update_infos_to_v2.py 47.1 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
# Copyright (c) OpenMMLab. All rights reserved.
"""Convert the annotation pkl to the standard format in OpenMMLab V2.0.

Example:
5
    python tools/dataset_converters/update_infos_to_v2.py
VVsssssk's avatar
VVsssssk committed
6
        --dataset kitti
7
        --pkl-path ./data/kitti/kitti_infos_train.pkl
jshilong's avatar
jshilong committed
8
9
10
11
12
13
14
        --out-dir ./kitti_v2/
"""

import argparse
import copy
import time
from os import path as osp
15
from pathlib import Path
jshilong's avatar
jshilong committed
16

17
import mmengine
jshilong's avatar
jshilong committed
18
import numpy as np
ZCMax's avatar
ZCMax committed
19
from nuscenes.nuscenes import NuScenes
jshilong's avatar
jshilong committed
20

21
22
23
from mmdet3d.datasets.convert_utils import (convert_annos,
                                            get_kitti_style_2d_boxes,
                                            get_nuscenes_2d_boxes)
VVsssssk's avatar
VVsssssk committed
24
from mmdet3d.datasets.utils import convert_quaternion_to_matrix
zhangshilong's avatar
zhangshilong committed
25
from mmdet3d.structures import points_cam2img
VVsssssk's avatar
VVsssssk committed
26

jshilong's avatar
jshilong committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

def get_empty_instance():
    """Empty annotation for single instance."""
    instance = dict(
        # (list[float], required): list of 4 numbers representing
        # the bounding box of the instance, in (x1, y1, x2, y2) order.
        bbox=None,
        # (int, required): an integer in the range
        # [0, num_categories-1] representing the category label.
        bbox_label=None,
        #  (list[float], optional): list of 7 (or 9) numbers representing
        #  the 3D bounding box of the instance,
        #  in [x, y, z, w, h, l, yaw]
        #  (or [x, y, z, w, h, l, yaw, vx, vy]) order.
        bbox_3d=None,
        # (bool, optional): Whether to use the
        # 3D bounding box during training.
        bbox_3d_isvalid=None,
        # (int, optional): 3D category label
        # (typically the same as label).
        bbox_label_3d=None,
        # (float, optional): Projected center depth of the
        # 3D bounding box compared to the image plane.
        depth=None,
        #  (list[float], optional): Projected
        #  2D center of the 3D bounding box.
        center_2d=None,
        # (int, optional): Attribute labels
        # (fine-grained labels such as stopping, moving, ignore, crowd).
        attr_label=None,
        # (int, optional): The number of LiDAR
        # points in the 3D bounding box.
        num_lidar_pts=None,
        # (int, optional): The number of Radar
        # points in the 3D bounding box.
        num_radar_pts=None,
        # (int, optional): Difficulty level of
        # detecting the 3D bounding box.
        difficulty=None,
        unaligned_bbox_3d=None)
    return instance


70
def get_empty_multicamera_instances(camera_types):
ZCMax's avatar
ZCMax committed
71

72
73
74
    cam_instance = dict()
    for cam_type in camera_types:
        cam_instance[cam_type] = None
ZCMax's avatar
ZCMax committed
75
76
77
    return cam_instance


jshilong's avatar
jshilong committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
def get_empty_lidar_points():
    lidar_points = dict(
        # (int, optional) : Number of features for each point.
        num_pts_feats=None,
        # (str, optional): Path of LiDAR data file.
        lidar_path=None,
        # (list[list[float]], optional): Transformation matrix
        # from lidar to ego-vehicle
        # with shape [4, 4].
        # (Referenced camera coordinate system is ego in KITTI.)
        lidar2ego=None,
    )
    return lidar_points


def get_empty_radar_points():
    radar_points = dict(
        # (int, optional) : Number of features for each point.
        num_pts_feats=None,
        # (str, optional): Path of RADAR data file.
        radar_path=None,
        # Transformation matrix from lidar to
        # ego-vehicle with shape [4, 4].
        # (Referenced camera coordinate system is ego in KITTI.)
        radar2ego=None,
    )
    return radar_points


def get_empty_img_info():
    img_info = dict(
        # (str, required): the path to the image file.
        img_path=None,
        # (int) The height of the image.
        height=None,
        # (int) The width of the image.
        width=None,
        # (str, optional): Path of the depth map file
        depth_map=None,
        # (list[list[float]], optional) : Transformation
        # matrix from camera to image with
        # shape [3, 3], [3, 4] or [4, 4].
        cam2img=None,
121
122
123
        # (list[list[float]]): Transformation matrix from lidar
        # or depth to image with shape [4, 4].
        lidar2img=None,
jshilong's avatar
jshilong committed
124
125
126
127
128
129
130
        # (list[list[float]], optional) : Transformation
        # matrix from camera to ego-vehicle
        # with shape [4, 4].
        cam2ego=None)
    return img_info


131
def get_single_image_sweep(camera_types):
jshilong's avatar
jshilong committed
132
133
134
135
136
    single_image_sweep = dict(
        # (float, optional) : Timestamp of the current frame.
        timestamp=None,
        # (list[list[float]], optional) : Transformation matrix
        # from ego-vehicle to the global
137
138
139
140
141
142
        ego2global=None)
    # (dict): Information of images captured by multiple cameras
    images = dict()
    for cam_type in camera_types:
        images[cam_type] = get_empty_img_info()
    single_image_sweep['images'] = images
jshilong's avatar
jshilong committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    return single_image_sweep


def get_single_lidar_sweep():
    single_lidar_sweep = dict(
        # (float, optional) : Timestamp of the current frame.
        timestamp=None,
        # (list[list[float]], optional) : Transformation matrix
        # from ego-vehicle to the global
        ego2global=None,
        # (dict): Information of images captured by multiple cameras
        lidar_points=get_empty_lidar_points())
    return single_lidar_sweep


