scannet_dataset.py 23.2 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import tempfile
3
import warnings
zhangwenwei's avatar
zhangwenwei committed
4
from os import path as osp
5

6
7
import numpy as np

8
from mmdet3d.core import instance_seg_eval, show_result, show_seg_result
wuyuefeng's avatar
wuyuefeng committed
9
from mmdet3d.core.bbox import DepthInstance3DBoxes
10
from mmdet3d.registry import DATASETS
11
from .custom_3d_seg import Custom3DSegDataset
jshilong's avatar
jshilong committed
12
from .det3d_dataset import Det3DDataset
13
from .pipelines import Compose
14
15
16


@DATASETS.register_module()
jshilong's avatar
jshilong committed
17
class ScanNetDataset(Det3DDataset):
18
    r"""ScanNet Dataset for Detection Task.
19

wangtai's avatar
wangtai committed
20
21
    This class serves as the API for experiments on the ScanNet Dataset.

zhangwenwei's avatar
zhangwenwei committed
22
23
    Please refer to the `github repo <https://github.com/ScanNet/ScanNet>`_
    for data downloading.
wangtai's avatar
wangtai committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'Depth' in this dataset. Available options includes

wangtai's avatar
wangtai committed
39
40
41
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
wangtai's avatar
wangtai committed
42
43
44
45
46
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
47
48
49
50
51
52
    CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
               'bookshelf', 'picture', 'counter', 'desk', 'curtain',
               'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
               'garbagebin')

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
53
                 data_root,
54
55
                 ann_file,
                 pipeline=None,
liyinhao's avatar
liyinhao committed
56
                 classes=None,
57
                 modality=dict(use_camera=False, use_depth=True),
58
                 box_type_3d='Depth',
wuyuefeng's avatar
Votenet  
wuyuefeng committed
59
                 filter_empty_gt=True,
60
61
                 test_mode=False,
                 **kwargs):
62
63
64
65
66
67
68
69
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
70
71
            test_mode=test_mode,
            **kwargs)
72
73
74
75
76
77
78
79
80
81
82
        assert 'use_camera' in self.modality and \
               'use_depth' in self.modality
        assert self.modality['use_camera'] or self.modality['use_depth']

    def get_data_info(self, index):
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
83
            dict: Data information that will be passed to the data
84
85
86
87
88
                preprocessing pipelines. It includes the following keys:

                - sample_idx (str): Sample index.
                - pts_filename (str): Filename of point clouds.
                - file_name (str): Filename of point clouds.
89
                - img_prefix (str, optional): Prefix of image files.
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
                - img_info (dict, optional): Image info.
                - ann_info (dict): Annotation info.
        """
        info = self.data_infos[index]
        sample_idx = info['point_cloud']['lidar_idx']
        pts_filename = osp.join(self.data_root, info['pts_path'])
        input_dict = dict(sample_idx=sample_idx)

        if self.modality['use_depth']:
            input_dict['pts_filename'] = pts_filename
            input_dict['file_name'] = pts_filename

        if self.modality['use_camera']:
            img_info = []
            for img_path in info['img_paths']:
                img_info.append(
                    dict(filename=osp.join(self.data_root, img_path)))
            intrinsic = info['intrinsics']
            axis_align_matrix = self._get_axis_align_matrix(info)
            depth2img = []
            for extrinsic in info['extrinsics']:
                depth2img.append(
                    intrinsic @ np.linalg.inv(axis_align_matrix @ extrinsic))

            input_dict['img_prefix'] = None
            input_dict['img_info'] = img_info
            input_dict['depth2img'] = depth2img

        if not self.test_mode:
            annos = self.get_ann_info(index)
            input_dict['ann_info'] = annos
            if self.filter_empty_gt and ~(annos['gt_labels_3d'] != -1).any():
                return None
        return input_dict
124

liyinhao's avatar
liyinhao committed
125
    def get_ann_info(self, index):
126
127
128
129
130
131
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
132
            dict: annotation information consists of the following keys:
133

134
                - gt_bboxes_3d (:obj:`DepthInstance3DBoxes`):
135
                    3D ground truth bboxes
wangtai's avatar
wangtai committed
136
137
138
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - pts_instance_mask_path (str): Path of instance masks.
                - pts_semantic_mask_path (str): Path of semantic masks.
139
                - axis_align_matrix (np.ndarray): Transformation matrix for
140
                    global scene alignment.
141
        """
142
        # Use index to get the annos, thus the evalhook could also use this api
liyinhao's avatar
liyinhao committed
143
        info = self.data_infos[index]
144
        if info['annos']['gt_num'] != 0:
liyinhao's avatar
liyinhao committed
145
146
            gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
                np.float32)  # k, 6
WRH's avatar
WRH committed
147
            gt_labels_3d = info['annos']['class'].astype(np.int64)
148
        else:
liyinhao's avatar
liyinhao committed
149
            gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
WRH's avatar
WRH committed
150
            gt_labels_3d = np.zeros((0, ), dtype=np.int64)
wuyuefeng's avatar
wuyuefeng committed
151
152
153
154
155
156
157
158

