nuscenes_dataset.py 25.2 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import mmcv
import numpy as np
import pyquaternion
zhangwenwei's avatar
zhangwenwei committed
4
import tempfile
zhangwenwei's avatar
zhangwenwei committed
5
from nuscenes.utils.data_classes import Box as NuScenesBox
zhangwenwei's avatar
zhangwenwei committed
6
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
7
8

from mmdet.datasets import DATASETS
liyinhao's avatar
liyinhao committed
9
from ..core import show_result
10
from ..core.bbox import Box3DMode, Coord3DMode, LiDARInstance3DBoxes
zhangwenwei's avatar
zhangwenwei committed
11
from .custom_3d import Custom3DDataset
12
from .pipelines import Compose
zhangwenwei's avatar
zhangwenwei committed
13
14


15
@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
16
class NuScenesDataset(Custom3DDataset):
wangtai's avatar
wangtai committed
17
    r"""NuScenes Dataset.
wangtai's avatar
wangtai committed
18
19
20

    This class serves as the API for experiments on the NuScenes Dataset.

zhangwenwei's avatar
zhangwenwei committed
21
22
    Please refer to `NuScenes Dataset <https://www.nuscenes.org/download>`_
    for data downloading.
wangtai's avatar
wangtai committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

    Args:
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        data_root (str): Path of dataset root.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        load_interval (int, optional): Interval of loading the dataset. It is
            used to uniformly sample the dataset. Defaults to 1.
        with_velocity (bool, optional): Whether include velocity prediction
            into the experiments. Defaults to True.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
yinchimaoliang's avatar
yinchimaoliang committed
40
            Defaults to 'LiDAR' in this dataset. Available options includes.
wangtai's avatar
wangtai committed
41
42
43
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
wangtai's avatar
wangtai committed
44
45
46
47
48
49
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
        eval_version (bool, optional): Configuration version of evaluation.
            Defaults to  'detection_cvpr_2019'.
yinchimaoliang's avatar
yinchimaoliang committed
50
51
        use_valid_flag (bool): Whether to use `use_valid_flag` key in the info
            file as mask to filter gt_boxes and gt_names. Defaults to False.
wangtai's avatar
wangtai committed
52
    """
zhangwenwei's avatar
zhangwenwei committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    NameMapping = {
        'movable_object.barrier': 'barrier',
        'vehicle.bicycle': 'bicycle',
        'vehicle.bus.bendy': 'bus',
        'vehicle.bus.rigid': 'bus',
        'vehicle.car': 'car',
        'vehicle.construction': 'construction_vehicle',
        'vehicle.motorcycle': 'motorcycle',
        'human.pedestrian.adult': 'pedestrian',
        'human.pedestrian.child': 'pedestrian',
        'human.pedestrian.construction_worker': 'pedestrian',
        'human.pedestrian.police_officer': 'pedestrian',
        'movable_object.trafficcone': 'traffic_cone',
        'vehicle.trailer': 'trailer',
        'vehicle.truck': 'truck'
    }
    DefaultAttribute = {
        'car': 'vehicle.parked',
        'pedestrian': 'pedestrian.moving',
        'trailer': 'vehicle.parked',
        'truck': 'vehicle.parked',
        'bus': 'vehicle.moving',
        'motorcycle': 'cycle.without_rider',
        'construction_vehicle': 'vehicle.parked',
        'bicycle': 'cycle.without_rider',
        'barrier': '',
        'traffic_cone': '',
    }
    AttrMapping = {
        'cycle.with_rider': 0,
        'cycle.without_rider': 1,
        'pedestrian.moving': 2,
        'pedestrian.standing': 3,
        'pedestrian.sitting_lying_down': 4,
        'vehicle.moving': 5,
        'vehicle.parked': 6,
        'vehicle.stopped': 7,
    }
    AttrMapping_rev = [
        'cycle.with_rider',
        'cycle.without_rider',
        'pedestrian.moving',
        'pedestrian.standing',
        'pedestrian.sitting_lying_down',
        'vehicle.moving',
        'vehicle.parked',
        'vehicle.stopped',
    ]
101
102
103
104
105
106
107
108
    # https://github.com/nutonomy/nuscenes-devkit/blob/57889ff20678577025326cfc24e57424a829be0a/python-sdk/nuscenes/eval/detection/evaluate.py#L222 # noqa
    ErrNameMapping = {
        'trans_err': 'mATE',
        'scale_err': 'mASE',
        'orient_err': 'mAOE',
        'vel_err': 'mAVE',
        'attr_err': 'mAAE'
    }
zhangwenwei's avatar
zhangwenwei committed
109
110
111
112
113
114
115
    CLASSES = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle',
               'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
               'barrier')

