transforms_3d.py 55.1 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
import numpy as np
3
import warnings
4
from mmcv import is_tuple_of
5
from mmcv.utils import build_from_cfg
zhangwenwei's avatar
zhangwenwei committed
6

7
from mmdet3d.core import VoxelGenerator
8
9
from mmdet3d.core.bbox import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                               LiDARInstance3DBoxes, box_np_ops)
10
from mmdet.datasets.builder import PIPELINES
zhangwenwei's avatar
zhangwenwei committed
11
from mmdet.datasets.pipelines import RandomFlip
12
from ..builder import OBJECTSAMPLERS
zhangwenwei's avatar
zhangwenwei committed
13
14
15
from .data_augment_utils import noise_per_object_v3_


16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
@PIPELINES.register_module()
class RandomDropPointsColor(object):
    r"""Randomly set the color of points to all zeros.

    Once this transform is executed, all the points' color will be dropped.
    Refer to `PAConv <https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/
    util/transform.py#L223>`_ for more details.

    Args:
        drop_ratio (float): The probability of dropping point colors.
            Defaults to 0.2.
    """

    def __init__(self, drop_ratio=0.2):
        assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \
            f'invalid drop_ratio value {drop_ratio}'
        self.drop_ratio = drop_ratio

    def __call__(self, input_dict):
        """Call function to drop point colors.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after color dropping, \
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims, \
            'Expect points have color attribute'

49
50
51
52
53
54
55
        # this if-expression is a bit strange
        # `RandomDropPointsColor` is used in training 3D segmentor PAConv
        # we discovered in our experiments that, using
        # `if np.random.rand() > 1.0 - self.drop_ratio` consistently leads to
        # better results than using `if np.random.rand() < self.drop_ratio`
        # so we keep this hack in our codebase
        if np.random.rand() > 1.0 - self.drop_ratio:
56
57
58
59
60
61
62
63
64
65
            points.color = points.color * 0.0
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(drop_ratio={self.drop_ratio})'
        return repr_str


66
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
67
68
69
70
71
72
73
74
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

    Args:
zhangwenwei's avatar
zhangwenwei committed
75
76
77
        sync_2d (bool, optional): Whether to apply flip according to the 2D
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
78
            to that of 2D images. Defaults to True.
wuyuefeng's avatar
wuyuefeng committed
79
        flip_ratio_bev_horizontal (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
80
            in horizontal direction. Defaults to 0.0.
wuyuefeng's avatar
wuyuefeng committed
81
        flip_ratio_bev_vertical (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
82
            in vertical direction. Defaults to 0.0.
zhangwenwei's avatar
zhangwenwei committed
83
84
    """

wuyuefeng's avatar
wuyuefeng committed
85
86
87
88
89
90
91
    def __init__(self,
                 sync_2d=True,
                 flip_ratio_bev_horizontal=0.0,
                 flip_ratio_bev_vertical=0.0,
                 **kwargs):
        super(RandomFlip3D, self).__init__(
            flip_ratio=flip_ratio_bev_horizontal, **kwargs)
zhangwenwei's avatar
zhangwenwei committed
92
        self.sync_2d = sync_2d
wuyuefeng's avatar
wuyuefeng committed
93
94
95
96
97
98
99
100
101
102
103
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

    def random_flip_data_3d(self, input_dict, direction='horizontal'):
104
105
106
107
108
109
110
111
112
113
        """Flip 3D data randomly.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            direction (str): Flip direction. Default: horizontal.

        Returns:
            dict: Flipped results, 'points', 'bbox3d_fields' keys are \
                updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
114
        assert direction in ['horizontal', 'vertical']
115
116
117
118
119
        if len(input_dict['bbox3d_fields']) == 0:  # test mode
            input_dict['bbox3d_fields'].append('empty_box3d')
            input_dict['empty_box3d'] = input_dict['box_type_3d'](
                np.array([], dtype=np.float32))
        assert len(input_dict['bbox3d_fields']) == 1
zhangwenwei's avatar
zhangwenwei committed
120
        for key in input_dict['bbox3d_fields']:
121
122
123
124
125
126
127
128
            if 'points' in input_dict:
                input_dict['points'] = input_dict[key].flip(
                    direction, points=input_dict['points'])
            else:
                input_dict[key].flip(direction)
        if 'centers2d' in input_dict:
            assert self.sync_2d is True and direction == 'horizontal', \
                'Only support sync_2d=True and horizontal flip with images'
129
            w = input_dict['ori_shape'][1]
130
131
            input_dict['centers2d'][..., 0] = \
                w - input_dict['centers2d'][..., 0]
132
133
            # need to modify the horizontal position of camera center
            # along u-axis in the image (flip like centers2d)
134
            # ['cam2img'][0][2] = c_u
135
136
            # see more details and examples at
            # https://github.com/open-mmlab/mmdetection3d/pull/744
137
            input_dict['cam2img'][0][2] = w - input_dict['cam2img'][0][2]
zhangwenwei's avatar
zhangwenwei committed
138
139

