inference.py 10.5 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
4
5
import re
from copy import deepcopy
from os import path as osp

wuyuefeng's avatar
Demo  
wuyuefeng committed
6
import mmcv
7
import numpy as np
wuyuefeng's avatar
Demo  
wuyuefeng committed
8
9
10
11
import torch
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint

ZCMax's avatar
ZCMax committed
12
from mmdet3d.core import Box3DMode
wuyuefeng's avatar
Demo  
wuyuefeng committed
13
14
from mmdet3d.core.bbox import get_box_type
from mmdet3d.datasets.pipelines import Compose
15
from mmdet3d.models import build_model
16
from mmdet3d.utils import get_root_logger
wuyuefeng's avatar
Demo  
wuyuefeng committed
17
18


19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
def convert_SyncBN(config):
    """Convert config's naiveSyncBN to BN.

    Args:
         config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
    """
    if isinstance(config, dict):
        for item in config:
            if item == 'norm_cfg':
                config[item]['type'] = config[item]['type']. \
                                    replace('naiveSyncBN', 'BN')
            else:
                convert_SyncBN(config[item])


35
36
37
def init_model(config, checkpoint=None, device='cuda:0'):
    """Initialize a model from config file, which could be a 3D detector or a
    3D segmentor.
wuyuefeng's avatar
Demo  
wuyuefeng committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.
        device (str): Device to use.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    config.model.pretrained = None
55
    convert_SyncBN(config.model)
56
    config.model.train_cfg = None
57
    model = build_model(config.model, test_cfg=config.get('test_cfg'))
wuyuefeng's avatar
Demo  
wuyuefeng committed
58
    if checkpoint is not None:
59
        checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
wuyuefeng's avatar
Demo  
wuyuefeng committed
60
61
62
63
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            model.CLASSES = config.class_names
64
65
        if 'PALETTE' in checkpoint['meta']:  # 3D Segmentor
            model.PALETTE = checkpoint['meta']['PALETTE']
wuyuefeng's avatar
Demo  
wuyuefeng committed
66
    model.cfg = config  # save the config in the model for convenience
67
68
69
70
71
72
    if device != 'cpu':
        torch.cuda.set_device(device)
    else:
        logger = get_root_logger()
        logger.warning('Don\'t suggest using CPU device. '
                       'Some functions are not supported for now.')
wuyuefeng's avatar
Demo  
wuyuefeng committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    model.to(device)
    model.eval()
    return model


def inference_detector(model, pcd):
    """Inference point cloud with the detector.

    Args:
        model (nn.Module): The loaded detector.
        pcd (str): Point cloud files.

    Returns:
        tuple: Predicted results and data from pipeline.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
90
91
92
93
94
95

    if not isinstance(pcd, str):
        cfg = cfg.copy()
        # set loading pipeline type
        cfg.data.test.pipeline[0].type = 'LoadPointsFromDict'

wuyuefeng's avatar
Demo  
wuyuefeng committed
96
97
98
99
    # build the data pipeline
    test_pipeline = deepcopy(cfg.data.test.pipeline)
    test_pipeline = Compose(test_pipeline)
    box_type_3d, box_mode_3d = get_box_type(cfg.data.test.box_type_3d)
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

    if isinstance(pcd, str):
        # load from point clouds file
        data = dict(
            pts_filename=pcd,
            box_type_3d=box_type_3d,
            box_mode_3d=box_mode_3d,
            # for ScanNet demo we need axis_align_matrix
            ann_info=dict(axis_align_matrix=np.eye(4)),
            sweeps=[],
            # set timestamp = 0
            timestamp=[0],
            img_fields=[],
            bbox3d_fields=[],
            pts_mask_fields=[],
            pts_seg_fields=[],
            bbox_fields=[],
            mask_fields=[],
            seg_fields=[])
    else:
        # load from http
        data = dict(
            points=pcd,
            box_type_3d=box_type_3d,
            box_mode_3d=box_mode_3d,
            # for ScanNet demo we need axis_align_matrix
            ann_info=dict(axis_align_matrix=np.eye(4)),
            sweeps=[],
            # set timestamp = 0
            timestamp=[0],
            img_fields=[],
            bbox3d_fields=[],
            pts_mask_fields=[],
            pts_seg_fields=[],
            bbox_fields=[],
            mask_fields=[],
            seg_fields=[])
wuyuefeng's avatar
Demo  
wuyuefeng committed
137
138
139
140
141
142
    data = test_pipeline(data)
    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device.index])[0]
    else:
yinchimaoliang's avatar
yinchimaoliang committed
143
144
145
        # this is a workaround to avoid the bug of MMDataParallel
        data['img_metas'] = data['img_metas'][0].data
        data['points'] = data['points'][0].data
wuyuefeng's avatar
Demo  
wuyuefeng committed
146
147
148
149
150
151
    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result, data


152
def inference_multi_modality_detector(model, pcd, image, ann_file):
153
    """Inference point cloud with the multi-modality detector.
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

    Args:
        model (nn.Module): The loaded detector.
        pcd (str): Point cloud files.
        image (str): Image files.
        ann_file (str): Annotation files.

