensor([[1.0164, 1.4597, 1.9548, 3.6001],
                                    [1.9145, 3.0402, 2.7379, 3.5728]])
    assert torch.allclose(boxes_1.nearest_bev, expected_tensor, 1e-4)
    assert repr(boxes) == (
        'DepthInstance3DBoxes(\n    tensor([], size=(0, 7)))')

    # test init with torch.Tensor
    th_boxes = torch.tensor(
        [[2.4593, 2.5870, -0.4321, 0.8597, 0.6193, 1.0204, 3.0693],
         [1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601]],
        dtype=torch.float32)
    boxes_2 = DepthInstance3DBoxes(th_boxes)
    assert torch.allclose(boxes_2.tensor, th_boxes)

    # test clone/to/device
    boxes_2 = boxes_2.clone()
    boxes_1 = boxes_1.to(boxes_2.device)

    # test box concatenation
    expected_tensor = torch.tensor(
        [[1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601],
1234
         [2.3262, 3.3065, 0.44255, 0.8234, 0.5325, 1.0099, 2.9971],
wuyuefeng's avatar
wuyuefeng committed
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
         [2.4593, 2.5870, -0.4321, 0.8597, 0.6193, 1.0204, 3.0693],
         [1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601]])
    boxes = DepthInstance3DBoxes.cat([boxes_1, boxes_2])
    assert torch.allclose(boxes.tensor, expected_tensor)
    # concatenate empty list
    empty_boxes = DepthInstance3DBoxes.cat([])
    assert empty_boxes.tensor.shape[0] == 0
    assert empty_boxes.tensor.shape[-1] == 7

    # test box flip
liyinhao's avatar
liyinhao committed
1245
1246
1247
1248
1249
    points = torch.tensor([[0.6762, 1.2559, -1.4658, 2.5359],
                           [0.8784, 4.7814, -1.3857, 0.7167],
                           [-0.2517, 6.7053, -0.9697, 0.5599],
                           [0.5520, 0.6533, -0.5265, 1.0032],
                           [-0.5358, 4.5870, -1.4741, 0.0556]])
wuyuefeng's avatar
wuyuefeng committed
1250
1251
1252
1253
1254
    expected_tensor = torch.tensor(
        [[-1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 0.0815],
         [-2.3262, 3.3065, 0.4426, 0.8234, 0.5325, 1.0099, 0.1445],
         [-2.4593, 2.5870, -0.4321, 0.8597, 0.6193, 1.0204, 0.0723],
         [-1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 0.0815]])
liyinhao's avatar
liyinhao committed
1255
1256
1257
1258
1259
1260
    points = boxes.flip(bev_direction='horizontal', points=points)
    expected_points = torch.tensor([[-0.6762, 1.2559, -1.4658, 2.5359],
                                    [-0.8784, 4.7814, -1.3857, 0.7167],
                                    [0.2517, 6.7053, -0.9697, 0.5599],
                                    [-0.5520, 0.6533, -0.5265, 1.0032],
                                    [0.5358, 4.5870, -1.4741, 0.0556]])
wuyuefeng's avatar
wuyuefeng committed
1261
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
1262
    assert torch.allclose(points, expected_points)
wuyuefeng's avatar
wuyuefeng committed
1263
1264
1265
1266
1267
    expected_tensor = torch.tensor(
        [[-1.4856, -2.5299, -0.5570, 0.9385, 2.1404, 0.8954, -0.0815],
         [-2.3262, -3.3065, 0.4426, 0.8234, 0.5325, 1.0099, -0.1445],
         [-2.4593, -2.5870, -0.4321, 0.8597, 0.6193, 1.0204, -0.0723],
         [-1.4856, -2.5299, -0.5570, 0.9385, 2.1404, 0.8954, -0.0815]])
liyinhao's avatar
liyinhao committed
1268
1269
1270
1271
1272
1273
    points = boxes.flip(bev_direction='vertical', points=points)
    expected_points = torch.tensor([[-0.6762, -1.2559, -1.4658, 2.5359],
                                    [-0.8784, -4.7814, -1.3857, 0.7167],
                                    [0.2517, -6.7053, -0.9697, 0.5599],
                                    [-0.5520, -0.6533, -0.5265, 1.0032],
                                    [0.5358, -4.5870, -1.4741, 0.0556]])
wuyuefeng's avatar
wuyuefeng committed
1274
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
1275
    assert torch.allclose(points, expected_points)
1276