    def __call__(self, input_dict):
140
141
142
143
144
145
146
147
148
149
150
        """Call function to flip points, values in the ``bbox3d_fields`` and \
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Flipped results, 'flip', 'flip_direction', \
                'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added \
                into result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
151
        # filp 2D image and its annotations
zhangwenwei's avatar
zhangwenwei committed
152
        super(RandomFlip3D, self).__call__(input_dict)
zhangwenwei's avatar
zhangwenwei committed
153

zhangwenwei's avatar
zhangwenwei committed
154
        if self.sync_2d:
wuyuefeng's avatar
wuyuefeng committed
155
156
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
157
        else:
wuyuefeng's avatar
wuyuefeng committed
158
159
160
161
162
163
164
165
166
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
                ) < self.flip_ratio else False
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

167
168
169
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
170
171
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
172
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
173
174
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
175
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
176
177
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
178
    def __repr__(self):
179
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
180
        repr_str = self.__class__.__name__
181
        repr_str += f'(sync_2d={self.sync_2d},'
182
        repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
wuyuefeng's avatar
wuyuefeng committed
183
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
184

zhangwenwei's avatar
zhangwenwei committed
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
@PIPELINES.register_module()
class RandomJitterPoints(object):
    """Randomly jitter point coordinates.

    Different from the global translation in ``GlobalRotScaleTrans``, here we \
        apply different noises to each point in a scene.

    Args:
        jitter_std (list[float]): The standard deviation of jittering noise.
            This applies random noise to all points in a 3D scene, which is \
            sampled from a gaussian distribution whose standard deviation is \
            set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01]
        clip_range (list[float] | None): Clip the randomly generated jitter \
            noise into this range. If None is given, don't perform clipping.
            Defaults to [-0.05, 0.05]

    Note:
        This transform should only be used in point cloud segmentation tasks \
            because we don't transform ground-truth bboxes accordingly.
        For similar transform in detection task, please refer to `ObjectNoise`.
    """

    def __init__(self,
                 jitter_std=[0.01, 0.01, 0.01],
                 clip_range=[-0.05, 0.05]):
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(jitter_std, seq_types):
            assert isinstance(jitter_std, (int, float)), \
                f'unsupported jitter_std type {type(jitter_std)}'
            jitter_std = [jitter_std, jitter_std, jitter_std]
        self.jitter_std = jitter_std

        if clip_range is not None:
            if not isinstance(clip_range, seq_types):
                assert isinstance(clip_range, (int, float)), \
                    f'unsupported clip_range type {type(clip_range)}'
                clip_range = [-clip_range, clip_range]
        self.clip_range = clip_range

    def __call__(self, input_dict):
        """Call function to jitter all the points in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after adding noise to each point, \
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        jitter_std = np.array(self.jitter_std, dtype=np.float32)
        jitter_noise = \
            np.random.randn(points.shape[0], 3) * jitter_std[None, :]
        if self.clip_range is not None:
            jitter_noise = np.clip(jitter_noise, self.clip_range[0],
                                   self.clip_range[1])

        points.translate(jitter_noise)
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(jitter_std={self.jitter_std},'
        repr_str += f' clip_range={self.clip_range})'
        return repr_str


254
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
255
class ObjectSample(object):
zhangwenwei's avatar
zhangwenwei committed
256
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
257
258
259
260
261

    Args:
        db_sampler (dict): Config dict of the database sampler.
        sample_2d (bool): Whether to also paste 2D image patch to the images
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
262
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
263
    """
zhangwenwei's avatar
zhangwenwei committed
264
265
266
267
268
269
270
271
272
273

    def __init__(self, db_sampler, sample_2d=False):
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
        self.db_sampler = build_from_cfg(db_sampler, OBJECTSAMPLERS)

    @staticmethod
    def remove_points_in_boxes(points, boxes):
274
275
276
        """Remove the points in the sampled bounding boxes.

        Args:
277
            points (:obj:`BasePoints`): Input point cloud array.
278
279
280
281
282
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
283
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
284
285
286
287
        points = points[np.logical_not(masks.any(-1))]
        return points

    def __call__(self, input_dict):
288
289
290
291
292
293
294
295
296
297
        """Call function to sample ground truth objects to the data.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after object sampling augmentation, \
                'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
298
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
299
300
        gt_labels_3d = input_dict['gt_labels_3d']

zhangwenwei's avatar
zhangwenwei committed
301
302
303
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
304
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
305
306
307
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
308
309
310
311
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
312
313
        else:
            sampled_dict = self.db_sampler.sample_all(
314
                gt_bboxes_3d.tensor.numpy(), gt_labels_3d, img=None)
zhangwenwei's avatar
zhangwenwei committed
315
316
317
318

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
319
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
320

zhangwenwei's avatar
zhangwenwei committed
321
322
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
323
324
325
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
326

zhangwenwei's avatar
zhangwenwei committed
327
328
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
329
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
330
331
332
333
334

