"vscode:/vscode.git/clone" did not exist on "2bc62c484c4227b9e1cc9e2578a10ec572d7ebeb"
inference.py 13.8 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
ChaimZhu's avatar
ChaimZhu committed
2
import warnings
3
4
from copy import deepcopy
from os import path as osp
ChaimZhu's avatar
ChaimZhu committed
5
6
from pathlib import Path
from typing import Optional, Sequence, Union
7

8
import mmengine
9
import numpy as np
wuyuefeng's avatar
Demo  
wuyuefeng committed
10
import torch
ChaimZhu's avatar
ChaimZhu committed
11
import torch.nn as nn
12
from mmengine.config import Config
13
from mmengine.dataset import Compose, pseudo_collate
14
from mmengine.registry import init_default_scope
ChaimZhu's avatar
ChaimZhu committed
15
from mmengine.runner import load_checkpoint
wuyuefeng's avatar
Demo  
wuyuefeng committed
16

zhangshilong's avatar
zhangshilong committed
17
18
19
from mmdet3d.registry import MODELS
from mmdet3d.structures import Box3DMode, Det3DDataSample, get_box_type
from mmdet3d.structures.det3d_data_sample import SampleList
wuyuefeng's avatar
Demo  
wuyuefeng committed
20
21


22
23
24
25
def convert_SyncBN(config):
    """Convert config's naiveSyncBN to BN.

    Args:
26
         config (str or :obj:`mmengine.Config`): Config file path or the config
27
28
29
30
31
32
33
34
35
36
37
            object.
    """
    if isinstance(config, dict):
        for item in config:
            if item == 'norm_cfg':
                config[item]['type'] = config[item]['type']. \
                                    replace('naiveSyncBN', 'BN')
            else:
                convert_SyncBN(config[item])


ChaimZhu's avatar
ChaimZhu committed
38
39
40
41
def init_model(config: Union[str, Path, Config],
               checkpoint: Optional[str] = None,
               device: str = 'cuda:0',
               cfg_options: Optional[dict] = None):
42
43
    """Initialize a model from config file, which could be a 3D detector or a
    3D segmentor.
wuyuefeng's avatar
Demo  
wuyuefeng committed
44
45

    Args:
ChaimZhu's avatar
ChaimZhu committed
46
47
        config (str, :obj:`Path`, or :obj:`mmengine.Config`): Config file path,
            :obj:`Path`, or the config object.
wuyuefeng's avatar
Demo  
wuyuefeng committed
48
49
50
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.
        device (str): Device to use.
ChaimZhu's avatar
ChaimZhu committed
51
52
        cfg_options (dict, optional): Options to override some settings in
            the used config.
wuyuefeng's avatar
Demo  
wuyuefeng committed
53
54
55
56

    Returns:
        nn.Module: The constructed detector.
    """
ChaimZhu's avatar
ChaimZhu committed
57
    if isinstance(config, (str, Path)):
58
59
        config = Config.fromfile(config)
    elif not isinstance(config, Config):
wuyuefeng's avatar
Demo  
wuyuefeng committed
60
61
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
ChaimZhu's avatar
ChaimZhu committed
62
63
    if cfg_options is not None:
        config.merge_from_dict(cfg_options)
64

65
    convert_SyncBN(config.model)
66
    config.model.train_cfg = None
67
    init_default_scope(config.get('default_scope', 'mmdet3d'))
zhangshilong's avatar
zhangshilong committed
68
    model = MODELS.build(config.model)
ChaimZhu's avatar
ChaimZhu committed
69

wuyuefeng's avatar
Demo  
wuyuefeng committed
70
    if checkpoint is not None:
71
        checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
ChaimZhu's avatar
ChaimZhu committed
72
73
74
        # save the dataset_meta in the model for convenience
        if 'dataset_meta' in checkpoint.get('meta', {}):
            # mmdet3d 1.x
75
            model.dataset_meta = checkpoint['meta']['dataset_meta']
ChaimZhu's avatar
ChaimZhu committed
76
77
78
        elif 'CLASSES' in checkpoint.get('meta', {}):
            # < mmdet3d 1.x
            classes = checkpoint['meta']['CLASSES']
79
            model.dataset_meta = {'classes': classes}
ChaimZhu's avatar
ChaimZhu committed
80
81