wuyuefeng's avatar
wuyuefeng committed
1277
    # test box rotation
1278
    # with input torch.Tensor points and angle
wuyuefeng's avatar
wuyuefeng committed
1279
1280
    boxes_rot = boxes.clone()
    expected_tensor = torch.tensor(
liyinhao's avatar
liyinhao committed
1281
1282
1283
1284
        [[-1.5434, -2.4951, -0.5570, 0.9385, 2.1404, 0.8954, -0.0585],
         [-2.4016, -3.2521, 0.4426, 0.8234, 0.5325, 1.0099, -0.1215],
         [-2.5181, -2.5298, -0.4321, 0.8597, 0.6193, 1.0204, -0.0493],
         [-1.5434, -2.4951, -0.5570, 0.9385, 2.1404, 0.8954, -0.0585]])
1285
    expected_tensor[:, -1:] -= 0.022998953275003075 * 2
1286
    points, rot_mat_T = boxes_rot.rotate(-0.022998953275003075, points)
liyinhao's avatar
liyinhao committed
1287
1288
1289
1290
1291
1292
1293
1294
    expected_points = torch.tensor([[-0.7049, -1.2400, -1.4658, 2.5359],
                                    [-0.9881, -4.7599, -1.3857, 0.7167],
                                    [0.0974, -6.7093, -0.9697, 0.5599],
                                    [-0.5669, -0.6404, -0.5265, 1.0032],
                                    [0.4302, -4.5981, -1.4741, 0.0556]])
    expected_rot_mat_T = torch.tensor([[0.9997, -0.0230, 0.0000],
                                       [0.0230, 0.9997, 0.0000],
                                       [0.0000, 0.0000, 1.0000]])
wuyuefeng's avatar
wuyuefeng committed
1295
    assert torch.allclose(boxes_rot.tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
1296
    assert torch.allclose(points, expected_points, 1e-3)
1297
1298
1299
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)

    # with input torch.Tensor points and rotation matrix
1300
    points, rot_mat_T = boxes.rotate(-0.022998953275003075, points)  # back
1301
1302
1303
    rot_mat = np.array([[0.99973554, 0.02299693, 0.],
                        [-0.02299693, 0.99973554, 0.], [0., 0., 1.]])
    points, rot_mat_T = boxes.rotate(rot_mat, points)
1304
1305
1306
    expected_rot_mat_T = torch.tensor([[0.99973554, 0.02299693, 0.0000],
                                       [-0.02299693, 0.99973554, 0.0000],
                                       [0.0000, 0.0000, 1.0000]])
1307
1308
1309
    assert torch.allclose(boxes_rot.tensor, expected_tensor, 1e-3)
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)
liyinhao's avatar
liyinhao committed
1310

1311
    # with input np.ndarray points and angle
liyinhao's avatar
liyinhao committed
1312
1313
1314
1315
1316
    points_np = np.array([[0.6762, 1.2559, -1.4658, 2.5359],
                          [0.8784, 4.7814, -1.3857, 0.7167],
                          [-0.2517, 6.7053, -0.9697, 0.5599],
                          [0.5520, 0.6533, -0.5265, 1.0032],
                          [-0.5358, 4.5870, -1.4741, 0.0556]])
1317
    points_np, rot_mat_T_np = boxes.rotate(-0.022998953275003075, points_np)
liyinhao's avatar
liyinhao committed
1318
1319
1320
1321
1322
    expected_points_np = np.array([[0.7049, 1.2400, -1.4658, 2.5359],
                                   [0.9881, 4.7599, -1.3857, 0.7167],
                                   [-0.0974, 6.7093, -0.9697, 0.5599],
                                   [0.5669, 0.6404, -0.5265, 1.0032],
                                   [-0.4302, 4.5981, -1.4741, 0.0556]])
1323
1324
    expected_rot_mat_T_np = np.array([[0.99973554, -0.02299693, 0.0000],
                                      [0.02299693, 0.99973554, 0.0000],
liyinhao's avatar
liyinhao committed
1325
1326
1327
1328
1329
1330
                                      [0.0000, 0.0000, 1.0000]])
    expected_tensor = torch.tensor(
        [[-1.5434, -2.4951, -0.5570, 0.9385, 2.1404, 0.8954, -0.0585],
         [-2.4016, -3.2521, 0.4426, 0.8234, 0.5325, 1.0099, -0.1215],
         [-2.5181, -2.5298, -0.4321, 0.8597, 0.6193, 1.0204, -0.0493],
         [-1.5434, -2.4951, -0.5570, 0.9385, 2.1404, 0.8954, -0.0585]])
1331
    expected_tensor[:, -1:] -= 0.022998953275003075 * 2
liyinhao's avatar
liyinhao committed
1332
1333
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
    assert np.allclose(points_np, expected_points_np, 1e-3)
1334
1335
1336
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)