VVsssssk's avatar
VVsssssk committed
158
159
def get_empty_standard_data_info(
        camera_types=['CAM0', 'CAM1', 'CAM2', 'CAM3', 'CAM4']):
jshilong's avatar
jshilong committed
160
161
162

    data_info = dict(
        # (str): Sample id of the frame.
163
        sample_idx=None,
jshilong's avatar
jshilong committed
164
165
        # (str, optional): '000010'
        token=None,
166
        **get_single_image_sweep(camera_types),
jshilong's avatar
jshilong committed
167
168
169
170
171
172
173
174
        # (dict, optional): dict contains information
        # of LiDAR point cloud frame.
        lidar_points=get_empty_lidar_points(),
        # (dict, optional) Each dict contains
        # information of Radar point cloud frame.
        radar_points=get_empty_radar_points(),
        # (list[dict], optional): Image sweeps data.
        image_sweeps=[],
VVsssssk's avatar
VVsssssk committed
175
        lidar_sweeps=[],
jshilong's avatar
jshilong committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        instances=[],
        # (list[dict], optional): Required by object
        # detection, instance  to be ignored during training.
        instances_ignore=[],
        # (str, optional): Path of semantic labels for each point.
        pts_semantic_mask_path=None,
        # (str, optional): Path of instance labels for each point.
        pts_instance_mask_path=None)
    return data_info


def clear_instance_unused_keys(instance):
    keys = list(instance.keys())
    for k in keys:
        if instance[k] is None:
            del instance[k]
    return instance


def clear_data_info_unused_keys(data_info):
    keys = list(data_info.keys())
    empty_flag = True
    for key in keys:
        # we allow no annotations in datainfo
200
        if key in ['instances', 'cam_sync_instances', 'cam_instances']:
jshilong's avatar
jshilong committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
            empty_flag = False
            continue
        if isinstance(data_info[key], list):
            if len(data_info[key]) == 0:
                del data_info[key]
            else:
                empty_flag = False
        elif data_info[key] is None:
            del data_info[key]
        elif isinstance(data_info[key], dict):
            _, sub_empty_flag = clear_data_info_unused_keys(data_info[key])
            if sub_empty_flag is False:
                empty_flag = False
            else:
                # sub field is empty
                del data_info[key]
        else:
            empty_flag = False

    return data_info, empty_flag


223
def generate_nuscenes_camera_instances(info, nusc):
ZCMax's avatar
ZCMax committed
224
225
226
227
228
229
230
231
232
233
234

    # get bbox annotations for camera
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_BACK',
        'CAM_BACK_LEFT',
        'CAM_BACK_RIGHT',
    ]

235
    empty_multicamera_instance = get_empty_multicamera_instances(camera_types)
ZCMax's avatar
ZCMax committed
236
237
238
239

    for cam in camera_types:
        cam_info = info['cams'][cam]
        # list[dict]
240
        ann_infos = get_nuscenes_2d_boxes(
ZCMax's avatar
ZCMax committed
241
242
243
244
245
246
247
248
            nusc,
            cam_info['sample_data_token'],
            visibilities=['', '1', '2', '3', '4'])
        empty_multicamera_instance[cam] = ann_infos

    return empty_multicamera_instance


VVsssssk's avatar
VVsssssk committed
249
def update_nuscenes_infos(pkl_path, out_dir):
250
251
252
253
254
255
256
257
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_BACK',
        'CAM_BACK_LEFT',
        'CAM_BACK_RIGHT',
    ]
VVsssssk's avatar
VVsssssk committed
258
259
260
261
262
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
    print(f'Reading from input file: {pkl_path}.')
263
    data_list = mmengine.load(pkl_path)
VVsssssk's avatar
VVsssssk committed
264
    METAINFO = {
265
        'classes':
VVsssssk's avatar
VVsssssk committed
266
267
268
        ('car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
         'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'),
    }
ZCMax's avatar
ZCMax committed
269
270
271
272
273
    nusc = NuScenes(
        version=data_list['metadata']['version'],
        dataroot='./data/nuscenes',
        verbose=True)