            if 'PALETTE' in checkpoint.get('meta', {}):  # 3D Segmentor
82
                model.dataset_meta['palette'] = checkpoint['meta']['PALETTE']
wuyuefeng's avatar
Demo  
wuyuefeng committed
83
        else:
ChaimZhu's avatar
ChaimZhu committed
84
            # < mmdet3d 1.x
85
            model.dataset_meta = {'classes': config.class_names}
ChaimZhu's avatar
ChaimZhu committed
86
87

            if 'PALETTE' in checkpoint.get('meta', {}):  # 3D Segmentor
88
                model.dataset_meta['palette'] = checkpoint['meta']['PALETTE']
ChaimZhu's avatar
ChaimZhu committed
89

wuyuefeng's avatar
Demo  
wuyuefeng committed
90
    model.cfg = config  # save the config in the model for convenience
91
92
93
    if device != 'cpu':
        torch.cuda.set_device(device)
    else:
ChaimZhu's avatar
ChaimZhu committed
94
95
96
        warnings.warn('Don\'t suggest using CPU device. '
                      'Some functions are not supported for now.')

wuyuefeng's avatar
Demo  
wuyuefeng committed
97
98
99
100
101
    model.to(device)
    model.eval()
    return model


ChaimZhu's avatar
ChaimZhu committed
102
103
104
105
106
107
PointsType = Union[str, np.ndarray, Sequence[str], Sequence[np.ndarray]]
ImagesType = Union[str, np.ndarray, Sequence[str], Sequence[np.ndarray]]


def inference_detector(model: nn.Module,
                       pcds: PointsType) -> Union[Det3DDataSample, SampleList]:
wuyuefeng's avatar
Demo  
wuyuefeng committed
108
109
110
111
    """Inference point cloud with the detector.

    Args:
        model (nn.Module): The loaded detector.
ChaimZhu's avatar
ChaimZhu committed
112
113
        pcds (str, ndarray, Sequence[str/ndarray]):
            Either point cloud files or loaded point cloud.
wuyuefeng's avatar
Demo  
wuyuefeng committed
114
115

    Returns:
ChaimZhu's avatar
ChaimZhu committed
116
117
118
        :obj:`Det3DDataSample` or list[:obj:`Det3DDataSample`]:
        If pcds is a list or tuple, the same length list type results
        will be returned, otherwise return the detection results directly.
wuyuefeng's avatar
Demo  
wuyuefeng committed
119
    """
ChaimZhu's avatar
ChaimZhu committed
120
121
122
123
124
125
    if isinstance(pcds, (list, tuple)):
        is_batch = True
    else:
        pcds = [pcds]
        is_batch = False

wuyuefeng's avatar
Demo  
wuyuefeng committed
126
    cfg = model.cfg
127

ChaimZhu's avatar
ChaimZhu committed
128
    if not isinstance(pcds[0], str):
129
130
        cfg = cfg.copy()
        # set loading pipeline type
ChaimZhu's avatar
ChaimZhu committed
131
        cfg.test_dataloader.dataset.pipeline[0].type = 'LoadPointsFromDict'
132

wuyuefeng's avatar
Demo  
wuyuefeng committed
133
    # build the data pipeline
ChaimZhu's avatar
ChaimZhu committed
134
    test_pipeline = deepcopy(cfg.test_dataloader.dataset.pipeline)
wuyuefeng's avatar
Demo  
wuyuefeng committed
135
    test_pipeline = Compose(test_pipeline)
136
137
    box_type_3d, box_mode_3d = \
        get_box_type(cfg.test_dataloader.dataset.box_type_3d)
ChaimZhu's avatar
ChaimZhu committed
138
139
140
141
142
143
144
145

