"official/projects/centernet/ops/preprocess_ops.py" did not exist on "460890eddf06a7a7e03b51893ad293309ebde0ef"
nuscenes_dataset.py 25.2 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
3
4
import mmcv
import numpy as np
import pyquaternion
zhangwenwei's avatar
zhangwenwei committed
5
import tempfile
zhangwenwei's avatar
zhangwenwei committed
6
from nuscenes.utils.data_classes import Box as NuScenesBox
zhangwenwei's avatar
zhangwenwei committed
7
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
8
9

from mmdet.datasets import DATASETS
liyinhao's avatar
liyinhao committed
10
from ..core import show_result
11
from ..core.bbox import Box3DMode, Coord3DMode, LiDARInstance3DBoxes
zhangwenwei's avatar
zhangwenwei committed
12
from .custom_3d import Custom3DDataset
13
from .pipelines import Compose
zhangwenwei's avatar
zhangwenwei committed
14
15


16
@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
17
class NuScenesDataset(Custom3DDataset):
wangtai's avatar
wangtai committed
18
    r"""NuScenes Dataset.
wangtai's avatar
wangtai committed
19
20
21

    This class serves as the API for experiments on the NuScenes Dataset.

zhangwenwei's avatar
zhangwenwei committed
22
23
    Please refer to `NuScenes Dataset <https://www.nuscenes.org/download>`_
    for data downloading.
wangtai's avatar
wangtai committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

    Args:
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        data_root (str): Path of dataset root.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        load_interval (int, optional): Interval of loading the dataset. It is
            used to uniformly sample the dataset. Defaults to 1.
        with_velocity (bool, optional): Whether include velocity prediction
            into the experiments. Defaults to True.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
yinchimaoliang's avatar
yinchimaoliang committed
41
            Defaults to 'LiDAR' in this dataset. Available options includes.
wangtai's avatar
wangtai committed
42
43
44
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
wangtai's avatar
wangtai committed
45
46
47
48
49
50
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
        eval_version (bool, optional): Configuration version of evaluation.
            Defaults to  'detection_cvpr_2019'.
yinchimaoliang's avatar
yinchimaoliang committed
51
52
        use_valid_flag (bool): Whether to use `use_valid_flag` key in the info
            file as mask to filter gt_boxes and gt_names. Defaults to False.
wangtai's avatar
wangtai committed
53
    """
zhangwenwei's avatar
zhangwenwei committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    NameMapping = {
        'movable_object.barrier': 'barrier',
        'vehicle.bicycle': 'bicycle',
        'vehicle.bus.bendy': 'bus',
        'vehicle.bus.rigid': 'bus',
        'vehicle.car': 'car',
        'vehicle.construction': 'construction_vehicle',
        'vehicle.motorcycle': 'motorcycle',
        'human.pedestrian.adult': 'pedestrian',
        'human.pedestrian.child': 'pedestrian',
        'human.pedestrian.construction_worker': 'pedestrian',
        'human.pedestrian.police_officer': 'pedestrian',
        'movable_object.trafficcone': 'traffic_cone',
        'vehicle.trailer': 'trailer',
        'vehicle.truck': 'truck'
    }
    DefaultAttribute = {
        'car': 'vehicle.parked',
        'pedestrian': 'pedestrian.moving',
        'trailer': 'vehicle.parked',
        'truck': 'vehicle.parked',
        'bus': 'vehicle.moving',
        'motorcycle': 'cycle.without_rider',
        'construction_vehicle': 'vehicle.parked',
        'bicycle': 'cycle.without_rider',
        'barrier': '',
        'traffic_cone': '',
    }
    AttrMapping = {
        'cycle.with_rider': 0,
        'cycle.without_rider': 1,
        'pedestrian.moving': 2,
        'pedestrian.standing': 3,
        'pedestrian.sitting_lying_down': 4,
        'vehicle.moving': 5,
        'vehicle.parked': 6,
        'vehicle.stopped': 7,
    }
    AttrMapping_rev = [
        'cycle.with_rider',
        'cycle.without_rider',
        'pedestrian.moving',
        'pedestrian.standing',
        'pedestrian.sitting_lying_down',
        'vehicle.moving',
        'vehicle.parked',
        'vehicle.stopped',
    ]
102
103
104
105
106
107
108
109
    # https://github.com/nutonomy/nuscenes-devkit/blob/57889ff20678577025326cfc24e57424a829be0a/python-sdk/nuscenes/eval/detection/evaluate.py#L222 # noqa
    ErrNameMapping = {
        'trans_err': 'mATE',
        'scale_err': 'mASE',
        'orient_err': 'mAOE',
        'vel_err': 'mAVE',
        'attr_err': 'mAAE'
    }
zhangwenwei's avatar
zhangwenwei committed
110
111
112
113
114
115
116
    CLASSES = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle',
               'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
               'barrier')

