scannet_dataset.py 23.3 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import tempfile
3
import warnings
zhangwenwei's avatar
zhangwenwei committed
4
from os import path as osp
5

6
7
import numpy as np

8
from mmdet3d.core import instance_seg_eval, show_result, show_seg_result
wuyuefeng's avatar
wuyuefeng committed
9
from mmdet3d.core.bbox import DepthInstance3DBoxes
10
from mmseg.datasets import DATASETS as SEG_DATASETS
11
from .builder import DATASETS
zhangwenwei's avatar
zhangwenwei committed
12
from .custom_3d import Custom3DDataset
13
from .custom_3d_seg import Custom3DSegDataset
14
from .pipelines import Compose
15
16
17


@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
18
class ScanNetDataset(Custom3DDataset):
19
    r"""ScanNet Dataset for Detection Task.
20

wangtai's avatar
wangtai committed
21
22
    This class serves as the API for experiments on the ScanNet Dataset.

zhangwenwei's avatar
zhangwenwei committed
23
24
    Please refer to the `github repo <https://github.com/ScanNet/ScanNet>`_
    for data downloading.
wangtai's avatar
wangtai committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'Depth' in this dataset. Available options includes

wangtai's avatar
wangtai committed
40
41
42
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
wangtai's avatar
wangtai committed
43
44
45
46
47
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
48
49
50
51
52
53
    CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
               'bookshelf', 'picture', 'counter', 'desk', 'curtain',
               'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
               'garbagebin')

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
54
                 data_root,
55
56
                 ann_file,
                 pipeline=None,
liyinhao's avatar
liyinhao committed
57
                 classes=None,
58
                 modality=dict(use_camera=False, use_depth=True),
59
                 box_type_3d='Depth',
wuyuefeng's avatar
Votenet  
wuyuefeng committed
60
                 filter_empty_gt=True,
61
62
                 test_mode=False,
                 **kwargs):
63
64
65
66
67
68
69
70
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
71
72
            test_mode=test_mode,
            **kwargs)
73
74
75
76
77
78
79
80
81
82
83
        assert 'use_camera' in self.modality and \
               'use_depth' in self.modality
        assert self.modality['use_camera'] or self.modality['use_depth']

    def get_data_info(self, index):
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
84
            dict: Data information that will be passed to the data
85
86
87
88
89
                preprocessing pipelines. It includes the following keys:

                - sample_idx (str): Sample index.
                - pts_filename (str): Filename of point clouds.
                - file_name (str): Filename of point clouds.
90
                - img_prefix (str, optional): Prefix of image files.
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
                - img_info (dict, optional): Image info.
                - ann_info (dict): Annotation info.
        """
        info = self.data_infos[index]
        sample_idx = info['point_cloud']['lidar_idx']
        pts_filename = osp.join(self.data_root, info['pts_path'])
        input_dict = dict(sample_idx=sample_idx)

        if self.modality['use_depth']:
            input_dict['pts_filename'] = pts_filename
            input_dict['file_name'] = pts_filename

        if self.modality['use_camera']:
            img_info = []
            for img_path in info['img_paths']:
                img_info.append(
                    dict(filename=osp.join(self.data_root, img_path)))
            intrinsic = info['intrinsics']
            axis_align_matrix = self._get_axis_align_matrix(info)
            depth2img = []
            for extrinsic in info['extrinsics']:
                depth2img.append(
                    intrinsic @ np.linalg.inv(axis_align_matrix @ extrinsic))

            input_dict['img_prefix'] = None
            input_dict['img_info'] = img_info
            input_dict['depth2img'] = depth2img

        if not self.test_mode:
            annos = self.get_ann_info(index)
            input_dict['ann_info'] = annos
            if self.filter_empty_gt and ~(annos['gt_labels_3d'] != -1).any():
                return None
        return input_dict
125

liyinhao's avatar
liyinhao committed
126
    def get_ann_info(self, index):
127
128
129
130
131
132
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
133
            dict: annotation information consists of the following keys:
134

135
                - gt_bboxes_3d (:obj:`DepthInstance3DBoxes`):
136
                    3D ground truth bboxes
wangtai's avatar
wangtai committed
137
138
139
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - pts_instance_mask_path (str): Path of instance masks.
                - pts_semantic_mask_path (str): Path of semantic masks.
140
                - axis_align_matrix (np.ndarray): Transformation matrix for
141
                    global scene alignment.
142
        """
143
        # Use index to get the annos, thus the evalhook could also use this api
liyinhao's avatar
liyinhao committed
144
        info = self.data_infos[index]
145
        if info['annos']['gt_num'] != 0:
liyinhao's avatar
liyinhao committed
146
147
            gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
                np.float32)  # k, 6
WRH's avatar
WRH committed
148
            gt_labels_3d = info['annos']['class'].astype(np.int64)
149
        else:
liyinhao's avatar
liyinhao committed
150
            gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
WRH's avatar
WRH committed
151
            gt_labels_3d = np.zeros((0, ), dtype=np.int64)
wuyuefeng's avatar
wuyuefeng committed
152
153
154
155
156
157
158
159

