update_infos_to_v2.py 46.8 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
# Copyright (c) OpenMMLab. All rights reserved.
"""Convert the annotation pkl to the standard format in OpenMMLab V2.0.

Example:
5
    python tools/dataset_converters/update_infos_to_v2.py
VVsssssk's avatar
VVsssssk committed
6
        --dataset kitti
7
        --pkl-path ./data/kitti/kitti_infos_train.pkl
jshilong's avatar
jshilong committed
8
9
10
11
12
13
14
15
        --out-dir ./kitti_v2/
"""

import argparse
import copy
import time
from os import path as osp

16
import mmengine
jshilong's avatar
jshilong committed
17
import numpy as np
ZCMax's avatar
ZCMax committed
18
from nuscenes.nuscenes import NuScenes
jshilong's avatar
jshilong committed
19

20
21
22
from mmdet3d.datasets.convert_utils import (convert_annos,
                                            get_kitti_style_2d_boxes,
                                            get_nuscenes_2d_boxes)
VVsssssk's avatar
VVsssssk committed
23
from mmdet3d.datasets.utils import convert_quaternion_to_matrix
zhangshilong's avatar
zhangshilong committed
24
from mmdet3d.structures import points_cam2img
VVsssssk's avatar
VVsssssk committed
25

jshilong's avatar
jshilong committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

def get_empty_instance():
    """Empty annotation for single instance."""
    instance = dict(
        # (list[float], required): list of 4 numbers representing
        # the bounding box of the instance, in (x1, y1, x2, y2) order.
        bbox=None,
        # (int, required): an integer in the range
        # [0, num_categories-1] representing the category label.
        bbox_label=None,
        #  (list[float], optional): list of 7 (or 9) numbers representing
        #  the 3D bounding box of the instance,
        #  in [x, y, z, w, h, l, yaw]
        #  (or [x, y, z, w, h, l, yaw, vx, vy]) order.
        bbox_3d=None,
        # (bool, optional): Whether to use the
        # 3D bounding box during training.
        bbox_3d_isvalid=None,
        # (int, optional): 3D category label
        # (typically the same as label).
        bbox_label_3d=None,
        # (float, optional): Projected center depth of the
        # 3D bounding box compared to the image plane.
        depth=None,
        #  (list[float], optional): Projected
        #  2D center of the 3D bounding box.
        center_2d=None,
        # (int, optional): Attribute labels
        # (fine-grained labels such as stopping, moving, ignore, crowd).
        attr_label=None,
        # (int, optional): The number of LiDAR
        # points in the 3D bounding box.
        num_lidar_pts=None,
        # (int, optional): The number of Radar
        # points in the 3D bounding box.
        num_radar_pts=None,
        # (int, optional): Difficulty level of
        # detecting the 3D bounding box.
        difficulty=None,
        unaligned_bbox_3d=None)
    return instance


69
def get_empty_multicamera_instances(camera_types):
ZCMax's avatar
ZCMax committed
70

71
72
73
    cam_instance = dict()
    for cam_type in camera_types:
        cam_instance[cam_type] = None
ZCMax's avatar
ZCMax committed
74
75
76
    return cam_instance


jshilong's avatar
jshilong committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def get_empty_lidar_points():
    lidar_points = dict(
        # (int, optional) : Number of features for each point.
        num_pts_feats=None,
        # (str, optional): Path of LiDAR data file.
        lidar_path=None,
        # (list[list[float]]): Transformation matrix from lidar
        # or depth to image with shape [4, 4].
        lidar2img=None,
        # (list[list[float]], optional): Transformation matrix
        # from lidar to ego-vehicle
        # with shape [4, 4].
        # (Referenced camera coordinate system is ego in KITTI.)
        lidar2ego=None,
    )
    return lidar_points


def get_empty_radar_points():
    radar_points = dict(
        # (int, optional) : Number of features for each point.
        num_pts_feats=None,
        # (str, optional): Path of RADAR data file.
        radar_path=None,
        # Transformation matrix from lidar to
        # ego-vehicle with shape [4, 4].
        # (Referenced camera coordinate system is ego in KITTI.)
        radar2ego=None,
    )
    return radar_points


def get_empty_img_info():
    img_info = dict(
        # (str, required): the path to the image file.
        img_path=None,
        # (int) The height of the image.
        height=None,
        # (int) The width of the image.
        width=None,
        # (str, optional): Path of the depth map file
        depth_map=None,
        # (list[list[float]], optional) : Transformation
        # matrix from camera to image with
        # shape [3, 3], [3, 4] or [4, 4].
        cam2img=None,
        # (list[list[float]], optional) : Transformation
        # matrix from camera to ego-vehicle
        # with shape [4, 4].
        cam2ego=None)
    return img_info


130
def get_single_image_sweep(camera_types):
jshilong's avatar
jshilong committed
131
132
133
134
135
    single_image_sweep = dict(
        # (float, optional) : Timestamp of the current frame.
        timestamp=None,
        # (list[list[float]], optional) : Transformation matrix
        # from ego-vehicle to the global
136
137
138
139
140
141
        ego2global=None)
    # (dict): Information of images captured by multiple cameras
    images = dict()
    for cam_type in camera_types:
        images[cam_type] = get_empty_img_info()
    single_image_sweep['images'] = images
jshilong's avatar
jshilong committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    return single_image_sweep


def get_single_lidar_sweep():
    single_lidar_sweep = dict(
        # (float, optional) : Timestamp of the current frame.
        timestamp=None,
        # (list[list[float]], optional) : Transformation matrix
        # from ego-vehicle to the global
        ego2global=None,
        # (dict): Information of images captured by multiple cameras
        lidar_points=get_empty_lidar_points())
    return single_lidar_sweep