    def __init__(self,
                 ann_file,
                 pipeline=None,
zhangwenwei's avatar
zhangwenwei committed
117
118
                 data_root=None,
                 classes=None,
zhangwenwei's avatar
zhangwenwei committed
119
120
121
                 load_interval=1,
                 with_velocity=True,
                 modality=None,
122
123
124
                 box_type_3d='LiDAR',
                 filter_empty_gt=True,
                 test_mode=False,
yinchimaoliang's avatar
yinchimaoliang committed
125
126
                 eval_version='detection_cvpr_2019',
                 use_valid_flag=False):
zhangwenwei's avatar
zhangwenwei committed
127
        self.load_interval = load_interval
yinchimaoliang's avatar
yinchimaoliang committed
128
        self.use_valid_flag = use_valid_flag
zhangwenwei's avatar
zhangwenwei committed
129
130
131
132
133
134
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
135
136
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
zhangwenwei's avatar
zhangwenwei committed
137
            test_mode=test_mode)
zhangwenwei's avatar
zhangwenwei committed
138
139
140
141
142

        self.with_velocity = with_velocity
        self.eval_version = eval_version
        from nuscenes.eval.detection.config import config_factory
        self.eval_detection_configs = config_factory(self.eval_version)
zhangwenwei's avatar
zhangwenwei committed
143
144
        if self.modality is None:
            self.modality = dict(
zhangwenwei's avatar
zhangwenwei committed
145
146
147
148
149
150
151
                use_camera=False,
                use_lidar=True,
                use_radar=False,
                use_map=False,
                use_external=False,
            )

yinchimaoliang's avatar
yinchimaoliang committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    def get_cat_ids(self, idx):
        """Get category distribution of single scene.

        Args:
            idx (int): Index of the data_info.

        Returns:
            dict[list]: for each category, if the current scene
                contains such boxes, store a list containing idx,
                otherwise, store empty list.
        """
        info = self.data_infos[idx]
        if self.use_valid_flag:
            mask = info['valid_flag']
            gt_names = set(info['gt_names'][mask])
        else:
            gt_names = set(info['gt_names'])
169
170

        cat_ids = []
yinchimaoliang's avatar
yinchimaoliang committed
171
172
        for name in gt_names:
            if name in self.CLASSES:
173
174
                cat_ids.append(self.cat2id[name])
        return cat_ids
yinchimaoliang's avatar
yinchimaoliang committed
175

zhangwenwei's avatar
zhangwenwei committed
176
    def load_annotations(self, ann_file):
177
178
179
180
181
182
183
184
        """Load annotations from ann_file.

        Args:
            ann_file (str): Path of the annotation file.