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
335

zhangwenwei's avatar
zhangwenwei committed
336
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
337
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
338
339

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
340
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.long)
zhangwenwei's avatar
zhangwenwei committed
341
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
342

zhangwenwei's avatar
zhangwenwei committed
343
344
345
        return input_dict

    def __repr__(self):
346
        """str: Return a string that describes the module."""
347
348
349
350
351
352
353
354
355
        repr_str = self.__class__.__name__
        repr_str += f' sample_2d={self.sample_2d},'
        repr_str += f' data_root={self.sampler_cfg.data_root},'
        repr_str += f' info_path={self.sampler_cfg.info_path},'
        repr_str += f' rate={self.sampler_cfg.rate},'
        repr_str += f' prepare={self.sampler_cfg.prepare},'
        repr_str += f' classes={self.sampler_cfg.classes},'
        repr_str += f' sample_groups={self.sampler_cfg.sample_groups}'
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
356
357


358
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
359
class ObjectNoise(object):
zhangwenwei's avatar
zhangwenwei committed
360
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
361
362

    Args:
363
        translation_std (list[float], optional): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
364
365
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
366
        global_rot_range (list[float], optional): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
367
            Defaults to [0.0, 0.0].
368
        rot_range (list[float], optional): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
369
370
371
372
            Defaults to [-0.15707963267, 0.15707963267].
        num_try (int, optional): Number of times to try if the noise applied is
            invalid. Defaults to 100.
    """
zhangwenwei's avatar
zhangwenwei committed
373
374

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
375
                 translation_std=[0.25, 0.25, 0.25],
zhangwenwei's avatar
zhangwenwei committed
376
                 global_rot_range=[0.0, 0.0],
zhangwenwei's avatar
zhangwenwei committed
377
                 rot_range=[-0.15707963267, 0.15707963267],
zhangwenwei's avatar
zhangwenwei committed
378
                 num_try=100):
zhangwenwei's avatar
zhangwenwei committed
379
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
380
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
381
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
382
383
384
        self.num_try = num_try

    def __call__(self, input_dict):
385
386
387
388
389
390
391
392
393
        """Call function to apply noise to each ground truth in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after adding noise to each object, \
                'points', 'gt_bboxes_3d' keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
394
395
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
396

397
        # TODO: this is inplace operation
398
        numpy_box = gt_bboxes_3d.tensor.numpy()
399
400
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
401
        noise_per_object_v3_(
402
            numpy_box,
403
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
404
405
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
406
407
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
408
409

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
410
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
411
412
413
        return input_dict

    def __repr__(self):
414
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
415
        repr_str = self.__class__.__name__
416
417
418
419
        repr_str += f'(num_try={self.num_try},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' global_rot_range={self.global_rot_range},'
        repr_str += f' rot_range={self.rot_range})'
zhangwenwei's avatar
zhangwenwei committed
420
421
422
        return repr_str


423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
@PIPELINES.register_module()
class GlobalAlignment(object):
    """Apply global alignment to 3D scene points by rotation and translation.

    Args:
        rotation_axis (int): Rotation axis for points and bboxes rotation.

    Note:
        We do not record the applied rotation and translation as in \
            GlobalRotScaleTrans. Because usually, we do not need to reverse \
            the alignment step.
        For example, ScanNet 3D detection task uses aligned ground-truth \
            bounding boxes for evaluation.
    """

    def __init__(self, rotation_axis):
        self.rotation_axis = rotation_axis

    def _trans_points(self, input_dict, trans_factor):
        """Private function to translate points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            trans_factor (np.ndarray): Translation vector to be applied.

        Returns:
            dict: Results after translation, 'points' is updated in the dict.
        """
        input_dict['points'].translate(trans_factor)

    def _rot_points(self, input_dict, rot_mat):
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            rot_mat (np.ndarray): Rotation matrix to be applied.

        Returns:
            dict: Results after rotation, 'points' is updated in the dict.
        """
        # input should be rot_mat_T so I transpose it here
        input_dict['points'].rotate(rot_mat.T)

    def _check_rot_mat(self, rot_mat):
        """Check if rotation matrix is valid for self.rotation_axis.