    data = []
    for pcd in pcds:
        # prepare data
        if isinstance(pcd, str):
            # load from point cloud file
            data_ = dict(
                lidar_points=dict(lidar_path=pcd),
146
                timestamp=1,
ChaimZhu's avatar
ChaimZhu committed
147
                # for ScanNet demo we need axis_align_matrix
148
149
150
                axis_align_matrix=np.eye(4),
                box_type_3d=box_type_3d,
                box_mode_3d=box_mode_3d)
ChaimZhu's avatar
ChaimZhu committed
151
152
153
154
        else:
            # directly use loaded point cloud
            data_ = dict(
                points=pcd,
155
                timestamp=1,
ChaimZhu's avatar
ChaimZhu committed
156
                # for ScanNet demo we need axis_align_matrix
157
158
159
                axis_align_matrix=np.eye(4),
                box_type_3d=box_type_3d,
                box_mode_3d=box_mode_3d)
ChaimZhu's avatar
ChaimZhu committed
160
161
        data_ = test_pipeline(data_)
        data.append(data_)
162

163
164
    collate_data = pseudo_collate(data)

wuyuefeng's avatar
Demo  
wuyuefeng committed
165
166
    # forward the model
    with torch.no_grad():
167
        results = model.test_step(collate_data)
ChaimZhu's avatar
ChaimZhu committed
168
169

    if not is_batch:
170
        return results[0], data[0]
ChaimZhu's avatar
ChaimZhu committed
171
    else:
172
        return results, data
wuyuefeng's avatar
Demo  
wuyuefeng committed
173
174


ChaimZhu's avatar
ChaimZhu committed
175
176
177
def inference_multi_modality_detector(model: nn.Module,
                                      pcds: Union[str, Sequence[str]],
                                      imgs: Union[str, Sequence[str]],
178
                                      ann_file: Union[str, Sequence[str]],
179
180
                                      cam_type: str = 'CAM2'):
    """Inference point cloud with the multi-modality detector. Now we only
181
182
    support multi-modality detector for KITTI and SUNRGBD datasets since the
    multi-view image loading is not supported yet in this inference function.
183
184
185

    Args:
        model (nn.Module): The loaded detector.
ChaimZhu's avatar
ChaimZhu committed
186
187
188
189
        pcds (str, Sequence[str]):
            Either point cloud files or loaded point cloud.
        imgs (str, Sequence[str]):
           Either image files or loaded images.
190
        ann_file (str, Sequence[str]): Annotation files.
191
192
193
194
        cam_type (str): Image of Camera chose to infer. When detector only uses
            single-view image, we need to specify a camera view. For kitti
            dataset, it should be 'CAM2'. For sunrgbd, it should be 'CAM0'.
            When detector uses multi-view images, we should set it to 'all'.
195
196

    Returns:
ChaimZhu's avatar
ChaimZhu committed
197
198
199
        :obj:`Det3DDataSample` or list[:obj:`Det3DDataSample`]:
        If pcds is a list or tuple, the same length list type results
        will be returned, otherwise return the detection results directly.
200
    """
ChaimZhu's avatar
ChaimZhu committed
201
202
203
    if isinstance(pcds, (list, tuple)):
        is_batch = True
        assert isinstance(imgs, (list, tuple))
204
        assert len(pcds) == len(imgs)
ChaimZhu's avatar
ChaimZhu committed
205
206
207
208
209
    else:
        pcds = [pcds]
        imgs = [imgs]
        is_batch = False

210
    cfg = model.cfg
ChaimZhu's avatar
ChaimZhu committed
211

212
    # build the data pipeline
ChaimZhu's avatar
ChaimZhu committed
213
    test_pipeline = deepcopy(cfg.test_dataloader.dataset.pipeline)
214
    test_pipeline = Compose(test_pipeline)
ChaimZhu's avatar
ChaimZhu committed
215
216
217
    box_type_3d, box_mode_3d = \
        get_box_type(cfg.test_dataloader.dataset.box_type_3d)