    # with input DepthPoints and rotation matrix
1337
    points_np, rot_mat_T_np = boxes.rotate(-0.022998953275003075, points_np)
1338
1339
1340
    depth_points = DepthPoints(points_np, points_dim=4)
    depth_points, rot_mat_T_np = boxes.rotate(rot_mat, depth_points)
    points_np = depth_points.tensor.numpy()
1341
    expected_rot_mat_T_np = expected_rot_mat_T_np.T
1342
1343
1344
1345
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)

1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
    expected_tensor = torch.tensor([[[-2.1217, -3.5105, -0.5570],
                                     [-2.1217, -3.5105, 0.3384],
                                     [-1.8985, -1.3818, 0.3384],
                                     [-1.8985, -1.3818, -0.5570],
                                     [-1.1883, -3.6084, -0.5570],
                                     [-1.1883, -3.6084, 0.3384],
                                     [-0.9651, -1.4796, 0.3384],
                                     [-0.9651, -1.4796, -0.5570]],
                                    [[-2.8519, -3.4460, 0.4426],
                                     [-2.8519, -3.4460, 1.4525],
                                     [-2.7632, -2.9210, 1.4525],
                                     [-2.7632, -2.9210, 0.4426],
                                     [-2.0401, -3.5833, 0.4426],
                                     [-2.0401, -3.5833, 1.4525],
                                     [-1.9513, -3.0582, 1.4525],
                                     [-1.9513, -3.0582, 0.4426]],
                                    [[-2.9755, -2.7971, -0.4321],
                                     [-2.9755, -2.7971, 0.5883],
                                     [-2.9166, -2.1806, 0.5883],
                                     [-2.9166, -2.1806, -0.4321],
                                     [-2.1197, -2.8789, -0.4321],
                                     [-2.1197, -2.8789, 0.5883],
                                     [-2.0608, -2.2624, 0.5883],
                                     [-2.0608, -2.2624, -0.4321]],
                                    [[-2.1217, -3.5105, -0.5570],
                                     [-2.1217, -3.5105, 0.3384],
                                     [-1.8985, -1.3818, 0.3384],
                                     [-1.8985, -1.3818, -0.5570],
                                     [-1.1883, -3.6084, -0.5570],
                                     [-1.1883, -3.6084, 0.3384],
                                     [-0.9651, -1.4796, 0.3384],
                                     [-0.9651, -1.4796, -0.5570]]])

    assert torch.allclose(boxes.corners, expected_tensor, 1e-3)

wuyuefeng's avatar
wuyuefeng committed
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
    th_boxes = torch.tensor(
        [[0.61211395, 0.8129094, 0.10563634, 1.497534, 0.16927195, 0.27956772],
         [1.430009, 0.49797538, 0.9382923, 0.07694054, 0.9312509, 1.8919173]],
        dtype=torch.float32)
    boxes = DepthInstance3DBoxes(th_boxes, box_dim=6, with_yaw=False)
    expected_tensor = torch.tensor([[
        0.64884546, 0.78390356, 0.10563634, 1.50373348, 0.23795205, 0.27956772,
        0
    ],
                                    [
                                        1.45139421, 0.43169443, 0.93829232,
                                        0.11967964, 0.93380373, 1.89191735, 0
                                    ]])
    boxes_3 = boxes.clone()
    boxes_3.rotate(-0.04599790655000615)
    assert torch.allclose(boxes_3.tensor, expected_tensor)
    boxes.rotate(torch.tensor(-0.04599790655000615))
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test bbox in_range_bev
    expected_tensor = torch.tensor([1, 1], dtype=torch.bool)
    mask = boxes.in_range_bev([0., -40., 70.4, 40.])
    assert (mask == expected_tensor).all()
    mask = boxes.nonempty()
    assert (mask == expected_tensor).all()