VVsssssk's avatar
VVsssssk committed
274
275
276
    print('Start updating:')
    converted_list = []
    for i, ori_info_dict in enumerate(
277
            mmengine.track_iter_progress(data_list['infos'])):
278
279
        temp_data_info = get_empty_standard_data_info(
            camera_types=camera_types)
VVsssssk's avatar
VVsssssk committed
280
281
282
283
284
        temp_data_info['sample_idx'] = i
        temp_data_info['token'] = ori_info_dict['token']
        temp_data_info['ego2global'] = convert_quaternion_to_matrix(
            ori_info_dict['ego2global_rotation'],
            ori_info_dict['ego2global_translation'])
285
286
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict.get(
            'num_features', 5)
287
288
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['lidar_path']).name
VVsssssk's avatar
VVsssssk committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        temp_data_info['lidar_points'][
            'lidar2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['lidar2ego_rotation'],
                ori_info_dict['lidar2ego_translation'])
        # bc-breaking: Timestamp has divided 1e6 in pkl infos.
        temp_data_info['timestamp'] = ori_info_dict['timestamp'] / 1e6
        for ori_sweep in ori_info_dict['sweeps']:
            temp_lidar_sweep = get_single_lidar_sweep()
            temp_lidar_sweep['lidar_points'][
                'lidar2ego'] = convert_quaternion_to_matrix(
                    ori_sweep['sensor2ego_rotation'],
                    ori_sweep['sensor2ego_translation'])
            temp_lidar_sweep['ego2global'] = convert_quaternion_to_matrix(
                ori_sweep['ego2global_rotation'],
                ori_sweep['ego2global_translation'])
            lidar2sensor = np.eye(4)
305
306
307
308
            rot = ori_sweep['sensor2lidar_rotation']
            trans = ori_sweep['sensor2lidar_translation']
            lidar2sensor[:3, :3] = rot.T
            lidar2sensor[:3, 3] = -1 * np.matmul(rot.T, trans.reshape(3, 1))
VVsssssk's avatar
VVsssssk committed
309
310
311
312
313
314
315
316
317
318
319
            temp_lidar_sweep['lidar_points'][
                'lidar2sensor'] = lidar2sensor.astype(np.float32).tolist()
            temp_lidar_sweep['timestamp'] = ori_sweep['timestamp'] / 1e6
            temp_lidar_sweep['lidar_points']['lidar_path'] = ori_sweep[
                'data_path']
            temp_lidar_sweep['sample_data_token'] = ori_sweep[
                'sample_data_token']
            temp_data_info['lidar_sweeps'].append(temp_lidar_sweep)
        temp_data_info['images'] = {}
        for cam in ori_info_dict['cams']:
            empty_img_info = get_empty_img_info()
320
321
            empty_img_info['img_path'] = Path(
                ori_info_dict['cams'][cam]['data_path']).name
VVsssssk's avatar
VVsssssk committed
322
323
324
325
326
327
328
329
330
331
332
            empty_img_info['cam2img'] = ori_info_dict['cams'][cam][
                'cam_intrinsic'].tolist()
            empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][
                'sample_data_token']
            # bc-breaking: Timestamp has divided 1e6 in pkl infos.
            empty_img_info[
                'timestamp'] = ori_info_dict['cams'][cam]['timestamp'] / 1e6
            empty_img_info['cam2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['cams'][cam]['sensor2ego_rotation'],
                ori_info_dict['cams'][cam]['sensor2ego_translation'])
            lidar2sensor = np.eye(4)
333
334
335
336
            rot = ori_info_dict['cams'][cam]['sensor2lidar_rotation']
            trans = ori_info_dict['cams'][cam]['sensor2lidar_translation']
            lidar2sensor[:3, :3] = rot.T
            lidar2sensor[:3, 3] = -1 * np.matmul(rot.T, trans.reshape(3, 1))
VVsssssk's avatar
VVsssssk committed
337
338
339
340
341
342
343
344
345
            empty_img_info['lidar2cam'] = lidar2sensor.astype(
                np.float32).tolist()
            temp_data_info['images'][cam] = empty_img_info
        num_instances = ori_info_dict['gt_boxes'].shape[0]
        ignore_class_name = set()
        for i in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox_3d'] = ori_info_dict['gt_boxes'][
                i, :].tolist()
346
347
            if ori_info_dict['gt_names'][i] in METAINFO['classes']:
                empty_instance['bbox_label'] = METAINFO['classes'].index(
VVsssssk's avatar
VVsssssk committed
348
349
350
351
352
353
354
355
356
357
358
359
360
                    ori_info_dict['gt_names'][i])
            else:
                ignore_class_name.add(ori_info_dict['gt_names'][i])
                empty_instance['bbox_label'] = -1
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['velocity'] = ori_info_dict['gt_velocity'][
                i, :].tolist()
            empty_instance['num_lidar_pts'] = ori_info_dict['num_lidar_pts'][i]
            empty_instance['num_radar_pts'] = ori_info_dict['num_radar_pts'][i]
            empty_instance['bbox_3d_isvalid'] = ori_info_dict['valid_flag'][i]
            empty_instance = clear_instance_unused_keys(empty_instance)
            temp_data_info['instances'].append(empty_instance)
361
        temp_data_info['cam_instances'] = generate_nuscenes_camera_instances(
ZCMax's avatar
ZCMax committed
362
            ori_info_dict, nusc)
VVsssssk's avatar
VVsssssk committed
363
364
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
365
    pkl_name = Path(pkl_path).name
VVsssssk's avatar
VVsssssk committed
366
367
368
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
369
370

    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
371
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
372
373
374
375
376
377
378
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'nuscenes'
    metainfo['version'] = data_list['metadata']['version']
    metainfo['info_version'] = '1.1'
    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
VVsssssk's avatar
VVsssssk committed
379

380
    mmengine.dump(converted_data_info, out_path, 'pkl')
VVsssssk's avatar
VVsssssk committed
381
382


jshilong's avatar
jshilong committed
383
384
385
386
387
388
389
390
391
def update_kitti_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    # TODO update to full label
    # TODO discuss how to process 'Van', 'DontCare'
    METAINFO = {
392
        'classes': ('Pedestrian', 'Cyclist', 'Car', 'Van', 'Truck',
VVsssssk's avatar
VVsssssk committed
393
                    'Person_sitting', 'Tram', 'Misc'),
jshilong's avatar
jshilong committed
394
395
    }
    print(f'Reading from input file: {pkl_path}.')
396
    data_list = mmengine.load(pkl_path)
jshilong's avatar
jshilong committed
397
398
    print('Start updating:')
    converted_list = []
399
    for ori_info_dict in mmengine.track_iter_progress(data_list):
jshilong's avatar
jshilong committed
400
401
402
403
404
        temp_data_info = get_empty_standard_data_info()

        if 'plane' in ori_info_dict:
            temp_data_info['plane'] = ori_info_dict['plane']

405
        temp_data_info['sample_idx'] = ori_info_dict['image']['image_idx']
jshilong's avatar
jshilong committed
406
407
408
409
410
411
412
413
414
415

        temp_data_info['images']['CAM0']['cam2img'] = ori_info_dict['calib'][
            'P0'].tolist()
        temp_data_info['images']['CAM1']['cam2img'] = ori_info_dict['calib'][
            'P1'].tolist()
        temp_data_info['images']['CAM2']['cam2img'] = ori_info_dict['calib'][
            'P2'].tolist()
        temp_data_info['images']['CAM3']['cam2img'] = ori_info_dict['calib'][
            'P3'].tolist()