    def __init__(self,
                 ann_file,
                 pipeline=None,
zhangwenwei's avatar
zhangwenwei committed
116
117
                 data_root=None,
                 classes=None,
zhangwenwei's avatar
zhangwenwei committed
118
119
120
                 load_interval=1,
                 with_velocity=True,
                 modality=None,
121
122
123
                 box_type_3d='LiDAR',
                 filter_empty_gt=True,
                 test_mode=False,
yinchimaoliang's avatar
yinchimaoliang committed
124
125
                 eval_version='detection_cvpr_2019',
                 use_valid_flag=False):
zhangwenwei's avatar
zhangwenwei committed
126
        self.load_interval = load_interval
yinchimaoliang's avatar
yinchimaoliang committed
127
        self.use_valid_flag = use_valid_flag
zhangwenwei's avatar
zhangwenwei committed
128
129
130
131
132
133
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
134
135
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
zhangwenwei's avatar
zhangwenwei committed
136
            test_mode=test_mode)
zhangwenwei's avatar
zhangwenwei committed
137
138
139
140
141

        self.with_velocity = with_velocity
        self.eval_version = eval_version
        from nuscenes.eval.detection.config import config_factory
        self.eval_detection_configs = config_factory(self.eval_version)
zhangwenwei's avatar
zhangwenwei committed
142
143
        if self.modality is None:
            self.modality = dict(
zhangwenwei's avatar
zhangwenwei committed
144
145
146
147
148
149
150
                use_camera=False,
                use_lidar=True,
                use_radar=False,
                use_map=False,
                use_external=False,
            )

yinchimaoliang's avatar
yinchimaoliang committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    def get_cat_ids(self, idx):
        """Get category distribution of single scene.

        Args:
            idx (int): Index of the data_info.

        Returns:
            dict[list]: for each category, if the current scene
                contains such boxes, store a list containing idx,
                otherwise, store empty list.
        """
        info = self.data_infos[idx]
        if self.use_valid_flag:
            mask = info['valid_flag']
            gt_names = set(info['gt_names'][mask])
        else:
            gt_names = set(info['gt_names'])
168
169

        cat_ids = []
yinchimaoliang's avatar
yinchimaoliang committed
170
171
        for name in gt_names:
            if name in self.CLASSES:
172
173
                cat_ids.append(self.cat2id[name])
        return cat_ids
yinchimaoliang's avatar
yinchimaoliang committed
174

zhangwenwei's avatar
zhangwenwei committed
175
    def load_annotations(self, ann_file):
176
177
178
179
180
181
182
183
        """Load annotations from ann_file.

        Args:
            ann_file (str): Path of the annotation file.

        Returns:
            list[dict]: List of annotations sorted by timestamps.
        """
zhangwenwei's avatar
zhangwenwei committed
184
185
186
187
188
189
        data = mmcv.load(ann_file)
        data_infos = list(sorted(data['infos'], key=lambda e: e['timestamp']))
        data_infos = data_infos[::self.load_interval]
        self.metadata = data['metadata']
        self.version = self.metadata['version']
        return data_infos
zhangwenwei's avatar
zhangwenwei committed
190

zhangwenwei's avatar
zhangwenwei committed
191
    def get_data_info(self, index):
192
193
194
195
196
197
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
198
199
            dict: Data information that will be passed to the data \
                preprocessing pipelines. It includes the following keys:
200

