scannet_dataset.py 15.4 KB
Newer Older
1
import numpy as np
2
import tempfile
3
import warnings
zhangwenwei's avatar
zhangwenwei committed
4
from os import path as osp
5

6
from mmdet3d.core import show_result, show_seg_result
wuyuefeng's avatar
wuyuefeng committed
7
from mmdet3d.core.bbox import DepthInstance3DBoxes
8
from mmdet.datasets import DATASETS
9
from mmseg.datasets import DATASETS as SEG_DATASETS
zhangwenwei's avatar
zhangwenwei committed
10
from .custom_3d import Custom3DDataset
11
from .custom_3d_seg import Custom3DSegDataset
12
from .pipelines import Compose
13
14
15


@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
16
class ScanNetDataset(Custom3DDataset):
17
    r"""ScanNet Dataset for Detection Task.
18

wangtai's avatar
wangtai committed
19
20
    This class serves as the API for experiments on the ScanNet Dataset.

zhangwenwei's avatar
zhangwenwei committed
21
22
    Please refer to the `github repo <https://github.com/ScanNet/ScanNet>`_
    for data downloading.
wangtai's avatar
wangtai committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'Depth' in this dataset. Available options includes

wangtai's avatar
wangtai committed
38
39
40
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
wangtai's avatar
wangtai committed
41
42
43
44
45
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
46
47
48
49
50
51
    CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
               'bookshelf', 'picture', 'counter', 'desk', 'curtain',
               'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
               'garbagebin')

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
52
                 data_root,
53
54
                 ann_file,
                 pipeline=None,
liyinhao's avatar
liyinhao committed
55
                 classes=None,
liyinhao's avatar
liyinhao committed
56
                 modality=None,
57
                 box_type_3d='Depth',
wuyuefeng's avatar
Votenet  
wuyuefeng committed
58
                 filter_empty_gt=True,
zhangwenwei's avatar
zhangwenwei committed
59
                 test_mode=False):
60
61
62
63
64
65
66
67
68
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
            test_mode=test_mode)
69

liyinhao's avatar
liyinhao committed
70
    def get_ann_info(self, index):
71
72
73
74
75
76
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
77
            dict: annotation information consists of the following keys:
78

zhangwenwei's avatar
zhangwenwei committed
79
                - gt_bboxes_3d (:obj:`DepthInstance3DBoxes`): \
80
                    3D ground truth bboxes
wangtai's avatar
wangtai committed
81
82
83
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - pts_instance_mask_path (str): Path of instance masks.
                - pts_semantic_mask_path (str): Path of semantic masks.
84
85
                - axis_align_matrix (np.ndarray): Transformation matrix for \
                    global scene alignment.
86
        """
87
        # Use index to get the annos, thus the evalhook could also use this api
liyinhao's avatar
liyinhao committed
88
        info = self.data_infos[index]
89
        if info['annos']['gt_num'] != 0:
liyinhao's avatar
liyinhao committed
90
91
92
            gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
                np.float32)  # k, 6
            gt_labels_3d = info['annos']['class'].astype(np.long)
93
        else:
liyinhao's avatar
liyinhao committed
94
            gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
liyinhao's avatar
liyinhao committed
95
            gt_labels_3d = np.zeros((0, ), dtype=np.long)
wuyuefeng's avatar
wuyuefeng committed
96
97
98
99
100
101
102
103

        # to target box structure
        gt_bboxes_3d = DepthInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
            with_yaw=False,
            origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)

zhangwenwei's avatar
zhangwenwei committed
104
        pts_instance_mask_path = osp.join(self.data_root,
liyinhao's avatar
liyinhao committed
105
                                          info['pts_instance_mask_path'])
zhangwenwei's avatar
zhangwenwei committed
106
        pts_semantic_mask_path = osp.join(self.data_root,
liyinhao's avatar
liyinhao committed
107
                                          info['pts_semantic_mask_path'])
108

109
110
        axis_align_matrix = self._get_axis_align_matrix(info)

111
112
        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
113
            gt_labels_3d=gt_labels_3d,
114
            pts_instance_mask_path=pts_instance_mask_path,
115
116
            pts_semantic_mask_path=pts_semantic_mask_path,
            axis_align_matrix=axis_align_matrix)
117
        return anns_results
liyinhao's avatar
liyinhao committed
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    def prepare_test_data(self, index):
        """Prepare data for testing.