1407
1408
1409
1410
1411
    # test bbox in_range
    expected_tensor = torch.tensor([0, 1], dtype=torch.bool)
    mask = boxes.in_range_3d([1, 0, -2, 2, 1, 5])
    assert (mask == expected_tensor).all()

wuyuefeng's avatar
wuyuefeng committed
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
    expected_tensor = torch.tensor([[[-0.1030, 0.6649, 0.1056],
                                     [-0.1030, 0.6649, 0.3852],
                                     [-0.1030, 0.9029, 0.3852],
                                     [-0.1030, 0.9029, 0.1056],
                                     [1.4007, 0.6649, 0.1056],
                                     [1.4007, 0.6649, 0.3852],
                                     [1.4007, 0.9029, 0.3852],
                                     [1.4007, 0.9029, 0.1056]],
                                    [[1.3916, -0.0352, 0.9383],
                                     [1.3916, -0.0352, 2.8302],
                                     [1.3916, 0.8986, 2.8302],
                                     [1.3916, 0.8986, 0.9383],
                                     [1.5112, -0.0352, 0.9383],
                                     [1.5112, -0.0352, 2.8302],
                                     [1.5112, 0.8986, 2.8302],
                                     [1.5112, 0.8986, 0.9383]]])
1428
    assert torch.allclose(boxes.corners, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
1429
1430
1431

    # test points in boxes
    if torch.cuda.is_available():
1432
        box_idxs_of_pts = boxes.points_in_boxes_all(points.cuda())
liyinhao's avatar
liyinhao committed
1433
1434
1435
1436
1437
1438
        expected_idxs_of_pts = torch.tensor(
            [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]],
            device='cuda:0',
            dtype=torch.int32)
        assert torch.all(box_idxs_of_pts == expected_idxs_of_pts)

encore-zhou's avatar
encore-zhou committed
1439
1440
    # test get_surface_line_center
    boxes = torch.tensor(
1441
1442
        [[0.3294, 1.0359, 0.1171, 1.0822, 1.1247, 1.3721, -0.4916],
         [-2.4630, -2.6324, -0.1616, 0.9202, 1.7896, 0.1992, -0.3185]])
encore-zhou's avatar
encore-zhou committed
1443
1444
1445
    boxes = DepthInstance3DBoxes(
        boxes, box_dim=boxes.shape[-1], with_yaw=True, origin=(0.5, 0.5, 0.5))
    surface_center, line_center = boxes.get_surface_line_center()
1446

encore-zhou's avatar
encore-zhou committed
1447
1448
1449
    expected_surface_center = torch.tensor([[0.3294, 1.0359, 0.8031],
                                            [0.3294, 1.0359, -0.5689],
                                            [0.5949, 1.5317, 0.1171],
1450
                                            [0.1533, 0.5018, 0.1171],
encore-zhou's avatar
encore-zhou committed
1451
                                            [0.8064, 0.7805, 0.1171],
1452
1453
1454
1455
1456
1457
                                            [-0.1845, 1.2053, 0.1171],
                                            [-2.4630, -2.6324, -0.0620],
                                            [-2.4630, -2.6324, -0.2612],
                                            [-2.0406, -1.8436, -0.1616],
                                            [-2.7432, -3.4822, -0.1616],
                                            [-2.0574, -2.8496, -0.1616],
encore-zhou's avatar
encore-zhou committed
1458
1459
1460
                                            [-2.9000, -2.4883, -0.1616]])