        # to target box structure
        gt_bboxes_3d = DepthInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
            with_yaw=False,
            origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)

zhangwenwei's avatar
zhangwenwei committed
159
        pts_instance_mask_path = osp.join(self.data_root,
liyinhao's avatar
liyinhao committed
160
                                          info['pts_instance_mask_path'])
zhangwenwei's avatar
zhangwenwei committed
161
        pts_semantic_mask_path = osp.join(self.data_root,
liyinhao's avatar
liyinhao committed
162
                                          info['pts_semantic_mask_path'])
163

164
165
        axis_align_matrix = self._get_axis_align_matrix(info)

166
167
        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
168
            gt_labels_3d=gt_labels_3d,
169
            pts_instance_mask_path=pts_instance_mask_path,
170
171
            pts_semantic_mask_path=pts_semantic_mask_path,
            axis_align_matrix=axis_align_matrix)
172
        return anns_results
liyinhao's avatar
liyinhao committed
173

174
175
176
    def prepare_test_data(self, index):
        """Prepare data for testing.

177
        We should take axis_align_matrix from self.data_infos since we need
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
            to align point clouds.

        Args:
            index (int): Index for accessing the target data.

        Returns:
            dict: Testing data dict of the corresponding index.
        """
        input_dict = self.get_data_info(index)
        # take the axis_align_matrix from data_infos
        input_dict['ann_info'] = dict(
            axis_align_matrix=self._get_axis_align_matrix(
                self.data_infos[index]))
        self.pre_pipeline(input_dict)
        example = self.pipeline(input_dict)
        return example

    @staticmethod
    def _get_axis_align_matrix(info):
        """Get axis_align_matrix from info. If not exist, return identity mat.

        Args:
            info (dict): one data info term.

        Returns:
            np.ndarray: 4x4 transformation matrix.
        """
        if 'axis_align_matrix' in info['annos'].keys():
            return info['annos']['axis_align_matrix'].astype(np.float32)
        else:
            warnings.warn(
                'axis_align_matrix is not found in ScanNet data info, please '
                'use new pre-process scripts to re-generate ScanNet data')
            return np.eye(4).astype(np.float32)

213
214
215
216
217
218
219
220
221
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='DEPTH',
                shift_height=False,
                load_dim=6,
                use_dim=[0, 1, 2]),
222
            dict(type='GlobalAlignment', rotation_axis=2),
223
224
225
226
227
228
229
230
231
            dict(
                type='DefaultFormatBundle3D',
                class_names=self.CLASSES,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ]
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
232
233
234
235
236
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
237
            show (bool): Visualize the results online.
238
239
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
240
        """
liyinhao's avatar
liyinhao committed
241
        assert out_dir is not None, 'Expect out_dir, got none.'
242
        pipeline = self._get_pipeline(pipeline)
liyinhao's avatar
liyinhao committed
243
244
245
246
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
247
            points = self._extract_data(i, pipeline, 'points').numpy()
248
            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
liyinhao's avatar
liyinhao committed
249
            pred_bboxes = result['boxes_3d'].tensor.numpy()
250
251
            show_result(points, gt_bboxes, pred_bboxes, out_dir, file_name,
                        show)
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275


@DATASETS.register_module()
class ScanNetSegDataset(Custom3DSegDataset):
    r"""ScanNet Dataset for Semantic Segmentation Task.

    This class serves as the API for experiments on the ScanNet Dataset.