416
417
        temp_data_info['images']['CAM2']['img_path'] = Path(
            ori_info_dict['image']['image_path']).name
jshilong's avatar
jshilong committed
418
419
420
421
422
        h, w = ori_info_dict['image']['image_shape']
        temp_data_info['images']['CAM2']['height'] = h
        temp_data_info['images']['CAM2']['width'] = w
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
423
424
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['point_cloud']['velodyne_path']).name
jshilong's avatar
jshilong committed
425
426
427
428
429

        rect = ori_info_dict['calib']['R0_rect'].astype(np.float32)
        Trv2c = ori_info_dict['calib']['Tr_velo_to_cam'].astype(np.float32)
        lidar2cam = rect @ Trv2c
        temp_data_info['images']['CAM2']['lidar2cam'] = lidar2cam.tolist()
jshilong's avatar
jshilong committed
430
431
432
433
434
435
436
437
438
        temp_data_info['images']['CAM0']['lidar2img'] = (
            ori_info_dict['calib']['P0'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM1']['lidar2img'] = (
            ori_info_dict['calib']['P1'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM2']['lidar2img'] = (
            ori_info_dict['calib']['P2'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM3']['lidar2img'] = (
            ori_info_dict['calib']['P3'] @ lidar2cam).tolist()

jshilong's avatar
jshilong committed
439
440
441
442
443
444
445
446
447
448
        temp_data_info['lidar_points']['Tr_velo_to_cam'] = Trv2c.tolist()

        # for potential usage
        temp_data_info['images']['R0_rect'] = ori_info_dict['calib'][
            'R0_rect'].astype(np.float32).tolist()
        temp_data_info['lidar_points']['Tr_imu_to_velo'] = ori_info_dict[
            'calib']['Tr_imu_to_velo'].astype(np.float32).tolist()

        anns = ori_info_dict['annos']
        num_instances = len(anns['name'])
ZCMax's avatar
ZCMax committed
449
        cam2img = ori_info_dict['calib']['P2']
jshilong's avatar
jshilong committed
450
451
452
453
454
455
456

        ignore_class_name = set()
        instance_list = []
        for instance_id in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

457
458
            if anns['name'][instance_id] in METAINFO['classes']:
                empty_instance['bbox_label'] = METAINFO['classes'].index(
jshilong's avatar
jshilong committed
459
460
461
462
463
464
465
466
467
468
                    anns['name'][instance_id])
            else:
                ignore_class_name.add(anns['name'][instance_id])
                empty_instance['bbox_label'] = -1

            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            loc = anns['location'][instance_id]
            dims = anns['dimensions'][instance_id]
            rots = anns['rotation_y'][:, None][instance_id]
ZCMax's avatar
ZCMax committed
469
470
471
472
473
474
475
476
477
478
479

            dst = np.array([0.5, 0.5, 0.5])
            src = np.array([0.5, 1.0, 0.5])

            center_3d = loc + dims * (dst - src)
            center_2d = points_cam2img(
                center_3d.reshape([1, 3]), cam2img, with_depth=True)
            center_2d = center_2d.squeeze().tolist()
            empty_instance['center_2d'] = center_2d[:2]
            empty_instance['depth'] = center_2d[2]

480
            gt_bboxes_3d = np.concatenate([loc, dims, rots]).tolist()
jshilong's avatar
jshilong committed
481
482
483
484
            empty_instance['bbox_3d'] = gt_bboxes_3d
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
485
486
            empty_instance['truncated'] = anns['truncated'][
                instance_id].tolist()
jshilong's avatar
jshilong committed
487
488
489
490
491
492
493
494
495
496
497
498
499
            empty_instance['occluded'] = anns['occluded'][instance_id].tolist()
            empty_instance['alpha'] = anns['alpha'][instance_id].tolist()
            empty_instance['score'] = anns['score'][instance_id].tolist()
            empty_instance['index'] = anns['index'][instance_id].tolist()
            empty_instance['group_id'] = anns['group_ids'][instance_id].tolist(
            )
            empty_instance['difficulty'] = anns['difficulty'][
                instance_id].tolist()
            empty_instance['num_lidar_pts'] = anns['num_points_in_gt'][
                instance_id].tolist()
            empty_instance = clear_instance_unused_keys(empty_instance)
            instance_list.append(empty_instance)
        temp_data_info['instances'] = instance_list
500
501
        cam_instances = generate_kitti_camera_instances(ori_info_dict)
        temp_data_info['cam_instances'] = cam_instances
jshilong's avatar
jshilong committed
502
503
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
504
    pkl_name = Path(pkl_path).name
jshilong's avatar
jshilong committed
505
506
507
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
508
509
510

    # dataset metainfo
    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
511
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
512
513
514
515
516
517
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'kitti'
    metainfo['info_version'] = '1.1'
    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
jshilong's avatar
jshilong committed
518

519
    mmengine.dump(converted_data_info, out_path, 'pkl')
jshilong's avatar
jshilong committed
520
521


ZCMax's avatar
ZCMax committed
522
523
524
525
526
527
def update_s3dis_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
528
    METAINFO = {'classes': ('table', 'chair', 'sofa', 'bookcase', 'board')}
ZCMax's avatar
ZCMax committed
529
    print(f'Reading from input file: {pkl_path}.')
530
    data_list = mmengine.load(pkl_path)
ZCMax's avatar
ZCMax committed
531
532
    print('Start updating:')
    converted_list = []
533
    for i, ori_info_dict in enumerate(mmengine.track_iter_progress(data_list)):
ZCMax's avatar
ZCMax committed
534
        temp_data_info = get_empty_standard_data_info()
535
        temp_data_info['sample_idx'] = i
ZCMax's avatar
ZCMax committed
536
537
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
538
539
540
541
542
543
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['pts_path']).name
        temp_data_info['pts_semantic_mask_path'] = Path(
            ori_info_dict['pts_semantic_mask_path']).name
        temp_data_info['pts_instance_mask_path'] = Path(
            ori_info_dict['pts_instance_mask_path']).name
ZCMax's avatar
ZCMax committed
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