    expected_line_center = torch.tensor([[0.8064, 0.7805, 0.8031],
1461
                                         [-0.1845, 1.2053, 0.8031],
encore-zhou's avatar
encore-zhou committed
1462
                                         [0.5949, 1.5317, 0.8031],
1463
                                         [0.1533, 0.5018, 0.8031],
encore-zhou's avatar
encore-zhou committed
1464
                                         [0.8064, 0.7805, -0.5689],
1465
                                         [-0.1845, 1.2053, -0.5689],
encore-zhou's avatar
encore-zhou committed
1466
                                         [0.5949, 1.5317, -0.5689],
1467
                                         [0.1533, 0.5018, -0.5689],
encore-zhou's avatar
encore-zhou committed
1468
                                         [1.0719, 1.2762, 0.1171],
1469
                                         [0.6672, 0.3324, 0.1171],
encore-zhou's avatar
encore-zhou committed
1470
                                         [0.1178, 1.7871, 0.1171],
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
                                         [-0.3606, 0.6713, 0.1171],
                                         [-2.0574, -2.8496, -0.0620],
                                         [-2.9000, -2.4883, -0.0620],
                                         [-2.0406, -1.8436, -0.0620],
                                         [-2.7432, -3.4822, -0.0620],
                                         [-2.0574, -2.8496, -0.2612],
                                         [-2.9000, -2.4883, -0.2612],
                                         [-2.0406, -1.8436, -0.2612],
                                         [-2.7432, -3.4822, -0.2612],
                                         [-1.6350, -2.0607, -0.1616],
                                         [-2.3062, -3.6263, -0.1616],
                                         [-2.4462, -1.6264, -0.1616],
encore-zhou's avatar
encore-zhou committed
1483
1484
1485
1486
1487
                                         [-3.1802, -3.3381, -0.1616]])

    assert torch.allclose(surface_center, expected_surface_center, atol=1e-04)
    assert torch.allclose(line_center, expected_line_center, atol=1e-04)

liyinhao's avatar
liyinhao committed
1488
1489

def test_rotation_3d_in_axis():
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
    # clockwise
    points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
                            [-0.4599, -0.0471, 1.8433],
                            [-0.4599, 0.0471, 1.8433]],
                           [[-0.2555, -0.2683, 0.0000],
                            [-0.2555, -0.2683, 0.9072],
                            [-0.2555, 0.2683, 0.9072]]])
    rotated = rotation_3d_in_axis(
        points,
        torch.tensor([-np.pi / 10, np.pi / 10]),
        axis=0,
        clockwise=True)
    expected_rotated = torch.tensor(
        [[[-0.4599, -0.0448, -0.0146], [-0.4599, -0.6144, 1.7385],
          [-0.4599, -0.5248, 1.7676]],
         [[-0.2555, -0.2552, 0.0829], [-0.2555, 0.0252, 0.9457],
          [-0.2555, 0.5355, 0.7799]]],
        dtype=torch.float32)
    assert torch.allclose(rotated, expected_rotated, atol=1e-3)
1509
1510

    # anti-clockwise with return rotation mat
liyinhao's avatar
liyinhao committed
1511
    points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
1512
1513
1514
1515
                            [-0.4599, -0.0471, 1.8433]]])
    rotated = rotation_3d_in_axis(points, torch.tensor([np.pi / 2]), axis=0)
    expected_rotated = torch.tensor([[[-0.4599, 0.0000, -0.0471],
                                      [-0.4599, -1.8433, -0.0471]]])
liyinhao's avatar
liyinhao committed
1516
1517
    assert torch.allclose(rotated, expected_rotated, 1e-3)