    Please refer to the `github repo <https://github.com/ScanNet/ScanNet>`_
    for data downloading.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        palette (list[list[int]], optional): The palette of segmentation map.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
276
        ignore_index (int, optional): The label index to be ignored, e.g.
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
            unannotated points. If None is given, set to len(self.CLASSES).
            Defaults to None.
        scene_idxs (np.ndarray | str, optional): Precomputed index to load
            data. For scenes with many points, we may sample it several times.
            Defaults to None.
    """
    CLASSES = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
               'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
               'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink',
               'bathtub', 'otherfurniture')

    VALID_CLASS_IDS = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28,
                       33, 34, 36, 39)

    ALL_CLASS_IDS = tuple(range(41))

    PALETTE = [
        [174, 199, 232],
        [152, 223, 138],
        [31, 119, 180],
        [255, 187, 120],
        [188, 189, 34],
        [140, 86, 75],
        [255, 152, 150],
        [214, 39, 40],
        [197, 176, 213],
        [148, 103, 189],
        [196, 156, 148],
        [23, 190, 207],
        [247, 182, 210],
        [219, 219, 141],
        [255, 127, 14],
        [158, 218, 229],
        [44, 160, 44],
        [112, 128, 144],
        [227, 119, 194],
        [82, 84, 163],
    ]

    def __init__(self,
                 data_root,
                 ann_file,
                 pipeline=None,
                 classes=None,
                 palette=None,
                 modality=None,
                 test_mode=False,
                 ignore_index=None,
325
326
                 scene_idxs=None,
                 **kwargs):
327
328
329
330
331
332
333
334
335
336

        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            palette=palette,
            modality=modality,
            test_mode=test_mode,
            ignore_index=ignore_index,
337
338
            scene_idxs=scene_idxs,
            **kwargs)
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

    def get_ann_info(self, index):
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: annotation information consists of the following keys:

                - pts_semantic_mask_path (str): Path of semantic masks.
        """
        # Use index to get the annos, thus the evalhook could also use this api
        info = self.data_infos[index]

        pts_semantic_mask_path = osp.join(self.data_root,
                                          info['pts_semantic_mask_path'])

        anns_results = dict(pts_semantic_mask_path=pts_semantic_mask_path)
        return anns_results

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='DEPTH',
                shift_height=False,
                use_color=True,
                load_dim=6,
                use_dim=[0, 1, 2, 3, 4, 5]),
            dict(
                type='LoadAnnotations3D',
                with_bbox_3d=False,
                with_label_3d=False,
                with_mask_3d=False,
                with_seg_3d=True),
            dict(
                type='PointSegClassMapping',
378
379
                valid_cat_ids=self.VALID_CLASS_IDS,
                max_cat_id=np.max(self.ALL_CLASS_IDS)),
380
381
382
383
384
385
386
387
388
            dict(
                type='DefaultFormatBundle3D',
                with_label=False,
                class_names=self.CLASSES),
            dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
        ]
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
389
390
391
392
393
394
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
            show (bool): Visualize the results online.
395
396
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
397
398
        """
        assert out_dir is not None, 'Expect out_dir, got none.'
399
        pipeline = self._get_pipeline(pipeline)
400
401
402
403
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
404
405
406
            points, gt_sem_mask = self._extract_data(
                i, pipeline, ['points', 'pts_semantic_mask'], load_annos=True)
            points = points.numpy()
407
408
409
410
411
            pred_sem_mask = result['semantic_mask'].numpy()
            show_seg_result(points, gt_sem_mask,
                            pred_sem_mask, out_dir, file_name,
                            np.array(self.PALETTE), self.ignore_index, show)

412
413
    def get_scene_idxs(self, scene_idxs):
        """Compute scene_idxs for data sampling.
414

415
        We sample more times for scenes with more points.
416
417
418
419
420
421
        """
        # when testing, we load one whole scene every time
        if not self.test_mode and scene_idxs is None:
            raise NotImplementedError(
                'please provide re-sampled scene indexes for training')

422
        return super().get_scene_idxs(scene_idxs)
423
424
425
426
427
428
429

    def format_results(self, results, txtfile_prefix=None):
        r"""Format the results to txt file. Refer to `ScanNet documentation
        <http://kaldir.vc.in.tum.de/scannet_benchmark/documentation>`_.

        Args:
            outputs (list[dict]): Testing results of the dataset.
430
            txtfile_prefix (str): The prefix of saved files. It includes
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
            tuple: (outputs, tmp_dir), outputs is the detection results,
                tmp_dir is the temporal directory created for saving submission
                files when ``submission_prefix`` is not specified.
        """
        import mmcv

        if txtfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            txtfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None
        mmcv.mkdir_or_exist(txtfile_prefix)

        # need to map network output to original label idx
        pred2label = np.zeros(len(self.VALID_CLASS_IDS)).astype(np.int)
        for original_label, output_idx in self.label_map.items():
            if output_idx != self.ignore_index:
                pred2label[output_idx] = original_label

        outputs = []
        for i, result in enumerate(results):
            info = self.data_infos[i]
            sample_idx = info['point_cloud']['lidar_idx']
            pred_sem_mask = result['semantic_mask'].numpy().astype(np.int)
            pred_label = pred2label[pred_sem_mask]
            curr_file = f'{txtfile_prefix}/{sample_idx}.txt'
            np.savetxt(curr_file, pred_label, fmt='%d')
            outputs.append(dict(seg_mask=pred_label))

        return outputs, tmp_dir
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611


@DATASETS.register_module()
class ScanNetInstanceSegDataset(Custom3DSegDataset):
    CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
               'bookshelf', 'picture', 'counter', 'desk', 'curtain',
               'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
               'garbagebin')