        # TODO support camera
        # np.linalg.inv(info['axis_align_matrix'] @ extrinsic): depth2cam
        anns = ori_info_dict.get('annos', None)
        ignore_class_name = set()
        if anns is not None:
            if anns['gt_num'] == 0:
                instance_list = []
            else:
                num_instances = len(anns['class'])
                instance_list = []
                for instance_id in range(num_instances):
                    empty_instance = get_empty_instance()
                    empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                        instance_id].tolist()

560
                    if anns['class'][instance_id] < len(METAINFO['classes']):
ZCMax's avatar
ZCMax committed
561
562
563
564
                        empty_instance['bbox_label_3d'] = anns['class'][
                            instance_id]
                    else:
                        ignore_class_name.add(
565
                            METAINFO['classes'][anns['class'][instance_id]])
ZCMax's avatar
ZCMax committed
566
567
568
569
570
571
572
                        empty_instance['bbox_label_3d'] = -1

                    empty_instance = clear_instance_unused_keys(empty_instance)
                    instance_list.append(empty_instance)
            temp_data_info['instances'] = instance_list
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
573
    pkl_name = Path(pkl_path).name
ZCMax's avatar
ZCMax committed
574
575
576
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
577
578
579

    # dataset metainfo
    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
580
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
581
582
583
584
585
586
587
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 's3dis'
    metainfo['info_version'] = '1.1'

    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
ZCMax's avatar
ZCMax committed
588

589
    mmengine.dump(converted_data_info, out_path, 'pkl')
ZCMax's avatar
ZCMax committed
590
591


jshilong's avatar
jshilong committed
592
593
594
595
596
597
598
def update_scannet_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    METAINFO = {
599
        'classes':
jshilong's avatar
jshilong committed
600
601
602
603
604
        ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
         'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator',
         'showercurtrain', 'toilet', 'sink', 'bathtub', 'garbagebin')
    }
    print(f'Reading from input file: {pkl_path}.')
605
    data_list = mmengine.load(pkl_path)
jshilong's avatar
jshilong committed
606
607
    print('Start updating:')
    converted_list = []
608
    for ori_info_dict in mmengine.track_iter_progress(data_list):
jshilong's avatar
jshilong committed
609
610
611
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
612
613
614
615
616
617
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['pts_path']).name
        temp_data_info['pts_semantic_mask_path'] = Path(
            ori_info_dict['pts_semantic_mask_path']).name
        temp_data_info['pts_instance_mask_path'] = Path(
            ori_info_dict['pts_instance_mask_path']).name
jshilong's avatar
jshilong committed
618
619
620
621
622
623

        # TODO support camera
        # np.linalg.inv(info['axis_align_matrix'] @ extrinsic): depth2cam
        anns = ori_info_dict['annos']
        temp_data_info['axis_align_matrix'] = anns['axis_align_matrix'].tolist(
        )
624
625
626
627
628
629
630
631
632
633
634
        if anns['gt_num'] == 0:
            instance_list = []
        else:
            num_instances = len(anns['name'])
            ignore_class_name = set()
            instance_list = []
            for instance_id in range(num_instances):
                empty_instance = get_empty_instance()
                empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                    instance_id].tolist()

635
                if anns['name'][instance_id] in METAINFO['classes']:
636
                    empty_instance['bbox_label_3d'] = METAINFO[
637
                        'classes'].index(anns['name'][instance_id])
638
639
640
641
642
643
                else:
                    ignore_class_name.add(anns['name'][instance_id])
                    empty_instance['bbox_label_3d'] = -1

                empty_instance = clear_instance_unused_keys(empty_instance)
                instance_list.append(empty_instance)
jshilong's avatar
jshilong committed
644
645
646
        temp_data_info['instances'] = instance_list
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
647
    pkl_name = Path(pkl_path).name
jshilong's avatar
jshilong committed
648
649
650
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
651
652
653

    # dataset metainfo
    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
654
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
655
656
657
658
659
660
661
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'scannet'
    metainfo['info_version'] = '1.1'

    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
jshilong's avatar
jshilong committed
662

663
    mmengine.dump(converted_data_info, out_path, 'pkl')
jshilong's avatar
jshilong committed
664
665
666
667
668
669
670
671
672


def update_sunrgbd_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    METAINFO = {
673
        'classes': ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk',
jshilong's avatar
jshilong committed
674
675
676
                    'dresser', 'night_stand', 'bookshelf', 'bathtub')
    }
    print(f'Reading from input file: {pkl_path}.')
677
    data_list = mmengine.load(pkl_path)
jshilong's avatar
jshilong committed
678
679
    print('Start updating:')
    converted_list = []
680
    for ori_info_dict in mmengine.track_iter_progress(data_list):
jshilong's avatar
jshilong committed
681
682
683
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
684
685
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['pts_path']).name
jshilong's avatar
jshilong committed
686
687
688
689
690
691
692
        calib = ori_info_dict['calib']
        rt_mat = calib['Rt']
        # follow Coord3DMode.convert_point
        rt_mat = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]
                           ]) @ rt_mat.transpose(1, 0)
        depth2img = calib['K'] @ rt_mat
        temp_data_info['images']['CAM0']['depth2img'] = depth2img.tolist()
693
694
        temp_data_info['images']['CAM0']['img_path'] = Path(
            ori_info_dict['image']['image_path']).name
jshilong's avatar
jshilong committed
695
696
697
698
699
        h, w = ori_info_dict['image']['image_shape']
        temp_data_info['images']['CAM0']['height'] = h
        temp_data_info['images']['CAM0']['width'] = w