1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
    points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
                            [-0.4599, -0.0471, 1.8433]]])
    rotated, mat = rotation_3d_in_axis(
        points, torch.tensor([np.pi / 2]), axis=0, return_mat=True)
    expected_rotated = torch.tensor([[[-0.4599, 0.0000, -0.0471],
                                      [-0.4599, -1.8433, -0.0471]]])
    expected_mat = torch.tensor([[[1, 0, 0], [0, 0, 1], [0, -1, 0]]]).float()
    assert torch.allclose(rotated, expected_rotated, atol=1e-6)
    assert torch.allclose(mat, expected_mat, atol=1e-6)

    points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
                            [-0.4599, -0.0471, 1.8433]],
                           [[-0.2555, -0.2683, 0.0000],
                            [-0.2555, -0.2683, 0.9072]]])
    rotated = rotation_3d_in_axis(points, np.pi / 2, axis=0)
    expected_rotated = torch.tensor([[[-0.4599, 0.0000, -0.0471],
                                      [-0.4599, -1.8433, -0.0471]],
                                     [[-0.2555, 0.0000, -0.2683],
                                      [-0.2555, -0.9072, -0.2683]]])
    assert torch.allclose(rotated, expected_rotated, atol=1e-3)

    points = np.array([[[-0.4599, -0.0471, 0.0000], [-0.4599, -0.0471,
                                                     1.8433]],
                       [[-0.2555, -0.2683, 0.0000],
                        [-0.2555, -0.2683, 0.9072]]]).astype(np.float32)

    rotated = rotation_3d_in_axis(points, np.pi / 2, axis=0)
    expected_rotated = np.array([[[-0.4599, 0.0000, -0.0471],
                                  [-0.4599, -1.8433, -0.0471]],
                                 [[-0.2555, 0.0000, -0.2683],
                                  [-0.2555, -0.9072, -0.2683]]])
    assert np.allclose(rotated, expected_rotated, atol=1e-3)

    points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
                            [-0.4599, -0.0471, 1.8433]],
                           [[-0.2555, -0.2683, 0.0000],
                            [-0.2555, -0.2683, 0.9072]]])
    angles = [np.pi / 2, -np.pi / 2]
    rotated = rotation_3d_in_axis(points, angles, axis=0)
    expected_rotated = np.array([[[-0.4599, 0.0000, -0.0471],
                                  [-0.4599, -1.8433, -0.0471]],
                                 [[-0.2555, 0.0000, 0.2683],
                                  [-0.2555, 0.9072, 0.2683]]])
    assert np.allclose(rotated, expected_rotated, atol=1e-3)

    points = torch.tensor([[[-0.0471, 0.0000], [-0.0471, 1.8433]],
                           [[-0.2683, 0.0000], [-0.2683, 0.9072]]])
    angles = [np.pi / 2, -np.pi / 2]
    rotated = rotation_3d_in_axis(points, angles)
    expected_rotated = np.array([[[0.0000, -0.0471], [-1.8433, -0.0471]],
                                 [[0.0000, 0.2683], [0.9072, 0.2683]]])
    assert np.allclose(rotated, expected_rotated, atol=1e-3)


def test_rotation_2d():
    angles = np.array([3.14])
    corners = np.array([[[-0.235, -0.49], [-0.235, 0.49], [0.235, 0.49],
                         [0.235, -0.49]]])
    corners_rotated = rotation_3d_in_axis(corners, angles)
    expected_corners = np.array([[[0.2357801, 0.48962511],
                                  [0.2342193, -0.49037365],
                                  [-0.2357801, -0.48962511],
                                  [-0.2342193, 0.49037365]]])
    assert np.allclose(corners_rotated, expected_corners)

liyinhao's avatar
liyinhao committed
1583
1584
1585
1586
1587
1588
1589
1590
1591

def test_limit_period():
    torch.manual_seed(0)
    val = torch.rand([5, 1])
    result = limit_period(val)
    expected_result = torch.tensor([[0.4963], [0.7682], [0.0885], [0.1320],
                                    [0.3074]])
    assert torch.allclose(result, expected_result, 1e-3)

1592
1593
1594
1595
1596
    val = val.numpy()
    result = limit_period(val)
    expected_result = expected_result.numpy()
    assert np.allclose(result, expected_result, 1e-3)

liyinhao's avatar
liyinhao committed
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635

def test_xywhr2xyxyr():
    torch.manual_seed(0)
    xywhr = torch.tensor([[1., 2., 3., 4., 5.], [0., 1., 2., 3., 4.]])
    xyxyr = xywhr2xyxyr(xywhr)
    expected_xyxyr = torch.tensor([[-0.5000, 0.0000, 2.5000, 4.0000, 5.0000],
                                   [-1.0000, -0.5000, 1.0000, 2.5000, 4.0000]])