VVsssssk's avatar
VVsssssk committed
157
158
def get_empty_standard_data_info(
        camera_types=['CAM0', 'CAM1', 'CAM2', 'CAM3', 'CAM4']):
jshilong's avatar
jshilong committed
159
160
161
162
163
164

    data_info = dict(
        # (str): Sample id of the frame.
        sample_id=None,
        # (str, optional): '000010'
        token=None,
165
        **get_single_image_sweep(camera_types),
jshilong's avatar
jshilong committed
166
167
168
169
170
171
172
173
        # (dict, optional): dict contains information
        # of LiDAR point cloud frame.
        lidar_points=get_empty_lidar_points(),
        # (dict, optional) Each dict contains
        # information of Radar point cloud frame.
        radar_points=get_empty_radar_points(),
        # (list[dict], optional): Image sweeps data.
        image_sweeps=[],
VVsssssk's avatar
VVsssssk committed
174
        lidar_sweeps=[],
jshilong's avatar
jshilong committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        instances=[],
        # (list[dict], optional): Required by object
        # detection, instance  to be ignored during training.
        instances_ignore=[],
        # (str, optional): Path of semantic labels for each point.
        pts_semantic_mask_path=None,
        # (str, optional): Path of instance labels for each point.
        pts_instance_mask_path=None)
    return data_info


def clear_instance_unused_keys(instance):
    keys = list(instance.keys())
    for k in keys:
        if instance[k] is None:
            del instance[k]
    return instance


def clear_data_info_unused_keys(data_info):
    keys = list(data_info.keys())
    empty_flag = True
    for key in keys:
        # we allow no annotations in datainfo
199
        if key in ['instances', 'cam_sync_instances', 'cam_instances']:
jshilong's avatar
jshilong committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
            empty_flag = False
            continue
        if isinstance(data_info[key], list):
            if len(data_info[key]) == 0:
                del data_info[key]
            else:
                empty_flag = False
        elif data_info[key] is None:
            del data_info[key]
        elif isinstance(data_info[key], dict):
            _, sub_empty_flag = clear_data_info_unused_keys(data_info[key])
            if sub_empty_flag is False:
                empty_flag = False
            else:
                # sub field is empty
                del data_info[key]
        else:
            empty_flag = False

    return data_info, empty_flag


222
def generate_nuscenes_camera_instances(info, nusc):
ZCMax's avatar
ZCMax committed
223
224
225
226
227
228
229
230
231
232
233

    # get bbox annotations for camera
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_BACK',
        'CAM_BACK_LEFT',
        'CAM_BACK_RIGHT',
    ]

234
    empty_multicamera_instance = get_empty_multicamera_instances(camera_types)
ZCMax's avatar
ZCMax committed
235
236
237
238

    for cam in camera_types:
        cam_info = info['cams'][cam]
        # list[dict]
239
        ann_infos = get_nuscenes_2d_boxes(
ZCMax's avatar
ZCMax committed
240
241
242
243
244
245
246
247
            nusc,
            cam_info['sample_data_token'],
            visibilities=['', '1', '2', '3', '4'])
        empty_multicamera_instance[cam] = ann_infos

    return empty_multicamera_instance


VVsssssk's avatar
VVsssssk committed
248
def update_nuscenes_infos(pkl_path, out_dir):
249
250
251
252
253
254
255
256
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_BACK',
        'CAM_BACK_LEFT',
        'CAM_BACK_RIGHT',
    ]
VVsssssk's avatar
VVsssssk committed
257
258
259
260
261
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
    print(f'Reading from input file: {pkl_path}.')
262
    data_list = mmengine.load(pkl_path)
VVsssssk's avatar
VVsssssk committed
263
264
265
266
267
    METAINFO = {
        'CLASSES':
        ('car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
         'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'),
    }
ZCMax's avatar
ZCMax committed
268
269
270
271
272
    nusc = NuScenes(
        version=data_list['metadata']['version'],
        dataroot='./data/nuscenes',
        verbose=True)