        anns = ori_info_dict['annos']
zhangshilong's avatar
zhangshilong committed
700
701
702
703
704
705
706
707
708
709
710
        if anns['gt_num'] == 0:
            instance_list = []
        else:
            num_instances = len(anns['name'])
            ignore_class_name = set()
            instance_list = []
            for instance_id in range(num_instances):
                empty_instance = get_empty_instance()
                empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                    instance_id].tolist()
                empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
711
                if anns['name'][instance_id] in METAINFO['classes']:
zhangshilong's avatar
zhangshilong committed
712
                    empty_instance['bbox_label_3d'] = METAINFO[
713
                        'classes'].index(anns['name'][instance_id])
zhangshilong's avatar
zhangshilong committed
714
715
716
717
718
719
720
721
                    empty_instance['bbox_label'] = empty_instance[
                        'bbox_label_3d']
                else:
                    ignore_class_name.add(anns['name'][instance_id])
                    empty_instance['bbox_label_3d'] = -1
                    empty_instance['bbox_label'] = -1
                empty_instance = clear_instance_unused_keys(empty_instance)
                instance_list.append(empty_instance)
jshilong's avatar
jshilong committed
722
723
724
        temp_data_info['instances'] = instance_list
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
725
    pkl_name = Path(pkl_path).name
jshilong's avatar
jshilong committed
726
727
728
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
729
730
731

    # dataset metainfo
    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
732
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
733
734
735
736
737
738
739
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'sunrgbd'
    metainfo['info_version'] = '1.1'

    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
jshilong's avatar
jshilong committed
740

741
    mmengine.dump(converted_data_info, out_path, 'pkl')
jshilong's avatar
jshilong committed
742
743


VVsssssk's avatar
VVsssssk committed
744
745
746
747
748
749
def update_lyft_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
    print(f'Reading from input file: {pkl_path}.')
750
    data_list = mmengine.load(pkl_path)
VVsssssk's avatar
VVsssssk committed
751
    METAINFO = {
752
        'classes':
VVsssssk's avatar
VVsssssk committed
753
754
755
756
757
758
        ('car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle',
         'motorcycle', 'bicycle', 'pedestrian', 'animal'),
    }
    print('Start updating:')
    converted_list = []
    for i, ori_info_dict in enumerate(
759
            mmengine.track_iter_progress(data_list['infos'])):
VVsssssk's avatar
VVsssssk committed
760
761
762
763
764
765
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['sample_idx'] = i
        temp_data_info['token'] = ori_info_dict['token']
        temp_data_info['ego2global'] = convert_quaternion_to_matrix(
            ori_info_dict['ego2global_rotation'],
            ori_info_dict['ego2global_translation'])
766
767
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict.get(
            'num_features', 5)
768
769
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['lidar_path']).name
VVsssssk's avatar
VVsssssk committed
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
        temp_data_info['lidar_points'][
            'lidar2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['lidar2ego_rotation'],
                ori_info_dict['lidar2ego_translation'])
        # bc-breaking: Timestamp has divided 1e6 in pkl infos.
        temp_data_info['timestamp'] = ori_info_dict['timestamp'] / 1e6
        for ori_sweep in ori_info_dict['sweeps']:
            temp_lidar_sweep = get_single_lidar_sweep()
            temp_lidar_sweep['lidar_points'][
                'lidar2ego'] = convert_quaternion_to_matrix(
                    ori_sweep['sensor2ego_rotation'],
                    ori_sweep['sensor2ego_translation'])
            temp_lidar_sweep['ego2global'] = convert_quaternion_to_matrix(
                ori_sweep['ego2global_rotation'],
                ori_sweep['ego2global_translation'])
            lidar2sensor = np.eye(4)
786
787
788
789
            rot = ori_sweep['sensor2lidar_rotation']
            trans = ori_sweep['sensor2lidar_translation']
            lidar2sensor[:3, :3] = rot.T
            lidar2sensor[:3, 3] = -1 * np.matmul(rot.T, trans.reshape(3, 1))
VVsssssk's avatar
VVsssssk committed
790
791
792
793
794
795
796
797
798
799
800
801
            temp_lidar_sweep['lidar_points'][
                'lidar2sensor'] = lidar2sensor.astype(np.float32).tolist()
            # bc-breaking: Timestamp has divided 1e6 in pkl infos.
            temp_lidar_sweep['timestamp'] = ori_sweep['timestamp'] / 1e6
            temp_lidar_sweep['lidar_points']['lidar_path'] = ori_sweep[
                'data_path']
            temp_lidar_sweep['sample_data_token'] = ori_sweep[
                'sample_data_token']
            temp_data_info['lidar_sweeps'].append(temp_lidar_sweep)
        temp_data_info['images'] = {}
        for cam in ori_info_dict['cams']:
            empty_img_info = get_empty_img_info()
802
803
            empty_img_info['img_path'] = Path(
                ori_info_dict['cams'][cam]['data_path']).name
VVsssssk's avatar
VVsssssk committed
804
805
806
807
808
809
810
811
812
813
            empty_img_info['cam2img'] = ori_info_dict['cams'][cam][
                'cam_intrinsic'].tolist()
            empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][
                'sample_data_token']
            empty_img_info[
                'timestamp'] = ori_info_dict['cams'][cam]['timestamp'] / 1e6
            empty_img_info['cam2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['cams'][cam]['sensor2ego_rotation'],
                ori_info_dict['cams'][cam]['sensor2ego_translation'])
            lidar2sensor = np.eye(4)
814
815
816
817
            rot = ori_info_dict['cams'][cam]['sensor2lidar_rotation']
            trans = ori_info_dict['cams'][cam]['sensor2lidar_translation']
            lidar2sensor[:3, :3] = rot.T
            lidar2sensor[:3, 3] = -1 * np.matmul(rot.T, trans.reshape(3, 1))
VVsssssk's avatar
VVsssssk committed
818
819
820
821
822
823
824
825
826
            empty_img_info['lidar2cam'] = lidar2sensor.astype(
                np.float32).tolist()
            temp_data_info['images'][cam] = empty_img_info
        num_instances = ori_info_dict['gt_boxes'].shape[0]
        ignore_class_name = set()
        for i in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox_3d'] = ori_info_dict['gt_boxes'][
                i, :].tolist()
827
828
            if ori_info_dict['gt_names'][i] in METAINFO['classes']:
                empty_instance['bbox_label'] = METAINFO['classes'].index(
VVsssssk's avatar
VVsssssk committed
829
830
831
832
833
834
835
836
837
838
                    ori_info_dict['gt_names'][i])
            else:
                ignore_class_name.add(ori_info_dict['gt_names'][i])
                empty_instance['bbox_label'] = -1
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance = clear_instance_unused_keys(empty_instance)
            temp_data_info['instances'].append(empty_instance)
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
839
    pkl_name = Path(pkl_path).name
VVsssssk's avatar
VVsssssk committed
840
841
842
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
843
844