        Returns:
            list[dict]: List of annotations sorted by timestamps.
        """
zhangwenwei's avatar
zhangwenwei committed
185
186
187
188
189
190
        data = mmcv.load(ann_file)
        data_infos = list(sorted(data['infos'], key=lambda e: e['timestamp']))
        data_infos = data_infos[::self.load_interval]
        self.metadata = data['metadata']
        self.version = self.metadata['version']
        return data_infos
zhangwenwei's avatar
zhangwenwei committed
191

zhangwenwei's avatar
zhangwenwei committed
192
    def get_data_info(self, index):
193
194
195
196
197
198
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
199
200
            dict: Data information that will be passed to the data \
                preprocessing pipelines. It includes the following keys:
201

wangtai's avatar
wangtai committed
202
203
204
205
206
207
208
209
                - sample_idx (str): Sample index.
                - pts_filename (str): Filename of point clouds.
                - sweeps (list[dict]): Infos of sweeps.
                - timestamp (float): Sample timestamp.
                - img_filename (str, optional): Image filename.
                - lidar2img (list[np.ndarray], optional): Transformations \
                    from lidar to different cameras.
                - ann_info (dict): Annotation info.
210
        """
zhangwenwei's avatar
zhangwenwei committed
211
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
212
        # standard protocal modified from SECOND.Pytorch
zhangwenwei's avatar
zhangwenwei committed
213
214
        input_dict = dict(
            sample_idx=info['token'],
zhangwenwei's avatar
zhangwenwei committed
215
216
217
            pts_filename=info['lidar_path'],
            sweeps=info['sweeps'],
            timestamp=info['timestamp'] / 1e6,
zhangwenwei's avatar
zhangwenwei committed
218
219
220
221
222
223
        )

        if self.modality['use_camera']:
            image_paths = []
            lidar2img_rts = []
            for cam_type, cam_info in info['cams'].items():
zhangwenwei's avatar
zhangwenwei committed
224
                image_paths.append(cam_info['data_path'])
zhangwenwei's avatar
zhangwenwei committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
                # obtain lidar to image transformation matrix
                lidar2cam_r = np.linalg.inv(cam_info['sensor2lidar_rotation'])
                lidar2cam_t = cam_info[
                    'sensor2lidar_translation'] @ lidar2cam_r.T
                lidar2cam_rt = np.eye(4)
                lidar2cam_rt[:3, :3] = lidar2cam_r.T
                lidar2cam_rt[3, :3] = -lidar2cam_t
                intrinsic = cam_info['cam_intrinsic']
                viewpad = np.eye(4)
                viewpad[:intrinsic.shape[0], :intrinsic.shape[1]] = intrinsic
                lidar2img_rt = (viewpad @ lidar2cam_rt.T)
                lidar2img_rts.append(lidar2img_rt)

            input_dict.update(
                dict(
zhangwenwei's avatar
zhangwenwei committed
240
                    img_filename=image_paths,
zhangwenwei's avatar
zhangwenwei committed
241
242
243
                    lidar2img=lidar2img_rts,
                ))

zhangwenwei's avatar
zhangwenwei committed
244
        if not self.test_mode:
zhangwenwei's avatar
zhangwenwei committed
245
            annos = self.get_ann_info(index)
zhangwenwei's avatar
zhangwenwei committed
246
            input_dict['ann_info'] = annos
zhangwenwei's avatar
zhangwenwei committed
247
248
249
250

        return input_dict

    def get_ann_info(self, index):
251
252
253
254
255
256
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
wangtai's avatar
wangtai committed
257
            dict: Annotation information consists of the following keys:
258

zhangwenwei's avatar
zhangwenwei committed
259
                - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`): \
260
                    3D ground truth bboxes
wangtai's avatar
wangtai committed
261
262
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - gt_names (list[str]): Class names of ground truths.
263
        """
zhangwenwei's avatar
zhangwenwei committed
264
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
265
        # filter out bbox containing no points
yinchimaoliang's avatar
yinchimaoliang committed
266
267
268
269
        if self.use_valid_flag:
            mask = info['valid_flag']
        else:
            mask = info['num_lidar_pts'] > 0
zhangwenwei's avatar
zhangwenwei committed
270
271
        gt_bboxes_3d = info['gt_boxes'][mask]
        gt_names_3d = info['gt_names'][mask]
zhangwenwei's avatar
zhangwenwei committed
272
273
274
275
276
277
278
        gt_labels_3d = []
        for cat in gt_names_3d:
            if cat in self.CLASSES:
                gt_labels_3d.append(self.CLASSES.index(cat))
            else:
                gt_labels_3d.append(-1)
        gt_labels_3d = np.array(gt_labels_3d)
zhangwenwei's avatar
zhangwenwei committed
279
280
281
282
283
284
285