VVsssssk's avatar
VVsssssk committed
273
274
275
    print('Start updating:')
    converted_list = []
    for i, ori_info_dict in enumerate(
276
            mmengine.track_iter_progress(data_list['infos'])):
277
278
        temp_data_info = get_empty_standard_data_info(
            camera_types=camera_types)
VVsssssk's avatar
VVsssssk committed
279
280
281
282
283
        temp_data_info['sample_idx'] = i
        temp_data_info['token'] = ori_info_dict['token']
        temp_data_info['ego2global'] = convert_quaternion_to_matrix(
            ori_info_dict['ego2global_rotation'],
            ori_info_dict['ego2global_translation'])
284
285
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict.get(
            'num_features', 5)
VVsssssk's avatar
VVsssssk committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'lidar_path'].split('/')[-1]
        temp_data_info['lidar_points'][
            'lidar2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['lidar2ego_rotation'],
                ori_info_dict['lidar2ego_translation'])
        # bc-breaking: Timestamp has divided 1e6 in pkl infos.
        temp_data_info['timestamp'] = ori_info_dict['timestamp'] / 1e6
        for ori_sweep in ori_info_dict['sweeps']:
            temp_lidar_sweep = get_single_lidar_sweep()
            temp_lidar_sweep['lidar_points'][
                'lidar2ego'] = convert_quaternion_to_matrix(
                    ori_sweep['sensor2ego_rotation'],
                    ori_sweep['sensor2ego_translation'])
            temp_lidar_sweep['ego2global'] = convert_quaternion_to_matrix(
                ori_sweep['ego2global_rotation'],
                ori_sweep['ego2global_translation'])
            lidar2sensor = np.eye(4)
            lidar2sensor[:3, :3] = ori_sweep['sensor2lidar_rotation'].T
            lidar2sensor[:3, 3] = -ori_sweep['sensor2lidar_translation']
            temp_lidar_sweep['lidar_points'][
                'lidar2sensor'] = lidar2sensor.astype(np.float32).tolist()
            temp_lidar_sweep['timestamp'] = ori_sweep['timestamp'] / 1e6
            temp_lidar_sweep['lidar_points']['lidar_path'] = ori_sweep[
                'data_path']
            temp_lidar_sweep['sample_data_token'] = ori_sweep[
                'sample_data_token']
            temp_data_info['lidar_sweeps'].append(temp_lidar_sweep)
        temp_data_info['images'] = {}
        for cam in ori_info_dict['cams']:
            empty_img_info = get_empty_img_info()
            empty_img_info['img_path'] = ori_info_dict['cams'][cam][
                'data_path'].split('/')[-1]
            empty_img_info['cam2img'] = ori_info_dict['cams'][cam][
                'cam_intrinsic'].tolist()
            empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][
                'sample_data_token']
            # bc-breaking: Timestamp has divided 1e6 in pkl infos.
            empty_img_info[
                'timestamp'] = ori_info_dict['cams'][cam]['timestamp'] / 1e6
            empty_img_info['cam2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['cams'][cam]['sensor2ego_rotation'],
                ori_info_dict['cams'][cam]['sensor2ego_translation'])
            lidar2sensor = np.eye(4)
            lidar2sensor[:3, :3] = ori_info_dict['cams'][cam][
                'sensor2lidar_rotation'].T
            lidar2sensor[:3, 3] = -ori_info_dict['cams'][cam][
                'sensor2lidar_translation']
            empty_img_info['lidar2cam'] = lidar2sensor.astype(
                np.float32).tolist()
            temp_data_info['images'][cam] = empty_img_info
        num_instances = ori_info_dict['gt_boxes'].shape[0]
        ignore_class_name = set()
        for i in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox_3d'] = ori_info_dict['gt_boxes'][
                i, :].tolist()
            if ori_info_dict['gt_names'][i] in METAINFO['CLASSES']:
                empty_instance['bbox_label'] = METAINFO['CLASSES'].index(
                    ori_info_dict['gt_names'][i])
            else:
                ignore_class_name.add(ori_info_dict['gt_names'][i])
                empty_instance['bbox_label'] = -1
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['velocity'] = ori_info_dict['gt_velocity'][
                i, :].tolist()
            empty_instance['num_lidar_pts'] = ori_info_dict['num_lidar_pts'][i]
            empty_instance['num_radar_pts'] = ori_info_dict['num_radar_pts'][i]
            empty_instance['bbox_3d_isvalid'] = ori_info_dict['valid_flag'][i]
            empty_instance = clear_instance_unused_keys(empty_instance)
            temp_data_info['instances'].append(empty_instance)
358
        temp_data_info['cam_instances'] = generate_nuscenes_camera_instances(
ZCMax's avatar
ZCMax committed
359
            ori_info_dict, nusc)
VVsssssk's avatar
VVsssssk committed
360
361
362
363
364
365
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
366
367
368
369
370
371
372
373
374
375

    metainfo = dict()
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['CLASSES'])}
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'nuscenes'
    metainfo['version'] = data_list['metadata']['version']
    metainfo['info_version'] = '1.1'
    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
VVsssssk's avatar
VVsssssk committed
376

377
    mmengine.dump(converted_data_info, out_path, 'pkl')
VVsssssk's avatar
VVsssssk committed
378
379


jshilong's avatar
jshilong committed
380
381
382
383
384
385
386
387
388
def update_kitti_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    # TODO update to full label
    # TODO discuss how to process 'Van', 'DontCare'
    METAINFO = {
VVsssssk's avatar
VVsssssk committed
389
390
        'CLASSES': ('Pedestrian', 'Cyclist', 'Car', 'Van', 'Truck',
                    'Person_sitting', 'Tram', 'Misc'),
jshilong's avatar
jshilong committed
391
392
    }
    print(f'Reading from input file: {pkl_path}.')
393
    data_list = mmengine.load(pkl_path)
jshilong's avatar
jshilong committed
394
395
    print('Start updating:')
    converted_list = []
396
    for ori_info_dict in mmengine.track_iter_progress(data_list):
jshilong's avatar
jshilong committed
397
398
399
400
401
        temp_data_info = get_empty_standard_data_info()

        if 'plane' in ori_info_dict:
            temp_data_info['plane'] = ori_info_dict['plane']