    Returns:
        tuple: Predicted results and data from pipeline.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = deepcopy(cfg.data.test.pipeline)
    test_pipeline = Compose(test_pipeline)
    box_type_3d, box_mode_3d = get_box_type(cfg.data.test.box_type_3d)
    # get data info containing calib
    data_infos = mmcv.load(ann_file)
    image_idx = int(re.findall(r'\d+', image)[-1])  # xxx/sunrgbd_000017.jpg
    for x in data_infos:
        if int(x['image']['image_idx']) != image_idx:
            continue
        info = x
        break
    data = dict(
        pts_filename=pcd,
        img_prefix=osp.dirname(image),
        img_info=dict(filename=osp.basename(image)),
        box_type_3d=box_type_3d,
        box_mode_3d=box_mode_3d,
        img_fields=[],
        bbox3d_fields=[],
        pts_mask_fields=[],
        pts_seg_fields=[],
        bbox_fields=[],
        mask_fields=[],
        seg_fields=[])
    data = test_pipeline(data)

193
194
    # TODO: this code is dataset-specific. Move lidar2img and
    #       depth2img to .pkl annotations in the future.
195
196
197
198
199
200
201
    # LiDAR to image conversion
    if box_mode_3d == Box3DMode.LIDAR:
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        lidar2img = P2 @ rect @ Trv2c
        data['img_metas'][0].data['lidar2img'] = lidar2img
202
    # Depth to image conversion
203
    elif box_mode_3d == Box3DMode.DEPTH:
204
205
206
207
208
209
        rt_mat = info['calib']['Rt']
        # follow Coord3DMode.convert_point
        rt_mat = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]
                           ]) @ rt_mat.transpose(1, 0)
        depth2img = info['calib']['K'] @ rt_mat
        data['img_metas'][0].data['depth2img'] = depth2img
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device.index])[0]
    else:
        # this is a workaround to avoid the bug of MMDataParallel
        data['img_metas'] = data['img_metas'][0].data
        data['points'] = data['points'][0].data
        data['img'] = data['img'][0].data

    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result, data


227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
def inference_mono_3d_detector(model, image, ann_file):
    """Inference image with the monocular 3D detector.

    Args:
        model (nn.Module): The loaded detector.
        image (str): Image files.
        ann_file (str): Annotation files.

    Returns:
        tuple: Predicted results and data from pipeline.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = deepcopy(cfg.data.test.pipeline)
    test_pipeline = Compose(test_pipeline)
    box_type_3d, box_mode_3d = get_box_type(cfg.data.test.box_type_3d)
    # get data info containing calib
    data_infos = mmcv.load(ann_file)
    # find the info corresponding to this image
    for x in data_infos['images']:
        if osp.basename(x['file_name']) != osp.basename(image):
            continue
        img_info = x
        break
    data = dict(
        img_prefix=osp.dirname(image),
        img_info=dict(filename=osp.basename(image)),
        box_type_3d=box_type_3d,
        box_mode_3d=box_mode_3d,
        img_fields=[],
        bbox3d_fields=[],
        pts_mask_fields=[],
        pts_seg_fields=[],
        bbox_fields=[],
        mask_fields=[],
        seg_fields=[])

    # camera points to image conversion
    if box_mode_3d == Box3DMode.CAM:
        data['img_info'].update(dict(cam_intrinsic=img_info['cam_intrinsic']))

    data = test_pipeline(data)

    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device.index])[0]
    else:
        # this is a workaround to avoid the bug of MMDataParallel
        data['img_metas'] = data['img_metas'][0].data
        data['img'] = data['img'][0].data

    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result, data


286
287
def inference_segmentor(model, pcd):
    """Inference point cloud with the segmentor.
wuyuefeng's avatar
Demo  
wuyuefeng committed
288
289

    Args:
290
291
292
293
294
        model (nn.Module): The loaded segmentor.
        pcd (str): Point cloud files.

    Returns:
        tuple: Predicted results and data from pipeline.
wuyuefeng's avatar
Demo  
wuyuefeng committed
295
    """
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = deepcopy(cfg.data.test.pipeline)
    test_pipeline = Compose(test_pipeline)
    data = dict(
        pts_filename=pcd,
        img_fields=[],
        bbox3d_fields=[],
        pts_mask_fields=[],
        pts_seg_fields=[],
        bbox_fields=[],
        mask_fields=[],
        seg_fields=[])
    data = test_pipeline(data)
    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device.index])[0]
    else:
        # this is a workaround to avoid the bug of MMDataParallel
        data['img_metas'] = data['img_metas'][0].data
        data['points'] = data['points'][0].data
    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result, data