        if self.with_velocity:
            gt_velocity = info['gt_velocity'][mask]
            nan_mask = np.isnan(gt_velocity[:, 0])
            gt_velocity[nan_mask] = [0.0, 0.0]
            gt_bboxes_3d = np.concatenate([gt_bboxes_3d, gt_velocity], axis=-1)

wangtai's avatar
wangtai committed
286
        # the nuscenes box center is [0.5, 0.5, 0.5], we change it to be
wuyuefeng's avatar
wuyuefeng committed
287
        # the same as KITTI (0.5, 0.5, 0)
zhangwenwei's avatar
zhangwenwei committed
288
289
290
        gt_bboxes_3d = LiDARInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
wuyuefeng's avatar
wuyuefeng committed
291
            origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)
zhangwenwei's avatar
zhangwenwei committed
292

zhangwenwei's avatar
zhangwenwei committed
293
294
        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
295
            gt_labels_3d=gt_labels_3d,
liyinhao's avatar
liyinhao committed
296
            gt_names=gt_names_3d)
zhangwenwei's avatar
zhangwenwei committed
297
298
299
        return anns_results

    def _format_bbox(self, results, jsonfile_prefix=None):
300
301
302
303
304
305
306
307
308
309
310
        """Convert the results to the standard format.

        Args:
            results (list[dict]): Testing results of the dataset.
            jsonfile_prefix (str): The prefix of the output jsonfile.
                You can specify the output directory/filename by
                modifying the jsonfile_prefix. Default: None.

        Returns:
            str: Path of the output json file.
        """
zhangwenwei's avatar
zhangwenwei committed
311
        nusc_annos = {}
zhangwenwei's avatar
zhangwenwei committed
312
        mapped_class_names = self.CLASSES
zhangwenwei's avatar
zhangwenwei committed
313

zhangwenwei's avatar
zhangwenwei committed
314
        print('Start to convert detection format...')
zhangwenwei's avatar
zhangwenwei committed
315
        for sample_id, det in enumerate(mmcv.track_iter_progress(results)):
zhangwenwei's avatar
zhangwenwei committed
316
            annos = []
zhangwenwei's avatar
zhangwenwei committed
317
318
319
320
            boxes = output_to_nusc_box(det)
            sample_token = self.data_infos[sample_id]['token']
            boxes = lidar_nusc_box_to_global(self.data_infos[sample_id], boxes,
                                             mapped_class_names,
zhangwenwei's avatar
zhangwenwei committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
                                             self.eval_detection_configs,
                                             self.eval_version)
            for i, box in enumerate(boxes):
                name = mapped_class_names[box.label]
                if np.sqrt(box.velocity[0]**2 + box.velocity[1]**2) > 0.2:
                    if name in [
                            'car',
                            'construction_vehicle',
                            'bus',
                            'truck',
                            'trailer',
                    ]:
                        attr = 'vehicle.moving'
                    elif name in ['bicycle', 'motorcycle']:
                        attr = 'cycle.with_rider'
                    else:
                        attr = NuScenesDataset.DefaultAttribute[name]
                else:
                    if name in ['pedestrian']:
                        attr = 'pedestrian.standing'
                    elif name in ['bus']:
                        attr = 'vehicle.stopped'
                    else:
                        attr = NuScenesDataset.DefaultAttribute[name]

                nusc_anno = dict(
zhangwenwei's avatar
zhangwenwei committed
347
                    sample_token=sample_token,
zhangwenwei's avatar
zhangwenwei committed
348
349
350
351
352
353
354
355
                    translation=box.center.tolist(),
                    size=box.wlh.tolist(),
                    rotation=box.orientation.elements.tolist(),
                    velocity=box.velocity[:2].tolist(),
                    detection_name=name,
                    detection_score=box.score,
                    attribute_name=attr)
                annos.append(nusc_anno)
zhangwenwei's avatar
zhangwenwei committed
356
            nusc_annos[sample_token] = annos
zhangwenwei's avatar
zhangwenwei committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
        nusc_submissions = {
            'meta': self.modality,
            'results': nusc_annos,
        }