402
        temp_data_info['sample_idx'] = ori_info_dict['image']['image_idx']
jshilong's avatar
jshilong committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

        temp_data_info['images']['CAM0']['cam2img'] = ori_info_dict['calib'][
            'P0'].tolist()
        temp_data_info['images']['CAM1']['cam2img'] = ori_info_dict['calib'][
            'P1'].tolist()
        temp_data_info['images']['CAM2']['cam2img'] = ori_info_dict['calib'][
            'P2'].tolist()
        temp_data_info['images']['CAM3']['cam2img'] = ori_info_dict['calib'][
            'P3'].tolist()

        temp_data_info['images']['CAM2']['img_path'] = ori_info_dict['image'][
            'image_path'].split('/')[-1]
        h, w = ori_info_dict['image']['image_shape']
        temp_data_info['images']['CAM2']['height'] = h
        temp_data_info['images']['CAM2']['width'] = w
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'point_cloud']['velodyne_path'].split('/')[-1]

        rect = ori_info_dict['calib']['R0_rect'].astype(np.float32)
        Trv2c = ori_info_dict['calib']['Tr_velo_to_cam'].astype(np.float32)
        lidar2cam = rect @ Trv2c
        temp_data_info['images']['CAM2']['lidar2cam'] = lidar2cam.tolist()
jshilong's avatar
jshilong committed
427
428
429
430
431
432
433
434
435
        temp_data_info['images']['CAM0']['lidar2img'] = (
            ori_info_dict['calib']['P0'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM1']['lidar2img'] = (
            ori_info_dict['calib']['P1'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM2']['lidar2img'] = (
            ori_info_dict['calib']['P2'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM3']['lidar2img'] = (
            ori_info_dict['calib']['P3'] @ lidar2cam).tolist()

jshilong's avatar
jshilong committed
436
437
438
439
440
441
442
443
444
445
        temp_data_info['lidar_points']['Tr_velo_to_cam'] = Trv2c.tolist()

        # for potential usage
        temp_data_info['images']['R0_rect'] = ori_info_dict['calib'][
            'R0_rect'].astype(np.float32).tolist()
        temp_data_info['lidar_points']['Tr_imu_to_velo'] = ori_info_dict[
            'calib']['Tr_imu_to_velo'].astype(np.float32).tolist()

        anns = ori_info_dict['annos']
        num_instances = len(anns['name'])
ZCMax's avatar
ZCMax committed
446
        cam2img = ori_info_dict['calib']['P2']
jshilong's avatar
jshilong committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

        ignore_class_name = set()
        instance_list = []
        for instance_id in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            if anns['name'][instance_id] in METAINFO['CLASSES']:
                empty_instance['bbox_label'] = METAINFO['CLASSES'].index(
                    anns['name'][instance_id])
            else:
                ignore_class_name.add(anns['name'][instance_id])
                empty_instance['bbox_label'] = -1

            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            loc = anns['location'][instance_id]
            dims = anns['dimensions'][instance_id]
            rots = anns['rotation_y'][:, None][instance_id]
ZCMax's avatar
ZCMax committed
466
467
468
469
470
471
472
473
474
475
476

            dst = np.array([0.5, 0.5, 0.5])
            src = np.array([0.5, 1.0, 0.5])

            center_3d = loc + dims * (dst - src)
            center_2d = points_cam2img(
                center_3d.reshape([1, 3]), cam2img, with_depth=True)
            center_2d = center_2d.squeeze().tolist()
            empty_instance['center_2d'] = center_2d[:2]
            empty_instance['depth'] = center_2d[2]

477
            gt_bboxes_3d = np.concatenate([loc, dims, rots]).tolist()
jshilong's avatar
jshilong committed
478
479
480
481
            empty_instance['bbox_3d'] = gt_bboxes_3d
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
482
483
            empty_instance['truncated'] = anns['truncated'][
                instance_id].tolist()
jshilong's avatar
jshilong committed
484
485
486
487
488
489
490
491
492
493
494
495
496
            empty_instance['occluded'] = anns['occluded'][instance_id].tolist()
            empty_instance['alpha'] = anns['alpha'][instance_id].tolist()
            empty_instance['score'] = anns['score'][instance_id].tolist()
            empty_instance['index'] = anns['index'][instance_id].tolist()
            empty_instance['group_id'] = anns['group_ids'][instance_id].tolist(
            )
            empty_instance['difficulty'] = anns['difficulty'][
                instance_id].tolist()
            empty_instance['num_lidar_pts'] = anns['num_points_in_gt'][
                instance_id].tolist()
            empty_instance = clear_instance_unused_keys(empty_instance)
            instance_list.append(empty_instance)
        temp_data_info['instances'] = instance_list
497
498
        cam_instances = generate_kitti_camera_instances(ori_info_dict)
        temp_data_info['cam_instances'] = cam_instances
jshilong's avatar
jshilong committed
499
500
501
502
503
504
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
505
506
507
508
509
510
511
512
513
514

    # dataset metainfo
    metainfo = dict()
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['CLASSES'])}
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'kitti'
    metainfo['info_version'] = '1.1'
    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
jshilong's avatar
jshilong committed
515

516
    mmengine.dump(converted_data_info, out_path, 'pkl')
jshilong's avatar
jshilong committed
517
518


ZCMax's avatar
ZCMax committed
519
520
521
522
523
524
525
526
def update_s3dis_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    METAINFO = {'CLASSES': ('table', 'chair', 'sofa', 'bookcase', 'board')}
    print(f'Reading from input file: {pkl_path}.')
527
    data_list = mmengine.load(pkl_path)
ZCMax's avatar
ZCMax committed
528
529
    print('Start updating:')
    converted_list = []
530
    for i, ori_info_dict in enumerate(mmengine.track_iter_progress(data_list)):
ZCMax's avatar
ZCMax committed
531
        temp_data_info = get_empty_standard_data_info()
532
        temp_data_info['sample_idx'] = i
ZCMax's avatar
ZCMax committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'pts_path'].split('/')[-1]
        temp_data_info['pts_semantic_mask_path'] = ori_info_dict[
            'pts_semantic_mask_path'].split('/')[-1]
        temp_data_info['pts_instance_mask_path'] = ori_info_dict[
            'pts_instance_mask_path'].split('/')[-1]