        # to target box structure
        gt_bboxes_3d = DepthInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
            with_yaw=False,
            origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)

zhangwenwei's avatar
zhangwenwei committed
160
        pts_instance_mask_path = osp.join(self.data_root,
liyinhao's avatar
liyinhao committed
161
                                          info['pts_instance_mask_path'])
zhangwenwei's avatar
zhangwenwei committed
162
        pts_semantic_mask_path = osp.join(self.data_root,
liyinhao's avatar
liyinhao committed
163
                                          info['pts_semantic_mask_path'])
164

165
166
        axis_align_matrix = self._get_axis_align_matrix(info)

167
168
        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
169
            gt_labels_3d=gt_labels_3d,
170
            pts_instance_mask_path=pts_instance_mask_path,
171
172
            pts_semantic_mask_path=pts_semantic_mask_path,
            axis_align_matrix=axis_align_matrix)
173
        return anns_results
liyinhao's avatar
liyinhao committed
174

175
176
177
    def prepare_test_data(self, index):
        """Prepare data for testing.

178
        We should take axis_align_matrix from self.data_infos since we need
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
            to align point clouds.

        Args:
            index (int): Index for accessing the target data.

        Returns:
            dict: Testing data dict of the corresponding index.
        """
        input_dict = self.get_data_info(index)
        # take the axis_align_matrix from data_infos
        input_dict['ann_info'] = dict(
            axis_align_matrix=self._get_axis_align_matrix(
                self.data_infos[index]))
        self.pre_pipeline(input_dict)
        example = self.pipeline(input_dict)
        return example

    @staticmethod
    def _get_axis_align_matrix(info):
        """Get axis_align_matrix from info. If not exist, return identity mat.

        Args:
            info (dict): one data info term.

        Returns:
            np.ndarray: 4x4 transformation matrix.
        """
        if 'axis_align_matrix' in info['annos'].keys():
            return info['annos']['axis_align_matrix'].astype(np.float32)
        else:
            warnings.warn(
                'axis_align_matrix is not found in ScanNet data info, please '
                'use new pre-process scripts to re-generate ScanNet data')
            return np.eye(4).astype(np.float32)

214
215
216
217
218
219
220
221
222
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='DEPTH',
                shift_height=False,
                load_dim=6,
                use_dim=[0, 1, 2]),
223
            dict(type='GlobalAlignment', rotation_axis=2),
224
225
226
227
228
229
230
231
232
            dict(
                type='DefaultFormatBundle3D',
                class_names=self.CLASSES,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ]
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
233
234
235
236
237
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
238
            show (bool): Visualize the results online.
239
240
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
241
        """
liyinhao's avatar
liyinhao committed
242
        assert out_dir is not None, 'Expect out_dir, got none.'
243
        pipeline = self._get_pipeline(pipeline)
liyinhao's avatar
liyinhao committed
244
245
246
247
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
248
            points = self._extract_data(i, pipeline, 'points').numpy()
249
            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
liyinhao's avatar
liyinhao committed
250
            pred_bboxes = result['boxes_3d'].tensor.numpy()
251
252
            show_result(points, gt_bboxes, pred_bboxes, out_dir, file_name,
                        show)
253
254
255


@DATASETS.register_module()
256
@SEG_DATASETS.register_module()
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
class ScanNetSegDataset(Custom3DSegDataset):
    r"""ScanNet Dataset for Semantic Segmentation Task.

    This class serves as the API for experiments on the ScanNet Dataset.