        mmcv.mkdir_or_exist(jsonfile_prefix)
        res_path = osp.join(jsonfile_prefix, 'results_nusc.json')
        print('Results writes to', res_path)
        mmcv.dump(nusc_submissions, res_path)
        return res_path

    def _evaluate_single(self,
                         result_path,
                         logger=None,
                         metric='bbox',
                         result_name='pts_bbox'):
373
374
375
376
377
378
379
380
381
382
383
384
385
        """Evaluation for a single model in nuScenes protocol.

        Args:
            result_path (str): Path of the result file.
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.
            metric (str): Metric name used for evaluation. Default: 'bbox'.
            result_name (str): Result name in the metric prefix.
                Default: 'pts_bbox'.

        Returns:
            dict: Dictionary of evaluation details.
        """
zhangwenwei's avatar
zhangwenwei committed
386
387
388
389
390
391
392
        from nuscenes import NuScenes
        from nuscenes.eval.detection.evaluate import NuScenesEval

        output_dir = osp.join(*osp.split(result_path)[:-1])
        nusc = NuScenes(
            version=self.version, dataroot=self.data_root, verbose=False)
        eval_set_map = {
393
            'v1.0-mini': 'mini_val',
zhangwenwei's avatar
zhangwenwei committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
            'v1.0-trainval': 'val',
        }
        nusc_eval = NuScenesEval(
            nusc,
            config=self.eval_detection_configs,
            result_path=result_path,
            eval_set=eval_set_map[self.version],
            output_dir=output_dir,
            verbose=False)
        nusc_eval.main(render_curves=False)

        # record metrics
        metrics = mmcv.load(osp.join(output_dir, 'metrics_summary.json'))
        detail = dict()
wangtai's avatar
wangtai committed
408
        metric_prefix = f'{result_name}_NuScenes'
zhangwenwei's avatar
zhangwenwei committed
409
        for name in self.CLASSES:
zhangwenwei's avatar
zhangwenwei committed
410
411
412
413
414
415
            for k, v in metrics['label_aps'][name].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}_AP_dist_{}'.format(metric_prefix, name, k)] = val
            for k, v in metrics['label_tp_errors'][name].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}_{}'.format(metric_prefix, name, k)] = val
416
417
418
419
            for k, v in metrics['tp_errors'].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}'.format(metric_prefix,
                                      self.ErrNameMapping[k])] = val
zhangwenwei's avatar
zhangwenwei committed
420
421
422
423
424
425
426
427
428

        detail['{}/NDS'.format(metric_prefix)] = metrics['nd_score']
        detail['{}/mAP'.format(metric_prefix)] = metrics['mean_ap']
        return detail

    def format_results(self, results, jsonfile_prefix=None):
        """Format the results to json (standard format for COCO evaluation).

        Args:
wangtai's avatar
wangtai committed
429
            results (list[dict]): Testing results of the dataset.
zhangwenwei's avatar
zhangwenwei committed
430
431
432
433
434
            jsonfile_prefix (str | None): The prefix of json files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
435
436
437
438
            tuple: Returns (result_files, tmp_dir), where `result_files` is a \
                dict containing the json filepaths, `tmp_dir` is the temporal \
                directory created for saving json files when \
                `jsonfile_prefix` is not specified.
zhangwenwei's avatar
zhangwenwei committed
439
440
441
442
443
444
445
446
447
448
449
450
        """
        assert isinstance(results, list), 'results must be a list'
        assert len(results) == len(self), (
            'The length of results is not equal to the dataset len: {} != {}'.
            format(len(results), len(self)))

        if jsonfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            jsonfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None