        Args:
            rot_mat (np.ndarray): Rotation matrix to be applied.
        """
        is_valid = np.allclose(np.linalg.det(rot_mat), 1.0)
        valid_array = np.zeros(3)
        valid_array[self.rotation_axis] = 1.0
        is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all()
        is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all()
        assert is_valid, f'invalid rotation matrix {rot_mat}'

    def __call__(self, input_dict):
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after global alignment, 'points' and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
        assert 'axis_align_matrix' in input_dict['ann_info'].keys(), \
            'axis_align_matrix is not provided in GlobalAlignment'

        axis_align_matrix = input_dict['ann_info']['axis_align_matrix']
        assert axis_align_matrix.shape == (4, 4), \
            f'invalid shape {axis_align_matrix.shape} for axis_align_matrix'
        rot_mat = axis_align_matrix[:3, :3]
        trans_vec = axis_align_matrix[:3, -1]

        self._check_rot_mat(rot_mat)
        self._rot_points(input_dict, rot_mat)
        self._trans_points(input_dict, trans_vec)

        return input_dict

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(rotation_axis={self.rotation_axis})'
        return repr_str


510
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
511
class GlobalRotScaleTrans(object):
zhangwenwei's avatar
zhangwenwei committed
512
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
513
514
515

    Args:
        rot_range (list[float]): Range of rotation angle.
liyinhao's avatar
liyinhao committed
516
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
zhangwenwei's avatar
zhangwenwei committed
517
        scale_ratio_range (list[float]): Range of scale ratio.
liyinhao's avatar
liyinhao committed
518
            Defaults to [0.95, 1.05].
519
520
        translation_std (list[float]): The standard deviation of translation
            noise. This applies random translation to a scene by a noise, which
zhangwenwei's avatar
zhangwenwei committed
521
            is sampled from a gaussian distribution whose standard deviation
liyinhao's avatar
liyinhao committed
522
523
            is set by ``translation_std``. Defaults to [0, 0, 0]
        shift_height (bool): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
524
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
525
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
526
    """
zhangwenwei's avatar
zhangwenwei committed
527
528

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
529
530
                 rot_range=[-0.78539816, 0.78539816],
                 scale_ratio_range=[0.95, 1.05],
wuyuefeng's avatar
wuyuefeng committed
531
532
                 translation_std=[0, 0, 0],
                 shift_height=False):
533
534
535
536
537
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(rot_range, seq_types):
            assert isinstance(rot_range, (int, float)), \
                f'unsupported rot_range type {type(rot_range)}'
            rot_range = [-rot_range, rot_range]
zhangwenwei's avatar
zhangwenwei committed
538
        self.rot_range = rot_range
539
540
541

        assert isinstance(scale_ratio_range, seq_types), \
            f'unsupported scale_ratio_range type {type(scale_ratio_range)}'
zhangwenwei's avatar
zhangwenwei committed
542
        self.scale_ratio_range = scale_ratio_range
543
544
545
546
547
548
549

        if not isinstance(translation_std, seq_types):
            assert isinstance(translation_std, (int, float)), \
                f'unsupported translation_std type {type(translation_std)}'
            translation_std = [
                translation_std, translation_std, translation_std
            ]
550
551
        assert all([std >= 0 for std in translation_std]), \
            'translation_std should be positive'
zhangwenwei's avatar
zhangwenwei committed
552
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
553
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
554
555

    def _trans_bbox_points(self, input_dict):
556
557
558
559
560
561
562
563
564
565
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after translation, 'points', 'pcd_trans' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
566
        translation_std = np.array(self.translation_std, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
567
568
        trans_factor = np.random.normal(scale=translation_std, size=3).T

569
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
570
571
572
573
574
        input_dict['pcd_trans'] = trans_factor
        for key in input_dict['bbox3d_fields']:
            input_dict[key].translate(trans_factor)

    def _rot_bbox_points(self, input_dict):
575
576
577
578
579
580
581
582
583
584
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after rotation, 'points', 'pcd_rotation' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
585
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
586
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
587

588
589
590
591
        # if no bbox in input_dict, only rotate points
        if len(input_dict['bbox3d_fields']) == 0:
            rot_mat_T = input_dict['points'].rotate(noise_rotation)
            input_dict['pcd_rotation'] = rot_mat_T
592
            input_dict['pcd_rotation_angle'] = noise_rotation
593
594
595
            return

        # rotate points with bboxes
zhangwenwei's avatar
zhangwenwei committed
596
        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
597
598
599
600
601
            if len(input_dict[key].tensor) != 0:
                points, rot_mat_T = input_dict[key].rotate(
                    noise_rotation, input_dict['points'])
                input_dict['points'] = points
                input_dict['pcd_rotation'] = rot_mat_T
602
                input_dict['pcd_rotation_angle'] = noise_rotation
603

zhangwenwei's avatar
zhangwenwei committed
604
    def _scale_bbox_points(self, input_dict):
605
606
607
608
609
610
611
612
613
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points'and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
614
        scale = input_dict['pcd_scale_factor']
615
616
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
617
        if self.shift_height:
618
619
            assert 'height' in points.attribute_dims.keys(), \
                'setting shift_height=True but points have no height attribute'
620
621
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
622

zhangwenwei's avatar
zhangwenwei committed
623
624
        for key in input_dict['bbox3d_fields']:
            input_dict[key].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
625

zhangwenwei's avatar
zhangwenwei committed
626
    def _random_scale(self, input_dict):
627
628
629
630
631
632
633
634
635
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'pcd_scale_factor' are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
636
637
638
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
639
640

    def __call__(self, input_dict):
641
642
643
644
645
646
647
648
649
650
651
        """Private function to rotate, scale and translate bounding boxes and \
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
                'pcd_scale_factor', 'pcd_trans' and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
652
653
654
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
655
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
656

zhangwenwei's avatar
zhangwenwei committed
657
658
659
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
660

zhangwenwei's avatar
zhangwenwei committed
661
        self._trans_bbox_points(input_dict)
662
663