218
    data_list = mmengine.load(ann_file)['data_list']
219

ChaimZhu's avatar
ChaimZhu committed
220
221
222
    data = []
    for index, pcd in enumerate(pcds):
        # get data info containing calib
223
        data_info = data_list[index]
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        img = imgs[index]

        if cam_type != 'all':
            assert osp.isfile(img), f'{img} must be a file.'
            img_path = data_info['images'][cam_type]['img_path']
            if osp.basename(img_path) != osp.basename(img):
                raise ValueError(
                    f'the info file of {img_path} is not provided.')
            data_ = dict(
                lidar_points=dict(lidar_path=pcd),
                img_path=img,
                box_type_3d=box_type_3d,
                box_mode_3d=box_mode_3d)
            data_info['images'][cam_type]['img_path'] = img
            if 'cam2img' in data_info['images'][cam_type]:
                # The data annotation in SRUNRGBD dataset does not contain
                # `cam2img`
                data_['cam2img'] = np.array(
                    data_info['images'][cam_type]['cam2img'])

            # LiDAR to image conversion for KITTI dataset
            if box_mode_3d == Box3DMode.LIDAR:
                if 'lidar2img' in data_info['images'][cam_type]:
                    data_['lidar2img'] = np.array(
                        data_info['images'][cam_type]['lidar2img'])
            # Depth to image conversion for SUNRGBD dataset
            elif box_mode_3d == Box3DMode.DEPTH:
                data_['depth2img'] = np.array(
                    data_info['images'][cam_type]['depth2img'])
        else:
            assert osp.isdir(img), f'{img} must be a file directory'
            for _, img_info in data_info['images'].items():
                img_info['img_path'] = osp.join(img, img_info['img_path'])
                assert osp.isfile(img_info['img_path']
                                  ), f'{img_info["img_path"]} does not exist.'
            data_ = dict(
                lidar_points=dict(lidar_path=pcd),
                images=data_info['images'],
                box_type_3d=box_type_3d,
                box_mode_3d=box_mode_3d)

        if 'timestamp' in data_info:
            # Using multi-sweeps need `timestamp`
            data_['timestamp'] = data_info['timestamp']
ChaimZhu's avatar
ChaimZhu committed
268

269
        data_ = test_pipeline(data_)
ChaimZhu's avatar
ChaimZhu committed
270
        data.append(data_)
271

272
273
    collate_data = pseudo_collate(data)

274
275
    # forward the model
    with torch.no_grad():
276
        results = model.test_step(collate_data)
277

ChaimZhu's avatar
ChaimZhu committed
278
    if not is_batch:
279
        return results[0], data[0]
ChaimZhu's avatar
ChaimZhu committed
280
    else:
281
        return results, data
282
283


284
285
286
287
def inference_mono_3d_detector(model: nn.Module,
                               imgs: ImagesType,
                               ann_file: Union[str, Sequence[str]],
                               cam_type: str = 'CAM_FRONT'):
288
289
290
291
    """Inference image with the monocular 3D detector.

    Args:
        model (nn.Module): The loaded detector.
ChaimZhu's avatar
ChaimZhu committed
292
293
294
        imgs (str, Sequence[str]):
           Either image files or loaded images.
        ann_files (str, Sequence[str]): Annotation files.
295
296
297
298
        cam_type (str): Image of Camera chose to infer.
            For kitti dataset, it should be 'CAM_2',
            and for nuscenes dataset, it should be
            'CAM_FRONT'. Defaults to 'CAM_FRONT'.
299
300

    Returns:
ChaimZhu's avatar
ChaimZhu committed
301
302
303
        :obj:`Det3DDataSample` or list[:obj:`Det3DDataSample`]:
        If pcds is a list or tuple, the same length list type results
        will be returned, otherwise return the detection results directly.
304
    """
ChaimZhu's avatar
ChaimZhu committed
305
306
307
308
309
310
    if isinstance(imgs, (list, tuple)):
        is_batch = True
    else:
        imgs = [imgs]
        is_batch = False