wangtai's avatar
wangtai committed
201
202
203
204
205
206
207
208
                - sample_idx (str): Sample index.
                - pts_filename (str): Filename of point clouds.
                - sweeps (list[dict]): Infos of sweeps.
                - timestamp (float): Sample timestamp.
                - img_filename (str, optional): Image filename.
                - lidar2img (list[np.ndarray], optional): Transformations \
                    from lidar to different cameras.
                - ann_info (dict): Annotation info.
209
        """
zhangwenwei's avatar
zhangwenwei committed
210
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
211
        # standard protocal modified from SECOND.Pytorch
zhangwenwei's avatar
zhangwenwei committed
212
213
        input_dict = dict(
            sample_idx=info['token'],
zhangwenwei's avatar
zhangwenwei committed
214
215
216
            pts_filename=info['lidar_path'],
            sweeps=info['sweeps'],
            timestamp=info['timestamp'] / 1e6,
zhangwenwei's avatar
zhangwenwei committed
217
218
219
220
221
222
        )

        if self.modality['use_camera']:
            image_paths = []
            lidar2img_rts = []
            for cam_type, cam_info in info['cams'].items():
zhangwenwei's avatar
zhangwenwei committed
223
                image_paths.append(cam_info['data_path'])
zhangwenwei's avatar
zhangwenwei committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
                # obtain lidar to image transformation matrix
                lidar2cam_r = np.linalg.inv(cam_info['sensor2lidar_rotation'])
                lidar2cam_t = cam_info[
                    'sensor2lidar_translation'] @ lidar2cam_r.T
                lidar2cam_rt = np.eye(4)
                lidar2cam_rt[:3, :3] = lidar2cam_r.T
                lidar2cam_rt[3, :3] = -lidar2cam_t
                intrinsic = cam_info['cam_intrinsic']
                viewpad = np.eye(4)
                viewpad[:intrinsic.shape[0], :intrinsic.shape[1]] = intrinsic
                lidar2img_rt = (viewpad @ lidar2cam_rt.T)
                lidar2img_rts.append(lidar2img_rt)

            input_dict.update(
                dict(
zhangwenwei's avatar
zhangwenwei committed
239
                    img_filename=image_paths,
zhangwenwei's avatar
zhangwenwei committed
240
241
242
                    lidar2img=lidar2img_rts,
                ))

zhangwenwei's avatar
zhangwenwei committed
243
        if not self.test_mode:
zhangwenwei's avatar
zhangwenwei committed
244
            annos = self.get_ann_info(index)
zhangwenwei's avatar
zhangwenwei committed
245
            input_dict['ann_info'] = annos
zhangwenwei's avatar
zhangwenwei committed
246
247
248
249

        return input_dict

    def get_ann_info(self, index):
250
251
252
253
254
255
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
wangtai's avatar
wangtai committed
256
            dict: Annotation information consists of the following keys:
257

zhangwenwei's avatar
zhangwenwei committed
258
                - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`): \
259
                    3D ground truth bboxes
wangtai's avatar
wangtai committed
260
261
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - gt_names (list[str]): Class names of ground truths.
262
        """
zhangwenwei's avatar
zhangwenwei committed
263
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
264
        # filter out bbox containing no points
yinchimaoliang's avatar
yinchimaoliang committed
265
266
267
268
        if self.use_valid_flag:
            mask = info['valid_flag']
        else:
            mask = info['num_lidar_pts'] > 0
zhangwenwei's avatar
zhangwenwei committed
269
270
        gt_bboxes_3d = info['gt_boxes'][mask]
        gt_names_3d = info['gt_names'][mask]
zhangwenwei's avatar
zhangwenwei committed
271
272
273
274
275
276
277
        gt_labels_3d = []
        for cat in gt_names_3d:
            if cat in self.CLASSES:
                gt_labels_3d.append(self.CLASSES.index(cat))
            else:
                gt_labels_3d.append(-1)
        gt_labels_3d = np.array(gt_labels_3d)
zhangwenwei's avatar
zhangwenwei committed
278
279
280
281
282
283
284