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
664
665
666
        return input_dict

    def __repr__(self):
667
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
668
        repr_str = self.__class__.__name__
669
670
671
672
        repr_str += f'(rot_range={self.rot_range},'
        repr_str += f' scale_ratio_range={self.scale_ratio_range},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' shift_height={self.shift_height})'
zhangwenwei's avatar
zhangwenwei committed
673
674
675
        return repr_str


676
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
677
class PointShuffle(object):
678
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
679
680

    def __call__(self, input_dict):
681
682
683
684
685
686
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
687
688
            dict: Results after filtering, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
689
        """
690
691
692
693
694
695
696
697
698
699
700
701
        idx = input_dict['points'].shuffle()
        idx = idx.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[idx]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[idx]

zhangwenwei's avatar
zhangwenwei committed
702
703
704
705
706
707
        return input_dict

    def __repr__(self):
        return self.__class__.__name__


708
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
709
class ObjectRangeFilter(object):
710
711
712
713
714
    """Filter objects by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
715
716
717
718
719

    def __init__(self, point_cloud_range):
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)

    def __call__(self, input_dict):
720
721
722
723
724
725
726
727
728
        """Call function to filter objects by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
729
730
731
732
733
734
735
        # Check points instance type and initialise bev_range
        if isinstance(input_dict['gt_bboxes_3d'],
                      (LiDARInstance3DBoxes, DepthInstance3DBoxes)):
            bev_range = self.pcd_range[[0, 1, 3, 4]]
        elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes):
            bev_range = self.pcd_range[[0, 2, 3, 5]]

zhangwenwei's avatar
zhangwenwei committed
736
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
737
        gt_labels_3d = input_dict['gt_labels_3d']
738
        mask = gt_bboxes_3d.in_range_bev(bev_range)
zhangwenwei's avatar
zhangwenwei committed
739
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
740
741
742
743
744
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
745
746

        # limit rad to [-pi, pi]
747
748
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
749
750
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
751
752
753
        return input_dict

    def __repr__(self):
754
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
755
        repr_str = self.__class__.__name__
756
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
757
758
759
        return repr_str


760
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
761
class PointsRangeFilter(object):
762
763
764
765
766
    """Filter points by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
767
768

    def __init__(self, point_cloud_range):
769
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
770
771

    def __call__(self, input_dict):
772
773
774
775
776
777
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
778
779
            dict: Results after filtering, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
780
        """
zhangwenwei's avatar
zhangwenwei committed
781
        points = input_dict['points']
782
783
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
784
        input_dict['points'] = clean_points
785
786
787
788
789
790
791
792
793
794
795
        points_mask = points_mask.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[points_mask]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask]

zhangwenwei's avatar
zhangwenwei committed
796
797
798
        return input_dict

    def __repr__(self):
799
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
800
        repr_str = self.__class__.__name__
801
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
802
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
803
804
805
806


@PIPELINES.register_module()
class ObjectNameFilter(object):
zhangwenwei's avatar
zhangwenwei committed
807
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
808
809

    Args:
liyinhao's avatar
liyinhao committed
810
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
811
812
813
814
815
816
817
    """

    def __init__(self, classes):
        self.classes = classes
        self.labels = list(range(len(self.classes)))

    def __call__(self, input_dict):
818
819
820
821
822
823
824
825
826
        """Call function to filter objects by their names.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
827
828
829
830
831
832
833
834
835
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

    def __repr__(self):
836
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
837
838
839
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
840
841
842


@PIPELINES.register_module()
843
844
class PointSample(object):
    """Point sample.
wuyuefeng's avatar
wuyuefeng committed
845
846
847
848
849

    Sampling data to a certain number.

    Args:
        num_points (int): Number of points to be sampled.
850
        sample_range (float, optional): The range where to sample points.
851
852
853
854
            If not None, the points with depth larger than `sample_range` are
            prior to be sampled. Defaults to None.
        replace (bool, optional): Whether the sampling is with or without
            replacement. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
855
856
    """

857
    def __init__(self, num_points, sample_range=None, replace=False):
wuyuefeng's avatar
wuyuefeng committed
858
        self.num_points = num_points
859
860
861
862
863
864
865
866
867
        self.sample_range = sample_range
        self.replace = replace

    def _points_random_sampling(self,
                                points,
                                num_samples,
                                sample_range=None,
                                replace=False,
                                return_choices=False):
wuyuefeng's avatar
wuyuefeng committed
868
869
870
871
872
        """Points random sampling.

        Sample points to a certain number.

