scannet_dataset.py 14.1 KB
Newer Older
1
import numpy as np
2
import tempfile
zhangwenwei's avatar
zhangwenwei committed
3
from os import path as osp
4

5
from mmdet3d.core import show_result, show_seg_result
wuyuefeng's avatar
wuyuefeng committed
6
from mmdet3d.core.bbox import DepthInstance3DBoxes
7
from mmdet.datasets import DATASETS
zhangwenwei's avatar
zhangwenwei committed
8
from .custom_3d import Custom3DDataset
9
from .custom_3d_seg import Custom3DSegDataset
10
from .pipelines import Compose
11
12
13


@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
14
class ScanNetDataset(Custom3DDataset):
15
    r"""ScanNet Dataset for Detection Task.
16

wangtai's avatar
wangtai committed
17
18
    This class serves as the API for experiments on the ScanNet Dataset.

zhangwenwei's avatar
zhangwenwei committed
19
20
    Please refer to the `github repo <https://github.com/ScanNet/ScanNet>`_
    for data downloading.
wangtai's avatar
wangtai committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'Depth' in this dataset. Available options includes

wangtai's avatar
wangtai committed
36
37
38
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
wangtai's avatar
wangtai committed
39
40
41
42
43
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
44
45
46
47
48
49
    CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
               'bookshelf', 'picture', 'counter', 'desk', 'curtain',
               'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
               'garbagebin')

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
50
                 data_root,
51
52
                 ann_file,
                 pipeline=None,
liyinhao's avatar
liyinhao committed
53
                 classes=None,
liyinhao's avatar
liyinhao committed
54
                 modality=None,
55
                 box_type_3d='Depth',
wuyuefeng's avatar
Votenet  
wuyuefeng committed
56
                 filter_empty_gt=True,
zhangwenwei's avatar
zhangwenwei committed
57
                 test_mode=False):
58
59
60
61
62
63
64
65
66
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
            test_mode=test_mode)
67

liyinhao's avatar
liyinhao committed
68
    def get_ann_info(self, index):
69
70
71
72
73
74
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
75
            dict: annotation information consists of the following keys:
76

zhangwenwei's avatar
zhangwenwei committed
77
                - gt_bboxes_3d (:obj:`DepthInstance3DBoxes`): \
78
                    3D ground truth bboxes
wangtai's avatar
wangtai committed
79
80
81
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - pts_instance_mask_path (str): Path of instance masks.
                - pts_semantic_mask_path (str): Path of semantic masks.
82
        """
83
        # Use index to get the annos, thus the evalhook could also use this api
liyinhao's avatar
liyinhao committed
84
        info = self.data_infos[index]
85
        if info['annos']['gt_num'] != 0:
liyinhao's avatar
liyinhao committed
86
87
88
            gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
                np.float32)  # k, 6
            gt_labels_3d = info['annos']['class'].astype(np.long)
89
        else:
liyinhao's avatar
liyinhao committed
90
            gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
liyinhao's avatar
liyinhao committed
91
            gt_labels_3d = np.zeros((0, ), dtype=np.long)
wuyuefeng's avatar
wuyuefeng committed
92
93
94
95
96
97
98
99

        # to target box structure
        gt_bboxes_3d = DepthInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
            with_yaw=False,
            origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)

zhangwenwei's avatar
zhangwenwei committed
100
        pts_instance_mask_path = osp.join(self.data_root,
liyinhao's avatar
liyinhao committed
101
                                          info['pts_instance_mask_path'])
zhangwenwei's avatar
zhangwenwei committed
102
        pts_semantic_mask_path = osp.join(self.data_root,
liyinhao's avatar
liyinhao committed
103
                                          info['pts_semantic_mask_path'])
104
105
106

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
107
            gt_labels_3d=gt_labels_3d,
108
109
110
            pts_instance_mask_path=pts_instance_mask_path,
            pts_semantic_mask_path=pts_semantic_mask_path)
        return anns_results
liyinhao's avatar
liyinhao committed
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='DEPTH',
                shift_height=False,
                load_dim=6,
                use_dim=[0, 1, 2]),
            dict(
                type='DefaultFormatBundle3D',
                class_names=self.CLASSES,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ]
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
130
131
132
133
134
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
135
            show (bool): Visualize the results online.
136
137
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
138
        """
liyinhao's avatar
liyinhao committed
139
        assert out_dir is not None, 'Expect out_dir, got none.'
140
        pipeline = self._get_pipeline(pipeline)
liyinhao's avatar
liyinhao committed
141
142
143
144
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
145
            points = self._extract_data(i, pipeline, 'points').numpy()
146
            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
liyinhao's avatar
liyinhao committed
147
            pred_bboxes = result['boxes_3d'].tensor.numpy()
148
149
            show_result(points, gt_bboxes, pred_bboxes, out_dir, file_name,
                        show)
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260


@DATASETS.register_module()
class ScanNetSegDataset(Custom3DSegDataset):
    r"""ScanNet Dataset for Semantic Segmentation Task.

    This class serves as the API for experiments on the ScanNet Dataset.