        We should take axis_align_matrix from self.data_infos since we need \
            to align point clouds.

        Args:
            index (int): Index for accessing the target data.

        Returns:
            dict: Testing data dict of the corresponding index.
        """
        input_dict = self.get_data_info(index)
        # take the axis_align_matrix from data_infos
        input_dict['ann_info'] = dict(
            axis_align_matrix=self._get_axis_align_matrix(
                self.data_infos[index]))
        self.pre_pipeline(input_dict)
        example = self.pipeline(input_dict)
        return example

    @staticmethod
    def _get_axis_align_matrix(info):
        """Get axis_align_matrix from info. If not exist, return identity mat.

        Args:
            info (dict): one data info term.

        Returns:
            np.ndarray: 4x4 transformation matrix.
        """
        if 'axis_align_matrix' in info['annos'].keys():
            return info['annos']['axis_align_matrix'].astype(np.float32)
        else:
            warnings.warn(
                'axis_align_matrix is not found in ScanNet data info, please '
                'use new pre-process scripts to re-generate ScanNet data')
            return np.eye(4).astype(np.float32)

158
159
160
161
162
163
164
165
166
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='DEPTH',
                shift_height=False,
                load_dim=6,
                use_dim=[0, 1, 2]),
167
            dict(type='GlobalAlignment', rotation_axis=2),
168
169
170
171
172
173
174
175
176
            dict(
                type='DefaultFormatBundle3D',
                class_names=self.CLASSES,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ]
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
177
178
179
180
181
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
182
            show (bool): Visualize the results online.
183
184
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
185
        """
liyinhao's avatar
liyinhao committed
186
        assert out_dir is not None, 'Expect out_dir, got none.'
187
        pipeline = self._get_pipeline(pipeline)
liyinhao's avatar
liyinhao committed
188
189
190
191
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
192
            points = self._extract_data(i, pipeline, 'points').numpy()
193
            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
liyinhao's avatar
liyinhao committed
194
            pred_bboxes = result['boxes_3d'].tensor.numpy()
195
196
            show_result(points, gt_bboxes, pred_bboxes, out_dir, file_name,
                        show)
197
198
199


@DATASETS.register_module()
200
@SEG_DATASETS.register_module()
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
class ScanNetSegDataset(Custom3DSegDataset):
    r"""ScanNet Dataset for Semantic Segmentation Task.

    This class serves as the API for experiments on the ScanNet Dataset.

    Please refer to the `github repo <https://github.com/ScanNet/ScanNet>`_
    for data downloading.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        palette (list[list[int]], optional): The palette of segmentation map.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
        ignore_index (int, optional): The label index to be ignored, e.g. \
            unannotated points. If None is given, set to len(self.CLASSES).
            Defaults to None.
        scene_idxs (np.ndarray | str, optional): Precomputed index to load
            data. For scenes with many points, we may sample it several times.
            Defaults to None.
    """
    CLASSES = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
               'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
               'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink',
               'bathtub', 'otherfurniture')

    VALID_CLASS_IDS = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28,
                       33, 34, 36, 39)

    ALL_CLASS_IDS = tuple(range(41))

    PALETTE = [
        [174, 199, 232],
        [152, 223, 138],
        [31, 119, 180],
        [255, 187, 120],
        [188, 189, 34],
        [140, 86, 75],
        [255, 152, 150],
        [214, 39, 40],
        [197, 176, 213],
        [148, 103, 189],
        [196, 156, 148],
        [23, 190, 207],
        [247, 182, 210],
        [219, 219, 141],
        [255, 127, 14],
        [158, 218, 229],
        [44, 160, 44],
        [112, 128, 144],
        [227, 119, 194],
        [82, 84, 163],
    ]

    def __init__(self,
                 data_root,
                 ann_file,
                 pipeline=None,
                 classes=None,
                 palette=None,
                 modality=None,
                 test_mode=False,
                 ignore_index=None,
271
                 scene_idxs=None):
272
273
274
275
276
277
278
279
280
281