        Args:
873
            points (np.ndarray | :obj:`BasePoints`): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
874
            num_samples (int): Number of samples to be sampled.
875
            sample_range (float, optional): Indicating the range where the
876
                points will be sampled. Defaults to None.
877
878
879
880
            replace (bool, optional): Sampling with or without replacement.
                Defaults to None.
            return_choices (bool, optional): Whether return choice.
                Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
881
        Returns:
882
            tuple[np.ndarray] | np.ndarray:
883
                - points (np.ndarray | :obj:`BasePoints`): 3D Points.
884
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
885
        """
886
        if not replace:
wuyuefeng's avatar
wuyuefeng committed
887
            replace = (points.shape[0] < num_samples)
888
889
890
891
892
893
        point_range = range(len(points))
        if sample_range is not None and not replace:
            # Only sampling the near points when len(points) >= num_samples
            depth = np.linalg.norm(points.tensor, axis=1)
            far_inds = np.where(depth > sample_range)[0]
            near_inds = np.where(depth <= sample_range)[0]
894
895
896
897
            # in case there are too many far points
            if len(far_inds) > num_samples:
                far_inds = np.random.choice(
                    far_inds, num_samples, replace=False)
898
899
900
901
902
903
904
            point_range = near_inds
            num_samples -= len(far_inds)
        choices = np.random.choice(point_range, num_samples, replace=replace)
        if sample_range is not None and not replace:
            choices = np.concatenate((far_inds, choices))
            # Shuffle points after sampling
            np.random.shuffle(choices)
wuyuefeng's avatar
wuyuefeng committed
905
906
907
908
909
910
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

    def __call__(self, results):
911
912
913
914
915
916
917
918
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.
        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
919
        points = results['points']
920
921
922
        # Points in Camera coord can provide the depth information.
        # TODO: Need to suport distance-based sampling for other coord system.
        if self.sample_range is not None:
923
            from mmdet3d.core.points import CameraPoints
924
925
926
927
928
929
930
931
            assert isinstance(points, CameraPoints), \
                'Sampling based on distance is only appliable for CAMERA coord'
        points, choices = self._points_random_sampling(
            points,
            self.num_points,
            self.sample_range,
            self.replace,
            return_choices=True)
932
        results['points'] = points
933

wuyuefeng's avatar
wuyuefeng committed
934
935
936
        pts_instance_mask = results.get('pts_instance_mask', None)
        pts_semantic_mask = results.get('pts_semantic_mask', None)

937
        if pts_instance_mask is not None:
wuyuefeng's avatar
wuyuefeng committed
938
939
            pts_instance_mask = pts_instance_mask[choices]
            results['pts_instance_mask'] = pts_instance_mask
940
941
942

        if pts_semantic_mask is not None:
            pts_semantic_mask = pts_semantic_mask[choices]
wuyuefeng's avatar
wuyuefeng committed
943
944
945
946
947
            results['pts_semantic_mask'] = pts_semantic_mask

        return results

    def __repr__(self):
948
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
949
        repr_str = self.__class__.__name__
950
        repr_str += f'(num_points={self.num_points},'
951
952
        repr_str += f' sample_range={self.sample_range},'
        repr_str += f' replace={self.replace})'
953

954
955
956
        return repr_str


957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
@PIPELINES.register_module()
class IndoorPointSample(PointSample):
    """Indoor point sample.

    Sampling data to a certain number.
    NOTE: IndoorPointSample is deprecated in favor of PointSample

    Args:
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, *args, **kwargs):
        warnings.warn(
            'IndoorPointSample is deprecated in favor of PointSample')
        super(IndoorPointSample, self).__init__(*args, **kwargs)


974
975
976
977
978
979
980
981
982
983
984
985
@PIPELINES.register_module()
class IndoorPatchPointSample(object):
    r"""Indoor point sample within a patch. Modified from `PointNet++ <https://
    github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py>`_.

    Sampling data to a certain number for semantic segmentation.

    Args:
        num_points (int): Number of points to be sampled.
        block_size (float, optional): Size of a block to sample points from.
            Defaults to 1.5.
        sample_rate (float, optional): Stride used in sliding patch generation.
986
987
988
            This parameter is unused in `IndoorPatchPointSample` and thus has
            been deprecated. We plan to remove it in the future.
            Defaults to None.
989
990
        ignore_index (int, optional): Label index that won't be used for the
            segmentation task. This is set in PointSegClassMapping as neg_cls.
991
            If not None, will be used as a patch selection criterion.
992
993
994
995
996
            Defaults to None.
        use_normalized_coord (bool, optional): Whether to use normalized xyz as
            additional features. Defaults to False.
        num_try (int, optional): Number of times to try if the patch selected
            is invalid. Defaults to 10.
997
998
        enlarge_size (float | None, optional): Enlarge the sampled patch to
            [-block_size / 2 - enlarge_size, block_size / 2 + enlarge_size] as
999
            an augmentation. If None, set it as 0. Defaults to 0.2.
1000
1001
1002
        min_unique_num (int | None, optional): Minimum number of unique points
            the sampled patch should contain. If None, use PointNet++'s method
            to judge uniqueness. Defaults to None.
1003
1004
        eps (float, optional): A value added to patch boundary to guarantee
            points coverage. Defaults to 1e-2.
1005
1006
1007
1008
1009
1010