    Please refer to the `github repo <https://github.com/ScanNet/ScanNet>`_
    for data downloading.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        palette (list[list[int]], optional): The palette of segmentation map.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
        ignore_index (int, optional): The label index to be ignored, e.g. \
            unannotated points. If None is given, set to len(self.CLASSES).
            Defaults to None.
        scene_idxs (np.ndarray | str, optional): Precomputed index to load
            data. For scenes with many points, we may sample it several times.
            Defaults to None.
        label_weight (np.ndarray | str, optional): Precomputed weight to \
            balance loss calculation. If None is given, compute from data.
            Defaults to None.
    """
    CLASSES = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
               'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
               'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink',
               'bathtub', 'otherfurniture')

    VALID_CLASS_IDS = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28,
                       33, 34, 36, 39)

    ALL_CLASS_IDS = tuple(range(41))

    PALETTE = [
        [174, 199, 232],
        [152, 223, 138],
        [31, 119, 180],
        [255, 187, 120],
        [188, 189, 34],
        [140, 86, 75],
        [255, 152, 150],
        [214, 39, 40],
        [197, 176, 213],
        [148, 103, 189],
        [196, 156, 148],
        [23, 190, 207],
        [247, 182, 210],
        [219, 219, 141],
        [255, 127, 14],
        [158, 218, 229],
        [44, 160, 44],
        [112, 128, 144],
        [227, 119, 194],
        [82, 84, 163],
    ]

    def __init__(self,
                 data_root,
                 ann_file,
                 pipeline=None,
                 classes=None,
                 palette=None,
                 modality=None,
                 test_mode=False,
                 ignore_index=None,
                 scene_idxs=None,
                 label_weight=None):

        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            palette=palette,
            modality=modality,
            test_mode=test_mode,
            ignore_index=ignore_index,
            scene_idxs=scene_idxs,
            label_weight=label_weight)

    def get_ann_info(self, index):
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: annotation information consists of the following keys:

                - pts_semantic_mask_path (str): Path of semantic masks.
        """
        # Use index to get the annos, thus the evalhook could also use this api
        info = self.data_infos[index]

        pts_semantic_mask_path = osp.join(self.data_root,
                                          info['pts_semantic_mask_path'])

        anns_results = dict(pts_semantic_mask_path=pts_semantic_mask_path)
        return anns_results

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='DEPTH',
                shift_height=False,
                use_color=True,
                load_dim=6,
                use_dim=[0, 1, 2, 3, 4, 5]),
            dict(
                type='LoadAnnotations3D',
                with_bbox_3d=False,
                with_label_3d=False,
                with_mask_3d=False,
                with_seg_3d=True),
            dict(
                type='PointSegClassMapping',
279
                valid_cat_ids=self.VALID_CLASS_IDS),
280
281
282
283
284
285
286
287
288
            dict(
                type='DefaultFormatBundle3D',
                with_label=False,
                class_names=self.CLASSES),
            dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
        ]
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
289
290
291
292
293
294
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
            show (bool): Visualize the results online.
295
296
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
297
298
        """
        assert out_dir is not None, 'Expect out_dir, got none.'
299
        pipeline = self._get_pipeline(pipeline)
300
301
302
303
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
304
305
306
            points, gt_sem_mask = self._extract_data(
                i, pipeline, ['points', 'pts_semantic_mask'], load_annos=True)
            points = points.numpy()
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
            pred_sem_mask = result['semantic_mask'].numpy()
            show_seg_result(points, gt_sem_mask,
                            pred_sem_mask, out_dir, file_name,
                            np.array(self.PALETTE), self.ignore_index, show)

    def get_scene_idxs_and_label_weight(self, scene_idxs, label_weight):
        """Compute scene_idxs for data sampling and label weight for loss \
        calculation.

        We sample more times for scenes with more points. Label_weight is
        inversely proportional to number of class points.
        """
        # when testing, we load one whole scene every time
        # and we don't need label weight for loss calculation
        if not self.test_mode and scene_idxs is None:
            raise NotImplementedError(
                'please provide re-sampled scene indexes for training')

        return super().get_scene_idxs_and_label_weight(scene_idxs,
                                                       label_weight)
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

    def format_results(self, results, txtfile_prefix=None):
        r"""Format the results to txt file. Refer to `ScanNet documentation
        <http://kaldir.vc.in.tum.de/scannet_benchmark/documentation>`_.

        Args:
            outputs (list[dict]): Testing results of the dataset.
            txtfile_prefix (str | None): The prefix of saved files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
            tuple: (outputs, tmp_dir), outputs is the detection results,
                tmp_dir is the temporal directory created for saving submission
                files when ``submission_prefix`` is not specified.
        """
        import mmcv

        if txtfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            txtfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None
        mmcv.mkdir_or_exist(txtfile_prefix)

        # need to map network output to original label idx
        pred2label = np.zeros(len(self.VALID_CLASS_IDS)).astype(np.int)
        for original_label, output_idx in self.label_map.items():
            if output_idx != self.ignore_index:
                pred2label[output_idx] = original_label

        outputs = []
        for i, result in enumerate(results):
            info = self.data_infos[i]
            sample_idx = info['point_cloud']['lidar_idx']
            pred_sem_mask = result['semantic_mask'].numpy().astype(np.int)
            pred_label = pred2label[pred_sem_mask]
            curr_file = f'{txtfile_prefix}/{sample_idx}.txt'
            np.savetxt(curr_file, pred_label, fmt='%d')
            outputs.append(dict(seg_mask=pred_label))

        return outputs, tmp_dir