        # TODO support camera
        # np.linalg.inv(info['axis_align_matrix'] @ extrinsic): depth2cam
        anns = ori_info_dict.get('annos', None)
        ignore_class_name = set()
        if anns is not None:
            if anns['gt_num'] == 0:
                instance_list = []
            else:
                num_instances = len(anns['class'])
                instance_list = []
                for instance_id in range(num_instances):
                    empty_instance = get_empty_instance()
                    empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                        instance_id].tolist()

                    if anns['class'][instance_id] < len(METAINFO['CLASSES']):
                        empty_instance['bbox_label_3d'] = anns['class'][
                            instance_id]
                    else:
                        ignore_class_name.add(
                            METAINFO['CLASSES'][anns['class'][instance_id]])
                        empty_instance['bbox_label_3d'] = -1

                    empty_instance = clear_instance_unused_keys(empty_instance)
                    instance_list.append(empty_instance)
            temp_data_info['instances'] = instance_list
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
574
575
576
577
578
579
580
581
582
583
584

    # dataset metainfo
    metainfo = dict()
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['CLASSES'])}
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 's3dis'
    metainfo['info_version'] = '1.1'

    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
ZCMax's avatar
ZCMax committed
585

586
    mmengine.dump(converted_data_info, out_path, 'pkl')
ZCMax's avatar
ZCMax committed
587
588


jshilong's avatar
jshilong committed
589
590
591
592
593
594
595
596
597
598
599
600
601
def update_scannet_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    METAINFO = {
        'CLASSES':
        ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
         'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator',
         'showercurtrain', 'toilet', 'sink', 'bathtub', 'garbagebin')
    }
    print(f'Reading from input file: {pkl_path}.')
602
    data_list = mmengine.load(pkl_path)
jshilong's avatar
jshilong committed
603
604
    print('Start updating:')
    converted_list = []
605
    for ori_info_dict in mmengine.track_iter_progress(data_list):
jshilong's avatar
jshilong committed
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'pts_path'].split('/')[-1]
        temp_data_info['pts_semantic_mask_path'] = ori_info_dict[
            'pts_semantic_mask_path'].split('/')[-1]
        temp_data_info['pts_instance_mask_path'] = ori_info_dict[
            'pts_instance_mask_path'].split('/')[-1]

        # TODO support camera
        # np.linalg.inv(info['axis_align_matrix'] @ extrinsic): depth2cam
        anns = ori_info_dict['annos']
        temp_data_info['axis_align_matrix'] = anns['axis_align_matrix'].tolist(
        )
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
        if anns['gt_num'] == 0:
            instance_list = []
        else:
            num_instances = len(anns['name'])
            ignore_class_name = set()
            instance_list = []
            for instance_id in range(num_instances):
                empty_instance = get_empty_instance()
                empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                    instance_id].tolist()

                if anns['name'][instance_id] in METAINFO['CLASSES']:
                    empty_instance['bbox_label_3d'] = METAINFO[
                        'CLASSES'].index(anns['name'][instance_id])
                else:
                    ignore_class_name.add(anns['name'][instance_id])
                    empty_instance['bbox_label_3d'] = -1

                empty_instance = clear_instance_unused_keys(empty_instance)
                instance_list.append(empty_instance)
jshilong's avatar
jshilong committed
641
642
643
644
645
646
647
        temp_data_info['instances'] = instance_list
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
648
649
650
651
652
653
654
655
656
657
658

    # dataset metainfo
    metainfo = dict()
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['CLASSES'])}
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'scannet'
    metainfo['info_version'] = '1.1'

    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
jshilong's avatar
jshilong committed
659

660
    mmengine.dump(converted_data_info, out_path, 'pkl')
jshilong's avatar
jshilong committed
661
662
663
664
665
666
667
668
669
670
671
672
673


def update_sunrgbd_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    METAINFO = {
        'CLASSES': ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk',
                    'dresser', 'night_stand', 'bookshelf', 'bathtub')
    }
    print(f'Reading from input file: {pkl_path}.')
674
    data_list = mmengine.load(pkl_path)
jshilong's avatar
jshilong committed
675
676
    print('Start updating:')
    converted_list = []
677
    for ori_info_dict in mmengine.track_iter_progress(data_list):
jshilong's avatar
jshilong committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'pts_path'].split('/')[-1]
        calib = ori_info_dict['calib']
        rt_mat = calib['Rt']
        # follow Coord3DMode.convert_point
        rt_mat = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]
                           ]) @ rt_mat.transpose(1, 0)
        depth2img = calib['K'] @ rt_mat
        temp_data_info['images']['CAM0']['depth2img'] = depth2img.tolist()
        temp_data_info['images']['CAM0']['img_path'] = ori_info_dict['image'][
            'image_path'].split('/')[-1]
        h, w = ori_info_dict['image']['image_shape']
        temp_data_info['images']['CAM0']['height'] = h
        temp_data_info['images']['CAM0']['width'] = w

        anns = ori_info_dict['annos']
zhangshilong's avatar
zhangshilong committed
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
        if anns['gt_num'] == 0:
            instance_list = []
        else:
            num_instances = len(anns['name'])
            ignore_class_name = set()
            instance_list = []
            for instance_id in range(num_instances):
                empty_instance = get_empty_instance()
                empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                    instance_id].tolist()
                empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
                if anns['name'][instance_id] in METAINFO['CLASSES']:
                    empty_instance['bbox_label_3d'] = METAINFO[
                        'CLASSES'].index(anns['name'][instance_id])
                    empty_instance['bbox_label'] = empty_instance[
                        'bbox_label_3d']
                else:
                    ignore_class_name.add(anns['name'][instance_id])
                    empty_instance['bbox_label_3d'] = -1
                    empty_instance['bbox_label'] = -1
                empty_instance = clear_instance_unused_keys(empty_instance)
                instance_list.append(empty_instance)
jshilong's avatar
jshilong committed
719
720
721
722
723
724
725
        temp_data_info['instances'] = instance_list
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
726
727
728
729
730
731
732
733
734
735
736