    Note:
        This transform should only be used in the training process of point
            cloud segmentation tasks. For the sliding patch generation and
            inference process in testing, please refer to the `slide_inference`
            function of `EncoderDecoder3D` class.
1011
1012
1013
1014
1015
    """

    def __init__(self,
                 num_points,
                 block_size=1.5,
1016
                 sample_rate=None,
1017
1018
                 ignore_index=None,
                 use_normalized_coord=False,
1019
1020
                 num_try=10,
                 enlarge_size=0.2,
1021
1022
                 min_unique_num=None,
                 eps=1e-2):
1023
1024
1025
1026
1027
        self.num_points = num_points
        self.block_size = block_size
        self.ignore_index = ignore_index
        self.use_normalized_coord = use_normalized_coord
        self.num_try = num_try
1028
        self.enlarge_size = enlarge_size if enlarge_size is not None else 0.0
1029
        self.min_unique_num = min_unique_num
1030
        self.eps = eps
1031
1032
1033
1034
1035

        if sample_rate is not None:
            warnings.warn(
                "'sample_rate' has been deprecated and will be removed in "
                'the future. Please remove them from your code.')
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

    def _input_generation(self, coords, patch_center, coord_max, attributes,
                          attribute_dims, point_type):
        """Generating model input.

        Generate input by subtracting patch center and adding additional \
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (np.ndarray): Sampled 3D Points.
            patch_center (np.ndarray): Center coordinate of the selected patch.
            coord_max (np.ndarray): Max coordinate of all 3D Points.
            attributes (np.ndarray): features of input points.
            attribute_dims (dict): Dictionary to indicate the meaning of extra
                dimension.
1051
            point_type (type): class of input points inherited from BasePoints.
1052
1053

        Returns:
1054
            :obj:`BasePoints`: The generated input data.
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.copy()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        if self.use_normalized_coord:
            normalized_coord = coords / coord_max
            attributes = np.concatenate([attributes, normalized_coord], axis=1)
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(normalized_coord=[
                    attributes.shape[1], attributes.shape[1] +
                    1, attributes.shape[1] + 2
                ]))

        points = np.concatenate([centered_coords, attributes], axis=1)
        points = point_type(
            points, points_dim=points.shape[1], attribute_dims=attribute_dims)

        return points

1078
    def _patch_points_sampling(self, points, sem_mask):
1079
1080
1081
1082
1083
1084
        """Patch points sampling.

        First sample a valid patch.
        Then sample points within that patch to a certain number.

        Args:
1085
            points (:obj:`BasePoints`): 3D Points.
1086
1087
1088
            sem_mask (np.ndarray): semantic segmentation mask for input points.

        Returns:
1089
            tuple[:obj:`BasePoints`, np.ndarray] | :obj:`BasePoints`:
1090

1091
                - points (:obj:`BasePoints`): 3D Points.
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
                - choices (np.ndarray): The generated random samples.
        """
        coords = points.coord.numpy()
        attributes = points.tensor[:, 3:].numpy()
        attribute_dims = points.attribute_dims
        point_type = type(points)

        coord_max = np.amax(coords, axis=0)
        coord_min = np.amin(coords, axis=0)

1102
        for _ in range(self.num_try):
1103
1104
1105
            # random sample a point as patch center
            cur_center = coords[np.random.choice(coords.shape[0])]

1106
1107
            # boundary of a patch, which would be enlarged by
            # `self.enlarge_size` as an augmentation
1108
1109
1110
1111
1112
1113
1114
            cur_max = cur_center + np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_min = cur_center - np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_max[2] = coord_max[2]
            cur_min[2] = coord_min[2]
            cur_choice = np.sum(
1115
1116
                (coords >= (cur_min - self.enlarge_size)) *
                (coords <= (cur_max + self.enlarge_size)),
1117
1118
1119
1120
1121
1122
1123
                axis=1) == 3

            if not cur_choice.any():  # no points in this patch
                continue

            cur_coords = coords[cur_choice, :]
            cur_sem_mask = sem_mask[cur_choice]
1124
            point_idxs = np.where(cur_choice)[0]
1125
            mask = np.sum(
1126
1127
                (cur_coords >= (cur_min - self.eps)) * (cur_coords <=
                                                        (cur_max + self.eps)),
1128
                axis=1) == 3
1129