451
452
453
454
455
456
457
        # currently the output prediction results could be in two formats
        # 1. list of dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...)
        # 2. list of dict('pts_bbox' or 'img_bbox':
        #     dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...))
        # this is a workaround to enable evaluation of both formats on nuScenes
        # refer to https://github.com/open-mmlab/mmdetection3d/issues/449
        if not ('pts_bbox' in results[0] or 'img_bbox' in results[0]):
zhangwenwei's avatar
zhangwenwei committed
458
459
            result_files = self._format_bbox(results, jsonfile_prefix)
        else:
460
            # should take the inner dict out of 'pts_bbox' or 'img_bbox' dict
zhangwenwei's avatar
zhangwenwei committed
461
462
            result_files = dict()
            for name in results[0]:
zhangwenwei's avatar
zhangwenwei committed
463
                print(f'\nFormating bboxes of {name}')
zhangwenwei's avatar
zhangwenwei committed
464
465
466
467
468
469
470
471
472
473
474
                results_ = [out[name] for out in results]
                tmp_file_ = osp.join(jsonfile_prefix, name)
                result_files.update(
                    {name: self._format_bbox(results_, tmp_file_)})
        return result_files, tmp_dir

    def evaluate(self,
                 results,
                 metric='bbox',
                 logger=None,
                 jsonfile_prefix=None,
liyinhao's avatar
liyinhao committed
475
476
                 result_names=['pts_bbox'],
                 show=False,
477
478
                 out_dir=None,
                 pipeline=None):
zhangwenwei's avatar
zhangwenwei committed
479
480
481
        """Evaluation in nuScenes protocol.

        Args:
wangtai's avatar
wangtai committed
482
            results (list[dict]): Testing results of the dataset.
zhangwenwei's avatar
zhangwenwei committed
483
484
485
486
487
488
            metric (str | list[str]): Metrics to be evaluated.
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.
            jsonfile_prefix (str | None): The prefix of json files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
liyinhao's avatar
liyinhao committed
489
490
491
492
            show (bool): Whether to visualize.
                Default: False.
            out_dir (str): Path to save the visualization results.
                Default: None.
493
494
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
zhangwenwei's avatar
zhangwenwei committed
495
496

        Returns:
wangtai's avatar
wangtai committed
497
            dict[str, float]: Results of each evaluation metric.
zhangwenwei's avatar
zhangwenwei committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
        """
        result_files, tmp_dir = self.format_results(results, jsonfile_prefix)

        if isinstance(result_files, dict):
            results_dict = dict()
            for name in result_names:
                print('Evaluating bboxes of {}'.format(name))
                ret_dict = self._evaluate_single(result_files[name])
            results_dict.update(ret_dict)
        elif isinstance(result_files, str):
            results_dict = self._evaluate_single(result_files)

        if tmp_dir is not None:
            tmp_dir.cleanup()
liyinhao's avatar
liyinhao committed
512
513

        if show:
514
            self.show(results, out_dir, pipeline=pipeline)
zhangwenwei's avatar
zhangwenwei committed
515
516
        return results_dict

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='LIDAR',
                load_dim=5,
                use_dim=5,
                file_client_args=dict(backend='disk')),
            dict(
                type='LoadPointsFromMultiSweeps',
                sweeps_num=10,
                file_client_args=dict(backend='disk')),
            dict(
                type='DefaultFormatBundle3D',
                class_names=self.CLASSES,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ]
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
539
540
541
542
543
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
544
545
546
            show (bool): Visualize the results online.
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
547
        """
548
549
        assert out_dir is not None, 'Expect out_dir, got none.'
        pipeline = self._get_pipeline(pipeline)
liyinhao's avatar
liyinhao committed
550
        for i, result in enumerate(results):
551
552
            if 'pts_bbox' in result.keys():
                result = result['pts_bbox']
liyinhao's avatar
liyinhao committed
553
554
555
            data_info = self.data_infos[i]
            pts_path = data_info['lidar_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
556
            points = self._extract_data(i, pipeline, 'points').numpy()
liyinhao's avatar
liyinhao committed
557
            # for now we convert points into depth mode
558
559
            points = Coord3DMode.convert_point(points, Coord3DMode.LIDAR,
                                               Coord3DMode.DEPTH)
560
            inds = result['scores_3d'] > 0.1
561
            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
562
563
564
565
566
567
568
            show_gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR,
                                               Box3DMode.DEPTH)
            pred_bboxes = result['boxes_3d'][inds].tensor.numpy()
            show_pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR,
                                                 Box3DMode.DEPTH)
            show_result(points, show_gt_bboxes, show_pred_bboxes, out_dir,
                        file_name, show)
liyinhao's avatar
liyinhao committed
569

zhangwenwei's avatar
zhangwenwei committed
570
571

def output_to_nusc_box(detection):
572
573
574
575
576
    """Convert the output to the box class in the nuScenes.