        if self.with_velocity:
            gt_velocity = info['gt_velocity'][mask]
            nan_mask = np.isnan(gt_velocity[:, 0])
            gt_velocity[nan_mask] = [0.0, 0.0]
            gt_bboxes_3d = np.concatenate([gt_bboxes_3d, gt_velocity], axis=-1)

wangtai's avatar
wangtai committed
285
        # the nuscenes box center is [0.5, 0.5, 0.5], we change it to be
wuyuefeng's avatar
wuyuefeng committed
286
        # the same as KITTI (0.5, 0.5, 0)
zhangwenwei's avatar
zhangwenwei committed
287
288
289
        gt_bboxes_3d = LiDARInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
wuyuefeng's avatar
wuyuefeng committed
290
            origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)
zhangwenwei's avatar
zhangwenwei committed
291

zhangwenwei's avatar
zhangwenwei committed
292
293
        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
294
            gt_labels_3d=gt_labels_3d,
liyinhao's avatar
liyinhao committed
295
            gt_names=gt_names_3d)
zhangwenwei's avatar
zhangwenwei committed
296
297
298
        return anns_results

    def _format_bbox(self, results, jsonfile_prefix=None):
299
300
301
302
303
304
305
306
307
308
309
        """Convert the results to the standard format.

        Args:
            results (list[dict]): Testing results of the dataset.
            jsonfile_prefix (str): The prefix of the output jsonfile.
                You can specify the output directory/filename by
                modifying the jsonfile_prefix. Default: None.

        Returns:
            str: Path of the output json file.
        """
zhangwenwei's avatar
zhangwenwei committed
310
        nusc_annos = {}
zhangwenwei's avatar
zhangwenwei committed
311
        mapped_class_names = self.CLASSES
zhangwenwei's avatar
zhangwenwei committed
312

zhangwenwei's avatar
zhangwenwei committed
313
        print('Start to convert detection format...')
zhangwenwei's avatar
zhangwenwei committed
314
        for sample_id, det in enumerate(mmcv.track_iter_progress(results)):
zhangwenwei's avatar
zhangwenwei committed
315
            annos = []
zhangwenwei's avatar
zhangwenwei committed
316
317
318
319
            boxes = output_to_nusc_box(det)
            sample_token = self.data_infos[sample_id]['token']
            boxes = lidar_nusc_box_to_global(self.data_infos[sample_id], boxes,
                                             mapped_class_names,
zhangwenwei's avatar
zhangwenwei committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
                                             self.eval_detection_configs,
                                             self.eval_version)
            for i, box in enumerate(boxes):
                name = mapped_class_names[box.label]
                if np.sqrt(box.velocity[0]**2 + box.velocity[1]**2) > 0.2:
                    if name in [
                            'car',
                            'construction_vehicle',
                            'bus',
                            'truck',
                            'trailer',
                    ]:
                        attr = 'vehicle.moving'
                    elif name in ['bicycle', 'motorcycle']:
                        attr = 'cycle.with_rider'
                    else:
                        attr = NuScenesDataset.DefaultAttribute[name]
                else:
                    if name in ['pedestrian']:
                        attr = 'pedestrian.standing'
                    elif name in ['bus']:
                        attr = 'vehicle.stopped'
                    else:
                        attr = NuScenesDataset.DefaultAttribute[name]

                nusc_anno = dict(
zhangwenwei's avatar
zhangwenwei committed
346
                    sample_token=sample_token,
zhangwenwei's avatar
zhangwenwei committed
347
348
349
350
351
352
353
354
                    translation=box.center.tolist(),
                    size=box.wlh.tolist(),
                    rotation=box.orientation.elements.tolist(),
                    velocity=box.velocity[:2].tolist(),
                    detection_name=name,
                    detection_score=box.score,
                    attribute_name=attr)
                annos.append(nusc_anno)
zhangwenwei's avatar
zhangwenwei committed
355
            nusc_annos[sample_token] = annos
zhangwenwei's avatar
zhangwenwei committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
        nusc_submissions = {
            'meta': self.modality,
            'results': nusc_annos,
        }

        mmcv.mkdir_or_exist(jsonfile_prefix)
        res_path = osp.join(jsonfile_prefix, 'results_nusc.json')
        print('Results writes to', res_path)
        mmcv.dump(nusc_submissions, res_path)
        return res_path

    def _evaluate_single(self,
                         result_path,
                         logger=None,
                         metric='bbox',
                         result_name='pts_bbox'):
372
373
374
375
376
377
378
379
380
381
382
383
384
        """Evaluation for a single model in nuScenes protocol.