1130
1131
            # two criteria for patch sampling, adopted from PointNet++
            # 1. selected patch should contain enough unique points
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
            if self.min_unique_num is None:
                # use PointNet++'s method as default
                # [31, 31, 62] are just some big values used to transform
                # coords from 3d array to 1d and then check their uniqueness
                # this is used in all the ScanNet code following PointNet++
                vidx = np.ceil(
                    (cur_coords[mask, :] - cur_min) / (cur_max - cur_min) *
                    np.array([31.0, 31.0, 62.0]))
                vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 +
                                 vidx[:, 2])
                flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02
            else:
1144
                # if `min_unique_num` is provided, directly compare with it
1145
                flag1 = mask.sum() >= self.min_unique_num
1146

1147
            # 2. selected patch should contain enough annotated points
1148
1149
1150
1151
1152
1153
1154
1155
1156
            if self.ignore_index is None:
                flag2 = True
            else:
                flag2 = np.sum(cur_sem_mask != self.ignore_index) / \
                               len(cur_sem_mask) >= 0.7

            if flag1 and flag2:
                break

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
        # sample idx to `self.num_points`
        if point_idxs.size >= self.num_points:
            # no duplicate in sub-sampling
            choices = np.random.choice(
                point_idxs, self.num_points, replace=False)
        else:
            # do not use random choice here to avoid some points not counted
            dup = np.random.choice(point_idxs.size,
                                   self.num_points - point_idxs.size)
            idx_dup = np.concatenate(
                [np.arange(point_idxs.size),
                 np.array(dup)], 0)
            choices = point_idxs[idx_dup]
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211

        # construct model input
        points = self._input_generation(coords[choices], cur_center, coord_max,
                                        attributes[choices], attribute_dims,
                                        point_type)

        return points, choices

    def __call__(self, results):
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']

        assert 'pts_semantic_mask' in results.keys(), \
            'semantic mask should be provided in training and evaluation'
        pts_semantic_mask = results['pts_semantic_mask']

        points, choices = self._patch_points_sampling(points,
                                                      pts_semantic_mask)

        results['points'] = points
        results['pts_semantic_mask'] = pts_semantic_mask[choices]
        pts_instance_mask = results.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            results['pts_instance_mask'] = pts_instance_mask[choices]

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_points={self.num_points},'
        repr_str += f' block_size={self.block_size},'
        repr_str += f' ignore_index={self.ignore_index},'
        repr_str += f' use_normalized_coord={self.use_normalized_coord},'
1212
1213
        repr_str += f' num_try={self.num_try},'
        repr_str += f' enlarge_size={self.enlarge_size},'
1214
1215
        repr_str += f' min_unique_num={self.min_unique_num},'
        repr_str += f' eps={self.eps})'
wuyuefeng's avatar
wuyuefeng committed
1216
        return repr_str
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244


@PIPELINES.register_module()
class BackgroundPointsFilter(object):
    """Filter background points near the bounding box.

    Args:
        bbox_enlarge_range (tuple[float], float): Bbox enlarge range.
    """

    def __init__(self, bbox_enlarge_range):
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

    def __call__(self, input_dict):
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1245
1246
            dict: Results after filtering, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
1247
1248
1249
1250
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

xiliu8006's avatar
xiliu8006 committed
1251
1252
1253
1254
        # avoid groundtruth being modified
        gt_bboxes_3d_np = gt_bboxes_3d.tensor.clone().numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.clone().numpy()

1255
1256
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
xiliu8006's avatar
xiliu8006 committed
1257
        points_numpy = points.tensor.clone().numpy()
1258
1259
        foreground_masks = box_np_ops.points_in_rbbox(
            points_numpy, gt_bboxes_3d_np, origin=(0.5, 0.5, 0.5))
1260
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
1261
            points_numpy, enlarged_gt_bboxes_3d, origin=(0.5, 0.5, 0.5))
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
1280
        repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})'
1281
        return repr_str
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353


@PIPELINES.register_module()
class VoxelBasedPointSampler(object):
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
        prev_sweep_cfg (dict): Config for sampling previous points.
        time_dim (int): Index that indicate the time dimention
            for input points.
    """

    def __init__(self, cur_sweep_cfg, prev_sweep_cfg=None, time_dim=3):
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

    def _sample_points(self, points, sampler, point_dim):
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
            point_dim (int): The dimention of each points

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

    def __call__(self, results):
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
1354
1355
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
1356
1357
1358
1359
1360
1361
1362
1363
1364
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

1365
        points_numpy = np.concatenate(extra_channel, axis=-1)
1366
1367
1368
1369
1370

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
1371
1372
1373
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
1374
1375
1376
1377
1378
1379
1380
1381
1382
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
1383
                                               points_numpy.shape[1])
1384
1385
1386
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
1387
                                                     points_numpy.shape[1])
1388

1389
1390
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
1391
        else:
1392
            points_numpy = cur_sweep_points
1393
1394

        if self.cur_voxel_generator._max_num_points == 1:
1395
1396
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
1397
1398
1399

        # Restore the correspoinding seg and mask fields
        for key, dim_index in map_fields2dim:
1400
            results[key] = points_numpy[..., dim_index]
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str