    Please refer to the `github repo <https://github.com/ScanNet/ScanNet>`_
    for data downloading.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        palette (list[list[int]], optional): The palette of segmentation map.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
278
        ignore_index (int, optional): The label index to be ignored, e.g.
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
            unannotated points. If None is given, set to len(self.CLASSES).
            Defaults to None.
        scene_idxs (np.ndarray | str, optional): Precomputed index to load
            data. For scenes with many points, we may sample it several times.
            Defaults to None.
    """
    CLASSES = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
               'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
               'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink',
               'bathtub', 'otherfurniture')

    VALID_CLASS_IDS = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28,
                       33, 34, 36, 39)

    ALL_CLASS_IDS = tuple(range(41))

    PALETTE = [
        [174, 199, 232],
        [152, 223, 138],
        [31, 119, 180],
        [255, 187, 120],
        [188, 189, 34],
        [140, 86, 75],
        [255, 152, 150],
        [214, 39, 40],
        [197, 176, 213],
        [148, 103, 189],
        [196, 156, 148],
        [23, 190, 207],
        [247, 182, 210],
        [219, 219, 141],
        [255, 127, 14],
        [158, 218, 229],
        [44, 160, 44],
        [112, 128, 144],
        [227, 119, 194],
        [82, 84, 163],
    ]

    def __init__(self,
                 data_root,
                 ann_file,
                 pipeline=None,
                 classes=None,
                 palette=None,
                 modality=None,
                 test_mode=False,
                 ignore_index=None,
327
328
                 scene_idxs=None,
                 **kwargs):
329
330
331
332
333
334
335
336
337
338

        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            palette=palette,
            modality=modality,
            test_mode=test_mode,
            ignore_index=ignore_index,
339
340
            scene_idxs=scene_idxs,
            **kwargs)
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

    def get_ann_info(self, index):
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: annotation information consists of the following keys:

                - pts_semantic_mask_path (str): Path of semantic masks.
        """
        # Use index to get the annos, thus the evalhook could also use this api
        info = self.data_infos[index]

        pts_semantic_mask_path = osp.join(self.data_root,
                                          info['pts_semantic_mask_path'])

        anns_results = dict(pts_semantic_mask_path=pts_semantic_mask_path)
        return anns_results

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='DEPTH',
                shift_height=False,
                use_color=True,
                load_dim=6,
                use_dim=[0, 1, 2, 3, 4, 5]),
            dict(
                type='LoadAnnotations3D',
                with_bbox_3d=False,
                with_label_3d=False,
                with_mask_3d=False,
                with_seg_3d=True),
            dict(
                type='PointSegClassMapping',
380
381
                valid_cat_ids=self.VALID_CLASS_IDS,
                max_cat_id=np.max(self.ALL_CLASS_IDS)),
382
383
384
385
386
387
388
389
390
            dict(
                type='DefaultFormatBundle3D',
                with_label=False,
                class_names=self.CLASSES),
            dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
        ]
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
391
392
393
394
395
396
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
            show (bool): Visualize the results online.
397
398
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
399
400
        """
        assert out_dir is not None, 'Expect out_dir, got none.'
401
        pipeline = self._get_pipeline(pipeline)
402
403
404
405
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
406
407
408
            points, gt_sem_mask = self._extract_data(
                i, pipeline, ['points', 'pts_semantic_mask'], load_annos=True)
            points = points.numpy()
409
410
411
412
413
            pred_sem_mask = result['semantic_mask'].numpy()
            show_seg_result(points, gt_sem_mask,
                            pred_sem_mask, out_dir, file_name,
                            np.array(self.PALETTE), self.ignore_index, show)

414
415
    def get_scene_idxs(self, scene_idxs):
        """Compute scene_idxs for data sampling.
416

417
        We sample more times for scenes with more points.
418
419
420
421
422
423
        """
        # when testing, we load one whole scene every time
        if not self.test_mode and scene_idxs is None:
            raise NotImplementedError(
                'please provide re-sampled scene indexes for training')

424
        return super().get_scene_idxs(scene_idxs)
425
426
427
428
429
430
431

    def format_results(self, results, txtfile_prefix=None):
        r"""Format the results to txt file. Refer to `ScanNet documentation
        <http://kaldir.vc.in.tum.de/scannet_benchmark/documentation>`_.

        Args:
            outputs (list[dict]): Testing results of the dataset.
432
            txtfile_prefix (str): The prefix of saved files. It includes
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
            tuple: (outputs, tmp_dir), outputs is the detection results,
                tmp_dir is the temporal directory created for saving submission
                files when ``submission_prefix`` is not specified.
        """
        import mmcv

        if txtfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            txtfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None
        mmcv.mkdir_or_exist(txtfile_prefix)

        # need to map network output to original label idx
        pred2label = np.zeros(len(self.VALID_CLASS_IDS)).astype(np.int)
        for original_label, output_idx in self.label_map.items():
            if output_idx != self.ignore_index:
                pred2label[output_idx] = original_label

        outputs = []
        for i, result in enumerate(results):
            info = self.data_infos[i]
            sample_idx = info['point_cloud']['lidar_idx']
            pred_sem_mask = result['semantic_mask'].numpy().astype(np.int)
            pred_label = pred2label[pred_sem_mask]
            curr_file = f'{txtfile_prefix}/{sample_idx}.txt'
            np.savetxt(curr_file, pred_label, fmt='%d')
            outputs.append(dict(seg_mask=pred_label))

        return outputs, tmp_dir
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614


@DATASETS.register_module()
@SEG_DATASETS.register_module()
class ScanNetInstanceSegDataset(Custom3DSegDataset):
    CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
               'bookshelf', 'picture', 'counter', 'desk', 'curtain',
               'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
               'garbagebin')