    VALID_CLASS_IDS = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34,
                       36, 39)

    ALL_CLASS_IDS = tuple(range(41))

    def get_ann_info(self, index):
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: annotation information consists of the following keys:
                - pts_semantic_mask_path (str): Path of semantic masks.
                - pts_instance_mask_path (str): Path of instance masks.
        """
        # Use index to get the annos, thus the evalhook could also use this api
        info = self.data_infos[index]

        pts_instance_mask_path = osp.join(self.data_root,
                                          info['pts_instance_mask_path'])
        pts_semantic_mask_path = osp.join(self.data_root,
                                          info['pts_semantic_mask_path'])

        anns_results = dict(
            pts_instance_mask_path=pts_instance_mask_path,
            pts_semantic_mask_path=pts_semantic_mask_path)
        return anns_results

    def get_classes_and_palette(self, classes=None, palette=None):
        """Get class names of current dataset. Palette is simply ignored for
        instance segmentation.

        Args:
            classes (Sequence[str] | str | None): If classes is None, use
                default CLASSES defined by builtin dataset. If classes is a
                string, take it as a file name. The file contains the name of
                classes where each line contains one class name. If classes is
                a tuple or list, override the CLASSES defined by the dataset.
                Defaults to None.
            palette (Sequence[Sequence[int]]] | np.ndarray | None):
                The palette of segmentation map. If None is given, random
                palette will be generated. Defaults to None.
        """
        if classes is not None:
            return classes, None
        return self.CLASSES, None

    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='DEPTH',
                shift_height=False,
                use_color=True,
                load_dim=6,
                use_dim=[0, 1, 2, 3, 4, 5]),
            dict(
                type='LoadAnnotations3D',
                with_bbox_3d=False,
                with_label_3d=False,
                with_mask_3d=True,
                with_seg_3d=True),
            dict(
                type='PointSegClassMapping',
                valid_cat_ids=self.VALID_CLASS_IDS,
                max_cat_id=40),
            dict(
                type='DefaultFormatBundle3D',
                with_label=False,
                class_names=self.CLASSES),
            dict(
                type='Collect3D',
                keys=['points', 'pts_semantic_mask', 'pts_instance_mask'])
        ]
        return Compose(pipeline)

    def evaluate(self,
                 results,
                 metric=None,
                 options=None,
                 logger=None,
                 show=False,
                 out_dir=None,
                 pipeline=None):
        """Evaluation in instance segmentation protocol.

        Args:
            results (list[dict]): List of results.
            metric (str | list[str]): Metrics to be evaluated.
            options (dict, optional): options for instance_seg_eval.
            logger (logging.Logger | None | str): Logger used for printing
                related information during evaluation. Defaults to None.
            show (bool, optional): Whether to visualize.
                Defaults to False.
            out_dir (str, optional): Path to save the visualization results.
                Defaults to None.
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.

        Returns:
            dict: Evaluation results.
        """
        assert isinstance(
            results, list), f'Expect results to be list, got {type(results)}.'
        assert len(results) > 0, 'Expect length of results > 0.'
        assert len(results) == len(self.data_infos)
        assert isinstance(
            results[0], dict
        ), f'Expect elements in results to be dict, got {type(results[0])}.'

        load_pipeline = self._get_pipeline(pipeline)
        pred_instance_masks = [result['instance_mask'] for result in results]
        pred_instance_labels = [result['instance_label'] for result in results]
        pred_instance_scores = [result['instance_score'] for result in results]
        gt_semantic_masks, gt_instance_masks = zip(*[
            self._extract_data(
                index=i,
                pipeline=load_pipeline,
                key=['pts_semantic_mask', 'pts_instance_mask'],
                load_annos=True) for i in range(len(self.data_infos))
        ])
        ret_dict = instance_seg_eval(
            gt_semantic_masks,
            gt_instance_masks,
            pred_instance_masks,
            pred_instance_labels,
            pred_instance_scores,
            valid_class_ids=self.VALID_CLASS_IDS,
            class_labels=self.CLASSES,
            options=options,
            logger=logger)

        if show:
            raise NotImplementedError('show is not implemented for now')

        return ret_dict