    assert torch.allclose(xyxyr, expected_xyxyr)


class test_get_box_type(unittest.TestCase):

    def test_get_box_type(self):
        box_type_3d, box_mode_3d = get_box_type('camera')
        assert box_type_3d == CameraInstance3DBoxes
        assert box_mode_3d == Box3DMode.CAM

        box_type_3d, box_mode_3d = get_box_type('depth')
        assert box_type_3d == DepthInstance3DBoxes
        assert box_mode_3d == Box3DMode.DEPTH

        box_type_3d, box_mode_3d = get_box_type('lidar')
        assert box_type_3d == LiDARInstance3DBoxes
        assert box_mode_3d == Box3DMode.LIDAR

    def test_bad_box_type(self):
        self.assertRaises(ValueError, get_box_type, 'test')


def test_points_cam2img():
    torch.manual_seed(0)
    points = torch.rand([5, 3])
    proj_mat = torch.rand([4, 4])
    point_2d_res = points_cam2img(points, proj_mat)
    expected_point_2d_res = torch.tensor([[0.5832, 0.6496], [0.6146, 0.7910],
                                          [0.6994, 0.7782], [0.5623, 0.6303],
                                          [0.4359, 0.6532]])
    assert torch.allclose(point_2d_res, expected_point_2d_res, 1e-3)
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646

    points = points.numpy()
    proj_mat = proj_mat.numpy()
    point_2d_res = points_cam2img(points, proj_mat)
    expected_point_2d_res = expected_point_2d_res.numpy()
    assert np.allclose(point_2d_res, expected_point_2d_res, 1e-3)

    points = torch.from_numpy(points)
    point_2d_res = points_cam2img(points, proj_mat)
    expected_point_2d_res = torch.from_numpy(expected_point_2d_res)
    assert torch.allclose(point_2d_res, expected_point_2d_res, 1e-3)
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771

    point_2d_res = points_cam2img(points, proj_mat, with_depth=True)
    expected_point_2d_res = torch.tensor([[0.5832, 0.6496, 1.7577],
                                          [0.6146, 0.7910, 1.5477],
                                          [0.6994, 0.7782, 2.0091],
                                          [0.5623, 0.6303, 1.8739],
                                          [0.4359, 0.6532, 1.2056]])
    assert torch.allclose(point_2d_res, expected_point_2d_res, 1e-3)


def test_points_in_boxes():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    lidar_pts = torch.tensor([[1.0, 4.3, 0.1], [1.0, 4.4,
                                                0.1], [1.1, 4.3, 0.1],
                              [0.9, 4.3, 0.1], [1.0, -0.3, 0.1],
                              [1.0, -0.4, 0.1], [2.9, 0.1, 6.0],
                              [-0.9, 3.9, 6.0]]).cuda()
    lidar_boxes = torch.tensor([[1.0, 2.0, 0.0, 4.0, 4.0, 6.0, np.pi / 6],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, np.pi / 2],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, 7 * np.pi / 6],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, -np.pi / 6]],
                               dtype=torch.float32).cuda()
    lidar_boxes = LiDARInstance3DBoxes(lidar_boxes)

    point_indices = lidar_boxes.points_in_boxes_all(lidar_pts)
    expected_point_indices = torch.tensor(
        [[1, 0, 1, 1], [0, 0, 0, 0], [1, 0, 1, 0], [0, 0, 0, 1], [1, 0, 1, 1],
         [0, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]],
        dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([8, 4])
    assert (point_indices == expected_point_indices).all()

    lidar_pts = torch.tensor([[1.0, 4.3, 0.1], [1.0, 4.4,
                                                0.1], [1.1, 4.3, 0.1],
                              [0.9, 4.3, 0.1], [1.0, -0.3, 0.1],
                              [1.0, -0.4, 0.1], [2.9, 0.1, 6.0],
                              [-0.9, 3.9, 6.0]]).cuda()
    lidar_boxes = torch.tensor([[1.0, 2.0, 0.0, 4.0, 4.0, 6.0, np.pi / 6],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, np.pi / 2],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, 7 * np.pi / 6],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, -np.pi / 6]],
                               dtype=torch.float32).cuda()
    lidar_boxes = LiDARInstance3DBoxes(lidar_boxes)