    # dataset metainfo
    metainfo = dict()
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['CLASSES'])}
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'sunrgbd'
    metainfo['info_version'] = '1.1'

    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
jshilong's avatar
jshilong committed
737

738
    mmengine.dump(converted_data_info, out_path, 'pkl')
jshilong's avatar
jshilong committed
739
740


VVsssssk's avatar
VVsssssk committed
741
742
743
744
745
746
def update_lyft_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
    print(f'Reading from input file: {pkl_path}.')
747
    data_list = mmengine.load(pkl_path)
VVsssssk's avatar
VVsssssk committed
748
749
750
751
752
753
754
755
    METAINFO = {
        'CLASSES':
        ('car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle',
         'motorcycle', 'bicycle', 'pedestrian', 'animal'),
    }
    print('Start updating:')
    converted_list = []
    for i, ori_info_dict in enumerate(
756
            mmengine.track_iter_progress(data_list['infos'])):
VVsssssk's avatar
VVsssssk committed
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['sample_idx'] = i
        temp_data_info['token'] = ori_info_dict['token']
        temp_data_info['ego2global'] = convert_quaternion_to_matrix(
            ori_info_dict['ego2global_rotation'],
            ori_info_dict['ego2global_translation'])
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'lidar_path'].split('/')[-1]
        temp_data_info['lidar_points'][
            'lidar2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['lidar2ego_rotation'],
                ori_info_dict['lidar2ego_translation'])
        # bc-breaking: Timestamp has divided 1e6 in pkl infos.
        temp_data_info['timestamp'] = ori_info_dict['timestamp'] / 1e6
        for ori_sweep in ori_info_dict['sweeps']:
            temp_lidar_sweep = get_single_lidar_sweep()
            temp_lidar_sweep['lidar_points'][
                'lidar2ego'] = convert_quaternion_to_matrix(
                    ori_sweep['sensor2ego_rotation'],
                    ori_sweep['sensor2ego_translation'])
            temp_lidar_sweep['ego2global'] = convert_quaternion_to_matrix(
                ori_sweep['ego2global_rotation'],
                ori_sweep['ego2global_translation'])
            lidar2sensor = np.eye(4)
            lidar2sensor[:3, :3] = ori_sweep['sensor2lidar_rotation'].T
            lidar2sensor[:3, 3] = -ori_sweep['sensor2lidar_translation']
            temp_lidar_sweep['lidar_points'][
                'lidar2sensor'] = lidar2sensor.astype(np.float32).tolist()
            # bc-breaking: Timestamp has divided 1e6 in pkl infos.
            temp_lidar_sweep['timestamp'] = ori_sweep['timestamp'] / 1e6
            temp_lidar_sweep['lidar_points']['lidar_path'] = ori_sweep[
                'data_path']
            temp_lidar_sweep['sample_data_token'] = ori_sweep[
                'sample_data_token']
            temp_data_info['lidar_sweeps'].append(temp_lidar_sweep)
        temp_data_info['images'] = {}
        for cam in ori_info_dict['cams']:
            empty_img_info = get_empty_img_info()
            empty_img_info['img_path'] = ori_info_dict['cams'][cam][
                'data_path'].split('/')[-1]
            empty_img_info['cam2img'] = ori_info_dict['cams'][cam][
                'cam_intrinsic'].tolist()
            empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][
                'sample_data_token']
            empty_img_info[
                'timestamp'] = ori_info_dict['cams'][cam]['timestamp'] / 1e6
            empty_img_info['cam2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['cams'][cam]['sensor2ego_rotation'],
                ori_info_dict['cams'][cam]['sensor2ego_translation'])
            lidar2sensor = np.eye(4)
            lidar2sensor[:3, :3] = ori_info_dict['cams'][cam][
                'sensor2lidar_rotation'].T
            lidar2sensor[:3, 3] = -ori_info_dict['cams'][cam][
                'sensor2lidar_translation']
            empty_img_info['lidar2cam'] = lidar2sensor.astype(
                np.float32).tolist()
            temp_data_info['images'][cam] = empty_img_info
        num_instances = ori_info_dict['gt_boxes'].shape[0]
        ignore_class_name = set()
        for i in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox_3d'] = ori_info_dict['gt_boxes'][
                i, :].tolist()
            if ori_info_dict['gt_names'][i] in METAINFO['CLASSES']:
                empty_instance['bbox_label'] = METAINFO['CLASSES'].index(
                    ori_info_dict['gt_names'][i])
            else:
                ignore_class_name.add(ori_info_dict['gt_names'][i])
                empty_instance['bbox_label'] = -1
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance = clear_instance_unused_keys(empty_instance)
            temp_data_info['instances'].append(empty_instance)
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
836
837
838
839
840
841
842
843
844
845

    metainfo = dict()
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['CLASSES'])}
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'lyft'
    metainfo['version'] = data_list['metadata']['version']
    metainfo['info_version'] = '1.1'
    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
VVsssssk's avatar
VVsssssk committed
846