        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            palette=palette,
            modality=modality,
            test_mode=test_mode,
            ignore_index=ignore_index,
282
            scene_idxs=scene_idxs)
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

    def get_ann_info(self, index):
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: annotation information consists of the following keys:

                - pts_semantic_mask_path (str): Path of semantic masks.
        """
        # Use index to get the annos, thus the evalhook could also use this api
        info = self.data_infos[index]

        pts_semantic_mask_path = osp.join(self.data_root,
                                          info['pts_semantic_mask_path'])

        anns_results = dict(pts_semantic_mask_path=pts_semantic_mask_path)
        return anns_results

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='DEPTH',
                shift_height=False,
                use_color=True,
                load_dim=6,
                use_dim=[0, 1, 2, 3, 4, 5]),
            dict(
                type='LoadAnnotations3D',
                with_bbox_3d=False,
                with_label_3d=False,
                with_mask_3d=False,
                with_seg_3d=True),
            dict(
                type='PointSegClassMapping',
322
323
                valid_cat_ids=self.VALID_CLASS_IDS,
                max_cat_id=np.max(self.ALL_CLASS_IDS)),
324
325
326
327
328
329
330
331
332
            dict(
                type='DefaultFormatBundle3D',
                with_label=False,
                class_names=self.CLASSES),
            dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
        ]
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
333
334
335
336
337
338
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
            show (bool): Visualize the results online.
339
340
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
341
342
        """
        assert out_dir is not None, 'Expect out_dir, got none.'
343
        pipeline = self._get_pipeline(pipeline)
344
345
346
347
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
348
349
350
            points, gt_sem_mask = self._extract_data(
                i, pipeline, ['points', 'pts_semantic_mask'], load_annos=True)
            points = points.numpy()
351
352
353
354
355
            pred_sem_mask = result['semantic_mask'].numpy()
            show_seg_result(points, gt_sem_mask,
                            pred_sem_mask, out_dir, file_name,
                            np.array(self.PALETTE), self.ignore_index, show)

356
357
    def get_scene_idxs(self, scene_idxs):
        """Compute scene_idxs for data sampling.
358

359
        We sample more times for scenes with more points.
360
361
362
363
364
365
        """
        # when testing, we load one whole scene every time
        if not self.test_mode and scene_idxs is None:
            raise NotImplementedError(
                'please provide re-sampled scene indexes for training')

366
        return super().get_scene_idxs(scene_idxs)
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

    def format_results(self, results, txtfile_prefix=None):
        r"""Format the results to txt file. Refer to `ScanNet documentation
        <http://kaldir.vc.in.tum.de/scannet_benchmark/documentation>`_.

        Args:
            outputs (list[dict]): Testing results of the dataset.
            txtfile_prefix (str | None): The prefix of saved files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
            tuple: (outputs, tmp_dir), outputs is the detection results,
                tmp_dir is the temporal directory created for saving submission
                files when ``submission_prefix`` is not specified.
        """
        import mmcv

        if txtfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            txtfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None
        mmcv.mkdir_or_exist(txtfile_prefix)

        # need to map network output to original label idx
        pred2label = np.zeros(len(self.VALID_CLASS_IDS)).astype(np.int)
        for original_label, output_idx in self.label_map.items():
            if output_idx != self.ignore_index:
                pred2label[output_idx] = original_label

        outputs = []
        for i, result in enumerate(results):
            info = self.data_infos[i]
            sample_idx = info['point_cloud']['lidar_idx']
            pred_sem_mask = result['semantic_mask'].numpy().astype(np.int)
            pred_label = pred2label[pred_sem_mask]
            curr_file = f'{txtfile_prefix}/{sample_idx}.txt'
            np.savetxt(curr_file, pred_label, fmt='%d')
            outputs.append(dict(seg_mask=pred_label))

        return outputs, tmp_dir