        Args:
            result_path (str): Path of the result file.
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.
            metric (str): Metric name used for evaluation. Default: 'bbox'.
            result_name (str): Result name in the metric prefix.
                Default: 'pts_bbox'.

        Returns:
            dict: Dictionary of evaluation details.
        """
zhangwenwei's avatar
zhangwenwei committed
385
386
387
388
389
390
391
        from nuscenes import NuScenes
        from nuscenes.eval.detection.evaluate import NuScenesEval

        output_dir = osp.join(*osp.split(result_path)[:-1])
        nusc = NuScenes(
            version=self.version, dataroot=self.data_root, verbose=False)
        eval_set_map = {
392
            'v1.0-mini': 'mini_val',
zhangwenwei's avatar
zhangwenwei committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
            'v1.0-trainval': 'val',
        }
        nusc_eval = NuScenesEval(
            nusc,
            config=self.eval_detection_configs,
            result_path=result_path,
            eval_set=eval_set_map[self.version],
            output_dir=output_dir,
            verbose=False)
        nusc_eval.main(render_curves=False)

        # record metrics
        metrics = mmcv.load(osp.join(output_dir, 'metrics_summary.json'))
        detail = dict()
wangtai's avatar
wangtai committed
407
        metric_prefix = f'{result_name}_NuScenes'
zhangwenwei's avatar
zhangwenwei committed
408
        for name in self.CLASSES:
zhangwenwei's avatar
zhangwenwei committed
409
410
411
412
413
414
            for k, v in metrics['label_aps'][name].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}_AP_dist_{}'.format(metric_prefix, name, k)] = val
            for k, v in metrics['label_tp_errors'][name].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}_{}'.format(metric_prefix, name, k)] = val
415
416
417
418
            for k, v in metrics['tp_errors'].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}'.format(metric_prefix,
                                      self.ErrNameMapping[k])] = val
zhangwenwei's avatar
zhangwenwei committed
419
420
421
422
423
424
425
426
427

        detail['{}/NDS'.format(metric_prefix)] = metrics['nd_score']
        detail['{}/mAP'.format(metric_prefix)] = metrics['mean_ap']
        return detail

    def format_results(self, results, jsonfile_prefix=None):
        """Format the results to json (standard format for COCO evaluation).

        Args:
wangtai's avatar
wangtai committed
428
            results (list[dict]): Testing results of the dataset.
zhangwenwei's avatar
zhangwenwei committed
429
430
431
432
433
            jsonfile_prefix (str | None): The prefix of json files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
434
435
436
437
            tuple: Returns (result_files, tmp_dir), where `result_files` is a \
                dict containing the json filepaths, `tmp_dir` is the temporal \
                directory created for saving json files when \
                `jsonfile_prefix` is not specified.
zhangwenwei's avatar
zhangwenwei committed
438
439
440
441
442
443
444
445
446
447
448
449
        """
        assert isinstance(results, list), 'results must be a list'
        assert len(results) == len(self), (
            'The length of results is not equal to the dataset len: {} != {}'.
            format(len(results), len(self)))

        if jsonfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            jsonfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None