    VALID_CLASS_IDS = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34,
                       36, 39)

    ALL_CLASS_IDS = tuple(range(41))

    def get_ann_info(self, index):
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: annotation information consists of the following keys:
                - pts_semantic_mask_path (str): Path of semantic masks.
                - pts_instance_mask_path (str): Path of instance masks.
        """
        # Use index to get the annos, thus the evalhook could also use this api
        info = self.data_infos[index]

        pts_instance_mask_path = osp.join(self.data_root,
                                          info['pts_instance_mask_path'])
        pts_semantic_mask_path = osp.join(self.data_root,
                                          info['pts_semantic_mask_path'])

        anns_results = dict(
            pts_instance_mask_path=pts_instance_mask_path,
            pts_semantic_mask_path=pts_semantic_mask_path)
        return anns_results

    def get_classes_and_palette(self, classes=None, palette=None):
        """Get class names of current dataset. Palette is simply ignored for
        instance segmentation.

        Args:
            classes (Sequence[str] | str | None): If classes is None, use
                default CLASSES defined by builtin dataset. If classes is a
                string, take it as a file name. The file contains the name of
                classes where each line contains one class name. If classes is
                a tuple or list, override the CLASSES defined by the dataset.
                Defaults to None.
            palette (Sequence[Sequence[int]]] | np.ndarray | None):
                The palette of segmentation map. If None is given, random
                palette will be generated. Defaults to None.
        """
        if classes is not None:
            return classes, None
        return self.CLASSES, None

    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='DEPTH',
                shift_height=False,
                use_color=True,
                load_dim=6,
                use_dim=[0, 1, 2, 3, 4, 5]),
            dict(
                type='LoadAnnotations3D',
                with_bbox_3d=False,
                with_label_3d=False,
                with_mask_3d=True,
                with_seg_3d=True),
            dict(
                type='PointSegClassMapping',
                valid_cat_ids=self.VALID_CLASS_IDS,
                max_cat_id=40),
            dict(
                type='DefaultFormatBundle3D',
                with_label=False,
                class_names=self.CLASSES),
            dict(
                type='Collect3D',
                keys=['points', 'pts_semantic_mask', 'pts_instance_mask'])
        ]
        return Compose(pipeline)

    def evaluate(self,
                 results,
                 metric=None,
                 options=None,
                 logger=None,
                 show=False,
                 out_dir=None,
                 pipeline=None):
        """Evaluation in instance segmentation protocol.

        Args:
            results (list[dict]): List of results.
            metric (str | list[str]): Metrics to be evaluated.
            options (dict, optional): options for instance_seg_eval.
            logger (logging.Logger | None | str): Logger used for printing
                related information during evaluation. Defaults to None.
            show (bool, optional): Whether to visualize.
                Defaults to False.
            out_dir (str, optional): Path to save the visualization results.
                Defaults to None.
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.

        Returns:
            dict: Evaluation results.
        """
        assert isinstance(
            results, list), f'Expect results to be list, got {type(results)}.'
        assert len(results) > 0, 'Expect length of results > 0.'
        assert len(results) == len(self.data_infos)
        assert isinstance(
            results[0], dict
        ), f'Expect elements in results to be dict, got {type(results[0])}.'

        load_pipeline = self._get_pipeline(pipeline)
        pred_instance_masks = [result['instance_mask'] for result in results]
        pred_instance_labels = [result['instance_label'] for result in results]
        pred_instance_scores = [result['instance_score'] for result in results]
        gt_semantic_masks, gt_instance_masks = zip(*[
            self._extract_data(
                index=i,
                pipeline=load_pipeline,
                key=['pts_semantic_mask', 'pts_instance_mask'],
                load_annos=True) for i in range(len(self.data_infos))
        ])
        ret_dict = instance_seg_eval(
            gt_semantic_masks,
            gt_instance_masks,
            pred_instance_masks,
            pred_instance_labels,
            pred_instance_scores,
            valid_class_ids=self.VALID_CLASS_IDS,
            class_labels=self.CLASSES,
            options=options,
            logger=logger)

        if show:
            raise NotImplementedError('show is not implemented for now')

        return ret_dict