create_data.py 10.8 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
import argparse
zhangwenwei's avatar
zhangwenwei committed
3
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
4

zhangwenwei's avatar
zhangwenwei committed
5
6
7
8
from tools.data_converter import indoor_converter as indoor
from tools.data_converter import kitti_converter as kitti
from tools.data_converter import lyft_converter as lyft_converter
from tools.data_converter import nuscenes_converter as nuscenes_converter
zhangwenwei's avatar
zhangwenwei committed
9
10
11
from tools.data_converter.create_gt_database import create_groundtruth_database


12
13
14
15
16
def kitti_data_prep(root_path,
                    info_prefix,
                    version,
                    out_dir,
                    with_plane=False):
wangtai's avatar
wangtai committed
17
18
19
20
21
22
23
24
25
26
    """Prepare data related to Kitti dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        out_dir (str): Output directory of the groundtruth database info.
27
28
        with_plane (bool, optional): Whether to use plane information.
            Default: False.
wangtai's avatar
wangtai committed
29
    """
30
    kitti.create_kitti_info_file(root_path, info_prefix, with_plane)
zhangwenwei's avatar
zhangwenwei committed
31
    kitti.create_reduced_point_cloud(root_path, info_prefix)
32
33
34
35
36
37
38
39
40
41
42

    info_train_path = osp.join(root_path, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(root_path, f'{info_prefix}_infos_val.pkl')
    info_trainval_path = osp.join(root_path,
                                  f'{info_prefix}_infos_trainval.pkl')
    info_test_path = osp.join(root_path, f'{info_prefix}_infos_test.pkl')
    kitti.export_2d_annotation(root_path, info_train_path)
    kitti.export_2d_annotation(root_path, info_val_path)
    kitti.export_2d_annotation(root_path, info_trainval_path)
    kitti.export_2d_annotation(root_path, info_test_path)

zhangwenwei's avatar
zhangwenwei committed
43
44
45
46
    create_groundtruth_database(
        'KittiDataset',
        root_path,
        info_prefix,
wangtai's avatar
wangtai committed
47
        f'{out_dir}/{info_prefix}_infos_train.pkl',
zhangwenwei's avatar
zhangwenwei committed
48
49
50
51
52
53
54
55
56
57
58
        relative_path=False,
        mask_anno_path='instances_train.json',
        with_mask=(version == 'mask'))


def nuscenes_data_prep(root_path,
                       info_prefix,
                       version,
                       dataset_name,
                       out_dir,
                       max_sweeps=10):
wangtai's avatar
wangtai committed
59
60
61
62
63
64
65
66
67
68
69
    """Prepare data related to nuScenes dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        dataset_name (str): The dataset class name.
        out_dir (str): Output directory of the groundtruth database info.
70
71
        max_sweeps (int, optional): Number of input consecutive frames.
            Default: 10
wangtai's avatar
wangtai committed
72
    """
zhangwenwei's avatar
zhangwenwei committed
73
74
75
76
    nuscenes_converter.create_nuscenes_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)

    if version == 'v1.0-test':
77
78
79
        info_test_path = osp.join(root_path, f'{info_prefix}_infos_test.pkl')
        nuscenes_converter.export_2d_annotation(
            root_path, info_test_path, version=version)
zhangwenwei's avatar
zhangwenwei committed
80
81
        return

wangtai's avatar
wangtai committed
82
83
    info_train_path = osp.join(root_path, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(root_path, f'{info_prefix}_infos_val.pkl')
zhangwenwei's avatar
zhangwenwei committed
84
85
86
87
    nuscenes_converter.export_2d_annotation(
        root_path, info_train_path, version=version)
    nuscenes_converter.export_2d_annotation(
        root_path, info_val_path, version=version)
wangtai's avatar
wangtai committed
88
89
90
91
    create_groundtruth_database(dataset_name, root_path, info_prefix,
                                f'{out_dir}/{info_prefix}_infos_train.pkl')


92
def lyft_data_prep(root_path, info_prefix, version, max_sweeps=10):
wangtai's avatar
wangtai committed
93
94
    """Prepare data related to Lyft dataset.

95
96
97
    Related data consists of '.pkl' files recording basic infos.
    Although the ground truth database and 2D annotations are not used in
    Lyft, it can also be generated like nuScenes.
wangtai's avatar
wangtai committed
98
99
100
101
102

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
103
104
        max_sweeps (int, optional): Number of input consecutive frames.
            Defaults to 10.
wangtai's avatar
wangtai committed
105
106
107
108
    """
    lyft_converter.create_lyft_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)

zhangwenwei's avatar
zhangwenwei committed
109

liyinhao's avatar
liyinhao committed
110
def scannet_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
111
112
113
114
115
116
117
118
    """Prepare the info file for scannet dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
119
120
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
121
122