450
451
452
453
454
455
456
        # currently the output prediction results could be in two formats
        # 1. list of dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...)
        # 2. list of dict('pts_bbox' or 'img_bbox':
        #     dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...))
        # this is a workaround to enable evaluation of both formats on nuScenes
        # refer to https://github.com/open-mmlab/mmdetection3d/issues/449
        if not ('pts_bbox' in results[0] or 'img_bbox' in results[0]):
zhangwenwei's avatar
zhangwenwei committed
457
458
            result_files = self._format_bbox(results, jsonfile_prefix)
        else:
459
            # should take the inner dict out of 'pts_bbox' or 'img_bbox' dict
zhangwenwei's avatar
zhangwenwei committed
460
461
            result_files = dict()
            for name in results[0]:
zhangwenwei's avatar
zhangwenwei committed
462
                print(f'\nFormating bboxes of {name}')
zhangwenwei's avatar
zhangwenwei committed
463
464
465
466
467
468
469
470
471
472
473
                results_ = [out[name] for out in results]
                tmp_file_ = osp.join(jsonfile_prefix, name)
                result_files.update(
                    {name: self._format_bbox(results_, tmp_file_)})
        return result_files, tmp_dir

    def evaluate(self,
                 results,
                 metric='bbox',
                 logger=None,
                 jsonfile_prefix=None,
liyinhao's avatar
liyinhao committed
474
475
                 result_names=['pts_bbox'],
                 show=False,
476
477
                 out_dir=None,
                 pipeline=None):
zhangwenwei's avatar
zhangwenwei committed
478
479
480
        """Evaluation in nuScenes protocol.

        Args:
wangtai's avatar
wangtai committed
481
            results (list[dict]): Testing results of the dataset.
zhangwenwei's avatar
zhangwenwei committed
482
483
484
485
486
487
            metric (str | list[str]): Metrics to be evaluated.
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.
            jsonfile_prefix (str | None): The prefix of json files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
liyinhao's avatar
liyinhao committed
488
489
490
491
            show (bool): Whether to visualize.
                Default: False.
            out_dir (str): Path to save the visualization results.
                Default: None.
492
493
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
zhangwenwei's avatar
zhangwenwei committed
494
495

        Returns:
wangtai's avatar
wangtai committed
496
            dict[str, float]: Results of each evaluation metric.
zhangwenwei's avatar
zhangwenwei committed
497
498
499
500
501
502
503
504
505
506
507
508
509
510
        """
        result_files, tmp_dir = self.format_results(results, jsonfile_prefix)

        if isinstance(result_files, dict):
            results_dict = dict()
            for name in result_names:
                print('Evaluating bboxes of {}'.format(name))
                ret_dict = self._evaluate_single(result_files[name])
            results_dict.update(ret_dict)
        elif isinstance(result_files, str):
            results_dict = self._evaluate_single(result_files)

        if tmp_dir is not None:
            tmp_dir.cleanup()
liyinhao's avatar
liyinhao committed
511
512

        if show:
513
            self.show(results, out_dir, pipeline=pipeline)
zhangwenwei's avatar
zhangwenwei committed
514
515
        return results_dict

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='LIDAR',
                load_dim=5,
                use_dim=5,
                file_client_args=dict(backend='disk')),
            dict(
                type='LoadPointsFromMultiSweeps',
                sweeps_num=10,
                file_client_args=dict(backend='disk')),
            dict(
                type='DefaultFormatBundle3D',
                class_names=self.CLASSES,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ]
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
538
539
540
541
542
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
543
544
545
            show (bool): Visualize the results online.
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
546
        """
547
548
        assert out_dir is not None, 'Expect out_dir, got none.'
        pipeline = self._get_pipeline(pipeline)
liyinhao's avatar
liyinhao committed
549
        for i, result in enumerate(results):
550
551
            if 'pts_bbox' in result.keys():
                result = result['pts_bbox']
liyinhao's avatar
liyinhao committed
552
553
554
            data_info = self.data_infos[i]
            pts_path = data_info['lidar_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
555
            points = self._extract_data(i, pipeline, 'points').numpy()
liyinhao's avatar
liyinhao committed
556
            # for now we convert points into depth mode
557
558
            points = Coord3DMode.convert_point(points, Coord3DMode.LIDAR,
                                               Coord3DMode.DEPTH)
559
            inds = result['scores_3d'] > 0.1
560
            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
561
562
563
564
565
566
567
            show_gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR,
                                               Box3DMode.DEPTH)
            pred_bboxes = result['boxes_3d'][inds].tensor.numpy()
            show_pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR,
                                                 Box3DMode.DEPTH)
            show_result(points, show_gt_bboxes, show_pred_bboxes, out_dir,
                        file_name, show)
liyinhao's avatar
liyinhao committed
568

zhangwenwei's avatar
zhangwenwei committed
569
570

def output_to_nusc_box(detection):
571
572
573
574
575
    """Convert the output to the box class in the nuScenes.