847
    mmengine.dump(converted_data_info, out_path, 'pkl')
VVsssssk's avatar
VVsssssk committed
848
849


850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
def update_waymo_infos(pkl_path, out_dir):
    # the input pkl is based on the
    # pkl generated in the waymo cam only challenage.
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_SIDE_RIGHT',
        'CAM_SIDE_LEFT',
    ]
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    # TODO update to full label
    # TODO discuss how to process 'Van', 'DontCare'
    METAINFO = {
        'CLASSES': ('Car', 'Pedestrian', 'Cyclist', 'Sign'),
    }
    print(f'Reading from input file: {pkl_path}.')
871
    data_list = mmengine.load(pkl_path)
872
873
    print('Start updating:')
    converted_list = []
874
    for ori_info_dict in mmengine.track_iter_progress(data_list):
875
876
877
878
        temp_data_info = get_empty_standard_data_info(camera_types)

        if 'plane' in ori_info_dict:
            temp_data_info['plane'] = ori_info_dict['plane']
879
        temp_data_info['sample_idx'] = ori_info_dict['image']['image_idx']
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042

        # calib matrix
        for cam_idx, cam_key in enumerate(camera_types):
            temp_data_info['images'][cam_key]['cam2img'] =\
                 ori_info_dict['calib'][f'P{cam_idx}'].tolist()

        for cam_idx, cam_key in enumerate(camera_types):
            rect = ori_info_dict['calib']['R0_rect'].astype(np.float32)
            velo_to_cam = 'Tr_velo_to_cam'
            if cam_idx != 0:
                velo_to_cam += str(cam_idx)
            Trv2c = ori_info_dict['calib'][velo_to_cam].astype(np.float32)

            lidar2cam = rect @ Trv2c
            temp_data_info['images'][cam_key]['lidar2cam'] = lidar2cam.tolist()
            temp_data_info['images'][cam_key]['lidar2img'] = (
                ori_info_dict['calib'][f'P{cam_idx}'] @ lidar2cam).tolist()

        # image path
        base_img_path = ori_info_dict['image']['image_path'].split('/')[-1]

        for cam_idx, cam_key in enumerate(camera_types):
            temp_data_info['images'][cam_key]['timestamp'] = ori_info_dict[
                'timestamp']
            temp_data_info['images'][cam_key]['img_path'] = base_img_path

        h, w = ori_info_dict['image']['image_shape']

        # for potential usage
        temp_data_info['images'][camera_types[0]]['height'] = h
        temp_data_info['images'][camera_types[0]]['width'] = w
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
        temp_data_info['lidar_points']['timestamp'] = ori_info_dict[
            'timestamp']
        temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
            'point_cloud']['velodyne_path'].split('/')[-1]

        # TODO discuss the usage of Tr_velo_to_cam in lidar
        Trv2c = ori_info_dict['calib']['Tr_velo_to_cam'].astype(np.float32)

        temp_data_info['lidar_points']['Tr_velo_to_cam'] = Trv2c.tolist()

        # for potential usage
        # temp_data_info['images']['R0_rect'] = ori_info_dict['calib'][
        #     'R0_rect'].astype(np.float32).tolist()

        # for the sweeps part:
        temp_data_info['timestamp'] = ori_info_dict['timestamp']
        temp_data_info['ego2global'] = ori_info_dict['pose']

        for ori_sweep in ori_info_dict['sweeps']:
            # lidar sweeps
            lidar_sweep = get_single_lidar_sweep()
            lidar_sweep['ego2global'] = ori_sweep['pose']
            lidar_sweep['timestamp'] = ori_sweep['timestamp']
            lidar_sweep['lidar_points']['lidar_path'] = ori_sweep[
                'velodyne_path'].split('/')[-1]
            # image sweeps
            image_sweep = get_single_image_sweep(camera_types)
            image_sweep['ego2global'] = ori_sweep['pose']
            image_sweep['timestamp'] = ori_sweep['timestamp']
            img_path = ori_sweep['image_path'].split('/')[-1]
            for cam_idx, cam_key in enumerate(camera_types):
                image_sweep['images'][cam_key]['img_path'] = img_path

            temp_data_info['lidar_sweeps'].append(lidar_sweep)
            temp_data_info['image_sweeps'].append(image_sweep)

        anns = ori_info_dict['annos']
        num_instances = len(anns['name'])

        ignore_class_name = set()
        instance_list = []
        for instance_id in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            if anns['name'][instance_id] in METAINFO['CLASSES']:
                empty_instance['bbox_label'] = METAINFO['CLASSES'].index(
                    anns['name'][instance_id])
            else:
                ignore_class_name.add(anns['name'][instance_id])
                empty_instance['bbox_label'] = -1

            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            loc = anns['location'][instance_id]
            dims = anns['dimensions'][instance_id]
            rots = anns['rotation_y'][:, None][instance_id]
            gt_bboxes_3d = np.concatenate([loc, dims,
                                           rots]).astype(np.float32).tolist()
            empty_instance['bbox_3d'] = gt_bboxes_3d
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
            empty_instance['truncated'] = int(
                anns['truncated'][instance_id].tolist())
            empty_instance['occluded'] = anns['occluded'][instance_id].tolist()
            empty_instance['alpha'] = anns['alpha'][instance_id].tolist()
            empty_instance['index'] = anns['index'][instance_id].tolist()
            empty_instance['group_id'] = anns['group_ids'][instance_id].tolist(
            )
            empty_instance['difficulty'] = anns['difficulty'][
                instance_id].tolist()
            empty_instance['num_lidar_pts'] = anns['num_points_in_gt'][
                instance_id].tolist()
            empty_instance['camera_id'] = anns['camera_id'][
                instance_id].tolist()
            empty_instance = clear_instance_unused_keys(empty_instance)
            instance_list.append(empty_instance)
        temp_data_info['instances'] = instance_list