311
    cfg = model.cfg
ChaimZhu's avatar
ChaimZhu committed
312

313
    # build the data pipeline
ChaimZhu's avatar
ChaimZhu committed
314
    test_pipeline = deepcopy(cfg.test_dataloader.dataset.pipeline)
315
    test_pipeline = Compose(test_pipeline)
ChaimZhu's avatar
ChaimZhu committed
316
317
318
    box_type_3d, box_mode_3d = \
        get_box_type(cfg.test_dataloader.dataset.box_type_3d)

319
    data_list = mmengine.load(ann_file)['data_list']
320
321
    assert len(imgs) == len(data_list)

ChaimZhu's avatar
ChaimZhu committed
322
323
324
    data = []
    for index, img in enumerate(imgs):
        # get data info containing calib
325
326
327
328
329
330
331
        data_info = data_list[index]
        img_path = data_info['images'][cam_type]['img_path']
        if osp.basename(img_path) != osp.basename(img):
            raise ValueError(f'the info file of {img_path} is not provided.')

        # replace the img_path in data_info with img
        data_info['images'][cam_type]['img_path'] = img
332
333
        # avoid data_info['images'] has multiple keys anout camera views.
        mono_img_info = {f'{cam_type}': data_info['images'][cam_type]}
ChaimZhu's avatar
ChaimZhu committed
334
        data_ = dict(
335
            images=mono_img_info,
ChaimZhu's avatar
ChaimZhu committed
336
337
338
339
            box_type_3d=box_type_3d,
            box_mode_3d=box_mode_3d)

        data_ = test_pipeline(data_)
340
        data.append(data_)
341

342
343
    collate_data = pseudo_collate(data)

344
345
    # forward the model
    with torch.no_grad():
346
        results = model.test_step(collate_data)
347

ChaimZhu's avatar
ChaimZhu committed
348
349
350
351
    if not is_batch:
        return results[0]
    else:
        return results
352

ChaimZhu's avatar
ChaimZhu committed
353
354

def inference_segmentor(model: nn.Module, pcds: PointsType):
355
    """Inference point cloud with the segmentor.
wuyuefeng's avatar
Demo  
wuyuefeng committed
356
357

    Args:
358
        model (nn.Module): The loaded segmentor.
ChaimZhu's avatar
ChaimZhu committed
359
360
        pcds (str, Sequence[str]):
            Either point cloud files or loaded point cloud.
361
362

    Returns:
ChaimZhu's avatar
ChaimZhu committed
363
364
365
        :obj:`Det3DDataSample` or list[:obj:`Det3DDataSample`]:
        If pcds is a list or tuple, the same length list type results
        will be returned, otherwise return the detection results directly.
wuyuefeng's avatar
Demo  
wuyuefeng committed
366
    """
ChaimZhu's avatar
ChaimZhu committed
367
368
369
370
371
372
    if isinstance(pcds, (list, tuple)):
        is_batch = True
    else:
        pcds = [pcds]
        is_batch = False

373
    cfg = model.cfg
ChaimZhu's avatar
ChaimZhu committed
374

375
    # build the data pipeline
ChaimZhu's avatar
ChaimZhu committed
376
    test_pipeline = deepcopy(cfg.test_dataloader.dataset.pipeline)
377
378
379
380
381
382

    new_test_pipeline = []
    for pipeline in test_pipeline:
        if pipeline['type'] != 'LoadAnnotations3D':
            new_test_pipeline.append(pipeline)
    test_pipeline = Compose(new_test_pipeline)
ChaimZhu's avatar
ChaimZhu committed
383
384

    data = []
385
    # TODO: support load points array
ChaimZhu's avatar
ChaimZhu committed
386
387
388
389
390
    for pcd in pcds:
        data_ = dict(lidar_points=dict(lidar_path=pcd))
        data_ = test_pipeline(data_)
        data.append(data_)

391
392
    collate_data = pseudo_collate(data)

393
394
    # forward the model
    with torch.no_grad():
395
        results = model.test_step(collate_data)
ChaimZhu's avatar
ChaimZhu committed
396
397

    if not is_batch:
398
        return results[0], data[0]
ChaimZhu's avatar
ChaimZhu committed
399
    else:
400
        return results, data