123
124
125
126
127
128
129
130
131
132
133
134
135
def s3dis_data_prep(root_path, info_prefix, out_dir, workers):
    """Prepare the info file for s3dis dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)


liyinhao's avatar
liyinhao committed
136
def sunrgbd_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
137
138
139
140
141
142
143
144
    """Prepare the info file for sunrgbd dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
145
146
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
147
148


Wenwei Zhang's avatar
Wenwei Zhang committed
149
150
151
152
153
154
155
156
157
158
159
160
161
def waymo_data_prep(root_path,
                    info_prefix,
                    version,
                    out_dir,
                    workers,
                    max_sweeps=5):
    """Prepare the info file for waymo dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
162
163
164
        max_sweeps (int, optional): Number of input consecutive frames.
            Default: 5. Here we store pose information of these frames
            for later use.
Wenwei Zhang's avatar
Wenwei Zhang committed
165
    """
166
167
    from tools.data_converter import waymo_converter as waymo

Wenwei Zhang's avatar
Wenwei Zhang committed
168
169
170
171
172
173
174
175
176
177
178
179
    splits = ['training', 'validation', 'testing']
    for i, split in enumerate(splits):
        load_dir = osp.join(root_path, 'waymo_format', split)
        if split == 'validation':
            save_dir = osp.join(out_dir, 'kitti_format', 'training')
        else:
            save_dir = osp.join(out_dir, 'kitti_format', split)
        converter = waymo.Waymo2KITTI(
            load_dir,
            save_dir,
            prefix=str(i),
            workers=workers,
ChaimZhu's avatar
ChaimZhu committed
180
            test_mode=(split == 'testing'))
Wenwei Zhang's avatar
Wenwei Zhang committed
181
182
183
184
185
186
187
188
189
190
191
192
193
        converter.convert()
    # Generate waymo infos
    out_dir = osp.join(out_dir, 'kitti_format')
    kitti.create_waymo_info_file(out_dir, info_prefix, max_sweeps=max_sweeps)
    create_groundtruth_database(
        'WaymoDataset',
        out_dir,
        info_prefix,
        f'{out_dir}/{info_prefix}_infos_train.pkl',
        relative_path=False,
        with_mask=False)


zhangwenwei's avatar
zhangwenwei committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
parser = argparse.ArgumentParser(description='Data converter arg parser')
parser.add_argument('dataset', metavar='kitti', help='name of the dataset')
parser.add_argument(
    '--root-path',
    type=str,
    default='./data/kitti',
    help='specify the root path of dataset')
parser.add_argument(
    '--version',
    type=str,
    default='v1.0',
    required=False,
    help='specify the dataset version, no need for kitti')
parser.add_argument(
    '--max-sweeps',
    type=int,
    default=10,
    required=False,
    help='specify sweeps of lidar per example')
213
214
215
216
parser.add_argument(
    '--with-plane',
    action='store_true',
    help='Whether to use plane information for kitti.')
zhangwenwei's avatar
zhangwenwei committed
217
218
219
220
parser.add_argument(
    '--out-dir',
    type=str,
    default='./data/kitti',
221
    required=False,
zhangwenwei's avatar
zhangwenwei committed
222
223
    help='name of info pkl')
parser.add_argument('--extra-tag', type=str, default='kitti')
liyinhao's avatar
liyinhao committed
224
225
parser.add_argument(
    '--workers', type=int, default=4, help='number of threads to be used')
zhangwenwei's avatar
zhangwenwei committed
226
227
228
229
230
231
232
233
args = parser.parse_args()

if __name__ == '__main__':
    if args.dataset == 'kitti':
        kitti_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
234
235
            out_dir=args.out_dir,
            with_plane=args.with_plane)
zhangwenwei's avatar
zhangwenwei committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    elif args.dataset == 'nuscenes' and args.version != 'v1.0-mini':
        train_version = f'{args.version}-trainval'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
    elif args.dataset == 'nuscenes' and args.version == 'v1.0-mini':
        train_version = f'{args.version}'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
wangtai's avatar
wangtai committed
262
263
264
265
266
267
268
269
270
271
272
273
274
    elif args.dataset == 'lyft':
        train_version = f'{args.version}-train'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            max_sweeps=args.max_sweeps)
Wenwei Zhang's avatar
Wenwei Zhang committed
275
276
277
278
279
280
281
282
    elif args.dataset == 'waymo':
        waymo_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
            out_dir=args.out_dir,
            workers=args.workers,
            max_sweeps=args.max_sweeps)
283
284
285
286
    elif args.dataset == 'scannet':
        scannet_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
287
288
            out_dir=args.out_dir,
            workers=args.workers)
289
290
291
292
293
294
    elif args.dataset == 's3dis':
        s3dis_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            out_dir=args.out_dir,
            workers=args.workers)
295
296
297
298
    elif args.dataset == 'sunrgbd':
        sunrgbd_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
299
300
            out_dir=args.out_dir,
            workers=args.workers)