    Args:
        detection (dict): Detection results.

wangtai's avatar
wangtai committed
576
577
578
            - boxes_3d (:obj:`BaseInstance3DBoxes`): Detection bbox.
            - scores_3d (torch.Tensor): Detection scores.
            - labels_3d (torch.Tensor): Predicted box labels.
579
580

    Returns:
zhangwenwei's avatar
zhangwenwei committed
581
        list[:obj:`NuScenesBox`]: List of standard NuScenesBoxes.
582
    """
583
    box3d = detection['boxes_3d']
zhangwenwei's avatar
zhangwenwei committed
584
585
    scores = detection['scores_3d'].numpy()
    labels = detection['labels_3d'].numpy()
586
587
588
589

    box_gravity_center = box3d.gravity_center.numpy()
    box_dims = box3d.dims.numpy()
    box_yaw = box3d.yaw.numpy()
zhangwenwei's avatar
zhangwenwei committed
590
591
    # TODO: check whether this is necessary
    # with dir_offset & dir_limit in the head
592
593
    box_yaw = -box_yaw - np.pi / 2

zhangwenwei's avatar
zhangwenwei committed
594
    box_list = []
595
596
597
    for i in range(len(box3d)):
        quat = pyquaternion.Quaternion(axis=[0, 0, 1], radians=box_yaw[i])
        velocity = (*box3d.tensor[i, 7:9], 0.0)
zhangwenwei's avatar
zhangwenwei committed
598
599
600
601
602
        # velo_val = np.linalg.norm(box3d[i, 7:9])
        # velo_ori = box3d[i, 6]
        # velocity = (
        # velo_val * np.cos(velo_ori), velo_val * np.sin(velo_ori), 0.0)
        box = NuScenesBox(
603
604
            box_gravity_center[i],
            box_dims[i],
zhangwenwei's avatar
zhangwenwei committed
605
606
607
608
609
610
611
612
613
614
615
616
617
            quat,
            label=labels[i],
            score=scores[i],
            velocity=velocity)
        box_list.append(box)
    return box_list


def lidar_nusc_box_to_global(info,
                             boxes,
                             classes,
                             eval_configs,
                             eval_version='detection_cvpr_2019'):
618
619
620
621
622
    """Convert the box from ego to global coordinate.

    Args:
        info (dict): Info for a specific sample data, including the
            calibration information.
zhangwenwei's avatar
zhangwenwei committed
623
        boxes (list[:obj:`NuScenesBox`]): List of predicted NuScenesBoxes.
624
625
626
627
628
629
630
631
632
        classes (list[str]): Mapped classes in the evaluation.
        eval_configs (object): Evaluation configuration object.
        eval_version (str): Evaluation version.
            Default: 'detection_cvpr_2019'

    Returns:
        list: List of standard NuScenesBoxes in the global
            coordinate.
    """
zhangwenwei's avatar
zhangwenwei committed
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    box_list = []
    for box in boxes:
        # Move box to ego vehicle coord system
        box.rotate(pyquaternion.Quaternion(info['lidar2ego_rotation']))
        box.translate(np.array(info['lidar2ego_translation']))
        # filter det in ego.
        cls_range_map = eval_configs.class_range
        radius = np.linalg.norm(box.center[:2], 2)
        det_range = cls_range_map[classes[box.label]]
        if radius > det_range:
            continue
        # Move box to global coord system
        box.rotate(pyquaternion.Quaternion(info['ego2global_rotation']))
        box.translate(np.array(info['ego2global_translation']))
        box_list.append(box)
    return box_list