    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
845
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
846
847
848
849
850
851
852
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'lyft'
    metainfo['version'] = data_list['metadata']['version']
    metainfo['info_version'] = '1.1'
    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
VVsssssk's avatar
VVsssssk committed
853

854
    mmengine.dump(converted_data_info, out_path, 'pkl')
VVsssssk's avatar
VVsssssk committed
855
856


857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
def update_waymo_infos(pkl_path, out_dir):
    # the input pkl is based on the
    # pkl generated in the waymo cam only challenage.
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_SIDE_RIGHT',
        'CAM_SIDE_LEFT',
    ]
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    # TODO update to full label
    # TODO discuss how to process 'Van', 'DontCare'
    METAINFO = {
875
        'classes': ('Car', 'Pedestrian', 'Cyclist', 'Sign'),
876
877
    }
    print(f'Reading from input file: {pkl_path}.')
878
    data_list = mmengine.load(pkl_path)
879
880
    print('Start updating:')
    converted_list = []
881
    for ori_info_dict in mmengine.track_iter_progress(data_list):
882
883
884
885
        temp_data_info = get_empty_standard_data_info(camera_types)

        if 'plane' in ori_info_dict:
            temp_data_info['plane'] = ori_info_dict['plane']
886
        temp_data_info['sample_idx'] = ori_info_dict['image']['image_idx']
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905

        # calib matrix
        for cam_idx, cam_key in enumerate(camera_types):
            temp_data_info['images'][cam_key]['cam2img'] =\
                 ori_info_dict['calib'][f'P{cam_idx}'].tolist()

        for cam_idx, cam_key in enumerate(camera_types):
            rect = ori_info_dict['calib']['R0_rect'].astype(np.float32)
            velo_to_cam = 'Tr_velo_to_cam'
            if cam_idx != 0:
                velo_to_cam += str(cam_idx)
            Trv2c = ori_info_dict['calib'][velo_to_cam].astype(np.float32)

            lidar2cam = rect @ Trv2c
            temp_data_info['images'][cam_key]['lidar2cam'] = lidar2cam.tolist()
            temp_data_info['images'][cam_key]['lidar2img'] = (
                ori_info_dict['calib'][f'P{cam_idx}'] @ lidar2cam).tolist()

        # image path
906
        base_img_path = Path(ori_info_dict['image']['image_path']).name
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921

        for cam_idx, cam_key in enumerate(camera_types):
            temp_data_info['images'][cam_key]['timestamp'] = ori_info_dict[
                'timestamp']
            temp_data_info['images'][cam_key]['img_path'] = base_img_path

        h, w = ori_info_dict['image']['image_shape']

        # for potential usage
        temp_data_info['images'][camera_types[0]]['height'] = h
        temp_data_info['images'][camera_types[0]]['width'] = w
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
        temp_data_info['lidar_points']['timestamp'] = ori_info_dict[
            'timestamp']
922
923
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['point_cloud']['velodyne_path']).name
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942

        # TODO discuss the usage of Tr_velo_to_cam in lidar
        Trv2c = ori_info_dict['calib']['Tr_velo_to_cam'].astype(np.float32)

        temp_data_info['lidar_points']['Tr_velo_to_cam'] = Trv2c.tolist()

        # for potential usage
        # temp_data_info['images']['R0_rect'] = ori_info_dict['calib'][
        #     'R0_rect'].astype(np.float32).tolist()

        # for the sweeps part:
        temp_data_info['timestamp'] = ori_info_dict['timestamp']
        temp_data_info['ego2global'] = ori_info_dict['pose']

        for ori_sweep in ori_info_dict['sweeps']:
            # lidar sweeps
            lidar_sweep = get_single_lidar_sweep()
            lidar_sweep['ego2global'] = ori_sweep['pose']
            lidar_sweep['timestamp'] = ori_sweep['timestamp']
943
944
            lidar_sweep['lidar_points']['lidar_path'] = Path(
                ori_sweep['velodyne_path']).name
945
946
947
948
            # image sweeps
            image_sweep = get_single_image_sweep(camera_types)
            image_sweep['ego2global'] = ori_sweep['pose']
            image_sweep['timestamp'] = ori_sweep['timestamp']
949
            img_path = Path(ori_sweep['image_path']).name
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
            for cam_idx, cam_key in enumerate(camera_types):
                image_sweep['images'][cam_key]['img_path'] = img_path

            temp_data_info['lidar_sweeps'].append(lidar_sweep)
            temp_data_info['image_sweeps'].append(image_sweep)

        anns = ori_info_dict['annos']
        num_instances = len(anns['name'])

        ignore_class_name = set()
        instance_list = []
        for instance_id in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

965
966
            if anns['name'][instance_id] in METAINFO['classes']:
                empty_instance['bbox_label'] = METAINFO['classes'].index(
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
                    anns['name'][instance_id])
            else:
                ignore_class_name.add(anns['name'][instance_id])
                empty_instance['bbox_label'] = -1