    point_indices = lidar_boxes.points_in_boxes_part(lidar_pts)
    expected_point_indices = torch.tensor([0, -1, 0, 3, 0, -1, 1, 1],
                                          dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([8])
    assert (point_indices == expected_point_indices).all()

    depth_boxes = torch.tensor([[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3],
                                [-10.0, 23.0, 16.0, 10, 20, 20, 0.5]],
                               dtype=torch.float32).cuda()
    depth_boxes = DepthInstance3DBoxes(depth_boxes)
    depth_pts = torch.tensor(
        [[[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
          [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
          [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [
              -16, -18, 9
          ], [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4]]],
        dtype=torch.float32).cuda()

    point_indices = depth_boxes.points_in_boxes_all(depth_pts)
    expected_point_indices = torch.tensor(
        [[1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [0, 0], [0, 0],
         [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]],
        dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([15, 2])
    assert (point_indices == expected_point_indices).all()

    point_indices = depth_boxes.points_in_boxes_part(depth_pts)
    expected_point_indices = torch.tensor(
        [0, 0, 0, 0, 0, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([15])
    assert (point_indices == expected_point_indices).all()

    depth_boxes = torch.tensor([[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.3],
                                [-10.0, 23.0, 16.0, 10, 20, 20, 0.5],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, np.pi / 6],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, np.pi / 2],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, 7 * np.pi / 6],
                                [1.0, 2.0, 0.0, 4.0, 4.0, 6.0, -np.pi / 6]],
                               dtype=torch.float32).cuda()
    cam_boxes = DepthInstance3DBoxes(depth_boxes).convert_to(Box3DMode.CAM)
    depth_pts = torch.tensor(
        [[1, 2, 3.3], [1.2, 2.5, 3.0], [0.8, 2.1, 3.5], [1.6, 2.6, 3.6],
         [0.8, 1.2, 3.9], [-9.2, 21.0, 18.2], [3.8, 7.9, 6.3],
         [4.7, 3.5, -12.2], [3.8, 7.6, -2], [-10.6, -12.9, -20], [-16, -18, 9],
         [-21.3, -52, -5], [0, 0, 0], [6, 7, 8], [-2, -3, -4], [1.0, 4.3, 0.1],
         [1.0, 4.4, 0.1], [1.1, 4.3, 0.1], [0.9, 4.3, 0.1], [1.0, -0.3, 0.1],
         [1.0, -0.4, 0.1], [2.9, 0.1, 6.0], [-0.9, 3.9, 6.0]],
        dtype=torch.float32).cuda()

    cam_pts = DepthPoints(depth_pts).convert_to(Coord3DMode.CAM).tensor

    point_indices = cam_boxes.points_in_boxes_all(cam_pts)
    expected_point_indices = torch.tensor(
        [[1, 0, 1, 1, 1, 1], [1, 0, 1, 1, 1, 1], [1, 0, 1, 1, 1, 1],
         [1, 0, 1, 1, 1, 1], [1, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0],
         [0, 0, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0],
         [0, 0, 1, 1, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1],
         [0, 0, 1, 1, 1, 0], [0, 0, 1, 1, 1, 1], [0, 0, 0, 1, 0, 0],
         [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0]],
        dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([23, 6])
    assert (point_indices == expected_point_indices).all()

    point_indices = cam_boxes.points_in_boxes_batch(cam_pts)
    assert (point_indices == expected_point_indices).all()

    point_indices = cam_boxes.points_in_boxes_part(cam_pts)
    expected_point_indices = torch.tensor([
        0, 0, 0, 0, 0, 1, -1, -1, -1, -1, -1, -1, 3, -1, -1, 2, 3, 3, 2, 2, 3,
        0, 0
    ],
                                          dtype=torch.int32).cuda()
    assert point_indices.shape == torch.Size([23])
    assert (point_indices == expected_point_indices).all()

    point_indices = cam_boxes.points_in_boxes(cam_pts)
    assert (point_indices == expected_point_indices).all()