        # waymo provide the labels that sync with cam
        anns = ori_info_dict['cam_sync_annos']
        num_instances = len(anns['name'])
        ignore_class_name = set()
        instance_list = []
        for instance_id in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            if anns['name'][instance_id] in METAINFO['CLASSES']:
                empty_instance['bbox_label'] = METAINFO['CLASSES'].index(
                    anns['name'][instance_id])
            else:
                ignore_class_name.add(anns['name'][instance_id])
                empty_instance['bbox_label'] = -1

            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            loc = anns['location'][instance_id]
            dims = anns['dimensions'][instance_id]
            rots = anns['rotation_y'][:, None][instance_id]
            gt_bboxes_3d = np.concatenate([loc, dims,
                                           rots]).astype(np.float32).tolist()
            empty_instance['bbox_3d'] = gt_bboxes_3d
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
            empty_instance['truncated'] = int(
                anns['truncated'][instance_id].tolist())
            empty_instance['occluded'] = anns['occluded'][instance_id].tolist()
            empty_instance['alpha'] = anns['alpha'][instance_id].tolist()
            empty_instance['index'] = anns['index'][instance_id].tolist()
            empty_instance['group_id'] = anns['group_ids'][instance_id].tolist(
            )
            empty_instance['camera_id'] = anns['camera_id'][
                instance_id].tolist()
            empty_instance = clear_instance_unused_keys(empty_instance)
            instance_list.append(empty_instance)
        temp_data_info['cam_sync_instances'] = instance_list

        cam_instances = generate_waymo_camera_instances(
            ori_info_dict, camera_types)
        temp_data_info['cam_instances'] = cam_instances

        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
    pkl_name = pkl_path.split('/')[-1]
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

    # dataset metainfo
    metainfo = dict()
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['CLASSES'])}
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'waymo'
    metainfo['version'] = '1.2'
    metainfo['info_version'] = '1.1'

    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
1055

1056
    mmengine.dump(converted_data_info, out_path, 'pkl')
1057
1058


1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
def generate_kitti_camera_instances(ori_info_dict):

    cam_key = 'CAM2'
    empty_camera_instances = get_empty_multicamera_instances([cam_key])
    annos = copy.deepcopy(ori_info_dict['annos'])
    ann_infos = get_kitti_style_2d_boxes(
        ori_info_dict, occluded=[0, 1, 2, 3], annos=annos)
    empty_camera_instances[cam_key] = ann_infos

    return empty_camera_instances


1071
1072
1073
1074
1075
1076
1077
1078
1079
def generate_waymo_camera_instances(ori_info_dict, cam_keys):

    empty_multicamera_instances = get_empty_multicamera_instances(cam_keys)

    for cam_idx, cam_key in enumerate(cam_keys):
        annos = copy.deepcopy(ori_info_dict['cam_sync_annos'])
        if cam_idx != 0:
            annos = convert_annos(ori_info_dict, cam_idx)

1080
1081
        ann_infos = get_kitti_style_2d_boxes(
            ori_info_dict, cam_idx, occluded=[0], annos=annos, dataset='waymo')
1082
1083
1084
1085
1086

        empty_multicamera_instances[cam_key] = ann_infos
    return empty_multicamera_instances


jshilong's avatar
jshilong committed
1087
1088
1089
1090
1091
1092
def parse_args():
    parser = argparse.ArgumentParser(description='Arg parser for data coords '
                                     'update due to coords sys refactor.')
    parser.add_argument(
        '--dataset', type=str, default='kitti', help='name of dataset')
    parser.add_argument(
1093
        '--pkl-path',
jshilong's avatar
jshilong committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
        type=str,
        default='./data/kitti/kitti_infos_train.pkl ',
        help='specify the root dir of dataset')
    parser.add_argument(
        '--out-dir',
        type=str,
        default='converted_annotations',
        required=False,
        help='output direction of info pkl')
    args = parser.parse_args()
    return args


VVsssssk's avatar
VVsssssk committed
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
def update_pkl_infos(dataset, out_dir, pkl_path):
    if dataset.lower() == 'kitti':
        update_kitti_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'waymo':
        update_waymo_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'scannet':
        update_scannet_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'sunrgbd':
        update_sunrgbd_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'lyft':
        update_lyft_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'nuscenes':
        update_nuscenes_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 's3dis':
        update_s3dis_infos(pkl_path=pkl_path, out_dir=out_dir)
jshilong's avatar
jshilong committed
1122
    else:
VVsssssk's avatar
VVsssssk committed
1123
        raise NotImplementedError(f'Do not support convert {dataset} to v2.')
jshilong's avatar
jshilong committed
1124
1125
1126


if __name__ == '__main__':
VVsssssk's avatar
VVsssssk committed
1127
1128
1129
1130
    args = parse_args()
    if args.out_dir is None:
        args.out_dir = args.root_dir
    update_pkl_infos(
1131
        dataset=args.dataset, out_dir=args.out_dir, pkl_path=args.pkl_path)