            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            loc = anns['location'][instance_id]
            dims = anns['dimensions'][instance_id]
            rots = anns['rotation_y'][:, None][instance_id]
            gt_bboxes_3d = np.concatenate([loc, dims,
                                           rots]).astype(np.float32).tolist()
            empty_instance['bbox_3d'] = gt_bboxes_3d
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
            empty_instance['truncated'] = int(
                anns['truncated'][instance_id].tolist())
            empty_instance['occluded'] = anns['occluded'][instance_id].tolist()
            empty_instance['alpha'] = anns['alpha'][instance_id].tolist()
            empty_instance['index'] = anns['index'][instance_id].tolist()
            empty_instance['group_id'] = anns['group_ids'][instance_id].tolist(
            )
            empty_instance['difficulty'] = anns['difficulty'][
                instance_id].tolist()
            empty_instance['num_lidar_pts'] = anns['num_points_in_gt'][
                instance_id].tolist()
            empty_instance['camera_id'] = anns['camera_id'][
                instance_id].tolist()
            empty_instance = clear_instance_unused_keys(empty_instance)
            instance_list.append(empty_instance)
        temp_data_info['instances'] = instance_list

        # waymo provide the labels that sync with cam
        anns = ori_info_dict['cam_sync_annos']
        num_instances = len(anns['name'])
        ignore_class_name = set()
        instance_list = []
        for instance_id in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

1009
1010
            if anns['name'][instance_id] in METAINFO['classes']:
                empty_instance['bbox_label'] = METAINFO['classes'].index(
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
                    anns['name'][instance_id])
            else:
                ignore_class_name.add(anns['name'][instance_id])
                empty_instance['bbox_label'] = -1

            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            loc = anns['location'][instance_id]
            dims = anns['dimensions'][instance_id]
            rots = anns['rotation_y'][:, None][instance_id]
            gt_bboxes_3d = np.concatenate([loc, dims,
                                           rots]).astype(np.float32).tolist()
            empty_instance['bbox_3d'] = gt_bboxes_3d
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
            empty_instance['truncated'] = int(
                anns['truncated'][instance_id].tolist())
            empty_instance['occluded'] = anns['occluded'][instance_id].tolist()
            empty_instance['alpha'] = anns['alpha'][instance_id].tolist()
            empty_instance['index'] = anns['index'][instance_id].tolist()
            empty_instance['group_id'] = anns['group_ids'][instance_id].tolist(
            )
            empty_instance['camera_id'] = anns['camera_id'][
                instance_id].tolist()
            empty_instance = clear_instance_unused_keys(empty_instance)
            instance_list.append(empty_instance)
        temp_data_info['cam_sync_instances'] = instance_list

        cam_instances = generate_waymo_camera_instances(
            ori_info_dict, camera_types)
        temp_data_info['cam_instances'] = cam_instances

        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
1046
    pkl_name = Path(pkl_path).name
1047
1048
1049
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
1050
1051
1052

    # dataset metainfo
    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
1053
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
1054
1055
1056
1057
1058
1059
1060
1061
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'waymo'
    metainfo['version'] = '1.2'
    metainfo['info_version'] = '1.1'

    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
1062

1063
    mmengine.dump(converted_data_info, out_path, 'pkl')
1064
1065


1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
def generate_kitti_camera_instances(ori_info_dict):

    cam_key = 'CAM2'
    empty_camera_instances = get_empty_multicamera_instances([cam_key])
    annos = copy.deepcopy(ori_info_dict['annos'])
    ann_infos = get_kitti_style_2d_boxes(
        ori_info_dict, occluded=[0, 1, 2, 3], annos=annos)
    empty_camera_instances[cam_key] = ann_infos

    return empty_camera_instances


1078
1079
1080
1081
1082
1083
1084
1085
1086
def generate_waymo_camera_instances(ori_info_dict, cam_keys):

    empty_multicamera_instances = get_empty_multicamera_instances(cam_keys)

    for cam_idx, cam_key in enumerate(cam_keys):
        annos = copy.deepcopy(ori_info_dict['cam_sync_annos'])
        if cam_idx != 0:
            annos = convert_annos(ori_info_dict, cam_idx)

1087
1088
        ann_infos = get_kitti_style_2d_boxes(
            ori_info_dict, cam_idx, occluded=[0], annos=annos, dataset='waymo')
1089
1090
1091
1092
1093

        empty_multicamera_instances[cam_key] = ann_infos
    return empty_multicamera_instances


jshilong's avatar
jshilong committed
1094
1095
1096
1097
1098
1099
def parse_args():
    parser = argparse.ArgumentParser(description='Arg parser for data coords '
                                     'update due to coords sys refactor.')
    parser.add_argument(
        '--dataset', type=str, default='kitti', help='name of dataset')
    parser.add_argument(
1100
        '--pkl-path',
jshilong's avatar
jshilong committed
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
        type=str,
        default='./data/kitti/kitti_infos_train.pkl ',
        help='specify the root dir of dataset')
    parser.add_argument(
        '--out-dir',
        type=str,
        default='converted_annotations',
        required=False,
        help='output direction of info pkl')
    args = parser.parse_args()
    return args


VVsssssk's avatar
VVsssssk committed
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
def update_pkl_infos(dataset, out_dir, pkl_path):
    if dataset.lower() == 'kitti':
        update_kitti_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'waymo':
        update_waymo_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'scannet':
        update_scannet_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'sunrgbd':
        update_sunrgbd_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'lyft':
        update_lyft_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'nuscenes':
        update_nuscenes_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 's3dis':
        update_s3dis_infos(pkl_path=pkl_path, out_dir=out_dir)
jshilong's avatar
jshilong committed
1129
    else:
VVsssssk's avatar
VVsssssk committed
1130
        raise NotImplementedError(f'Do not support convert {dataset} to v2.')
jshilong's avatar
jshilong committed
1131
1132
1133


if __name__ == '__main__':
VVsssssk's avatar
VVsssssk committed
1134
1135
1136
1137
    args = parse_args()
    if args.out_dir is None:
        args.out_dir = args.root_dir
    update_pkl_infos(
1138
        dataset=args.dataset, out_dir=args.out_dir, pkl_path=args.pkl_path)