    Args:
        detection (dict): Detection results.

wangtai's avatar
wangtai committed
577
578
579
            - boxes_3d (:obj:`BaseInstance3DBoxes`): Detection bbox.
            - scores_3d (torch.Tensor): Detection scores.
            - labels_3d (torch.Tensor): Predicted box labels.
580
581

    Returns:
zhangwenwei's avatar
zhangwenwei committed
582
        list[:obj:`NuScenesBox`]: List of standard NuScenesBoxes.
583
    """
584
    box3d = detection['boxes_3d']
zhangwenwei's avatar
zhangwenwei committed
585
586
    scores = detection['scores_3d'].numpy()
    labels = detection['labels_3d'].numpy()
587
588
589
590

    box_gravity_center = box3d.gravity_center.numpy()
    box_dims = box3d.dims.numpy()
    box_yaw = box3d.yaw.numpy()
591
592
593

    # our LiDAR coordinate system -> nuScenes box coordinate system
    nus_box_dims = box_dims[:, [1, 0, 2]]
594

zhangwenwei's avatar
zhangwenwei committed
595
    box_list = []
596
597
598
    for i in range(len(box3d)):
        quat = pyquaternion.Quaternion(axis=[0, 0, 1], radians=box_yaw[i])
        velocity = (*box3d.tensor[i, 7:9], 0.0)
zhangwenwei's avatar
zhangwenwei committed
599
600
601
602
603
        # velo_val = np.linalg.norm(box3d[i, 7:9])
        # velo_ori = box3d[i, 6]
        # velocity = (
        # velo_val * np.cos(velo_ori), velo_val * np.sin(velo_ori), 0.0)
        box = NuScenesBox(
604
            box_gravity_center[i],
605
            nus_box_dims[i],
zhangwenwei's avatar
zhangwenwei committed
606
607
608
609
610
611
612
613
614
615
616
617
618
            quat,
            label=labels[i],
            score=scores[i],
            velocity=velocity)
        box_list.append(box)
    return box_list


def lidar_nusc_box_to_global(info,
                             boxes,
                             classes,
                             eval_configs,
                             eval_version='detection_cvpr_2019'):
619
620
621
622
623
    """Convert the box from ego to global coordinate.

    Args:
        info (dict): Info for a specific sample data, including the
            calibration information.
zhangwenwei's avatar
zhangwenwei committed
624
        boxes (list[:obj:`NuScenesBox`]): List of predicted NuScenesBoxes.
625
626
627
628
629
630
631
632
633
        classes (list[str]): Mapped classes in the evaluation.
        eval_configs (object): Evaluation configuration object.
        eval_version (str): Evaluation version.
            Default: 'detection_cvpr_2019'

    Returns:
        list: List of standard NuScenesBoxes in the global
            coordinate.
    """
zhangwenwei's avatar
zhangwenwei committed
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
    box_list = []
    for box in boxes:
        # Move box to ego vehicle coord system
        box.rotate(pyquaternion.Quaternion(info['lidar2ego_rotation']))
        box.translate(np.array(info['lidar2ego_translation']))
        # filter det in ego.
        cls_range_map = eval_configs.class_range
        radius = np.linalg.norm(box.center[:2], 2)
        det_range = cls_range_map[classes[box.label]]
        if radius > det_range:
            continue
        # Move box to global coord system
        box.rotate(pyquaternion.Quaternion(info['ego2global_rotation']))
        box.translate(np.array(info['ego2global_translation']))
        box_list.append(box)
    return box_list