transforms_3d.py 49 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
import numpy as np
2
from mmcv import is_tuple_of
3
from mmcv.utils import build_from_cfg
zhangwenwei's avatar
zhangwenwei committed
4

5
from mmdet3d.core import VoxelGenerator
zhangwenwei's avatar
zhangwenwei committed
6
from mmdet3d.core.bbox import box_np_ops
7
from mmdet.datasets.builder import PIPELINES
zhangwenwei's avatar
zhangwenwei committed
8
from mmdet.datasets.pipelines import RandomFlip
9
from ..builder import OBJECTSAMPLERS
zhangwenwei's avatar
zhangwenwei committed
10
11
12
from .data_augment_utils import noise_per_object_v3_


13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
@PIPELINES.register_module()
class RandomDropPointsColor(object):
    r"""Randomly set the color of points to all zeros.

    Once this transform is executed, all the points' color will be dropped.
    Refer to `PAConv <https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/
    util/transform.py#L223>`_ for more details.

    Args:
        drop_ratio (float): The probability of dropping point colors.
            Defaults to 0.2.
    """

    def __init__(self, drop_ratio=0.2):
        assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \
            f'invalid drop_ratio value {drop_ratio}'
        self.drop_ratio = drop_ratio

    def __call__(self, input_dict):
        """Call function to drop point colors.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after color dropping, \
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims, \
            'Expect points have color attribute'

        if np.random.rand() < self.drop_ratio:
            points.color = points.color * 0.0
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(drop_ratio={self.drop_ratio})'
        return repr_str


57
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
58
59
60
61
62
63
64
65
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

    Args:
zhangwenwei's avatar
zhangwenwei committed
66
67
68
        sync_2d (bool, optional): Whether to apply flip according to the 2D
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
69
            to that of 2D images. Defaults to True.
wuyuefeng's avatar
wuyuefeng committed
70
        flip_ratio_bev_horizontal (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
71
            in horizontal direction. Defaults to 0.0.
wuyuefeng's avatar
wuyuefeng committed
72
        flip_ratio_bev_vertical (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
73
            in vertical direction. Defaults to 0.0.
zhangwenwei's avatar
zhangwenwei committed
74
75
    """

wuyuefeng's avatar
wuyuefeng committed
76
77
78
79
80
81
82
    def __init__(self,
                 sync_2d=True,
                 flip_ratio_bev_horizontal=0.0,
                 flip_ratio_bev_vertical=0.0,
                 **kwargs):
        super(RandomFlip3D, self).__init__(
            flip_ratio=flip_ratio_bev_horizontal, **kwargs)
zhangwenwei's avatar
zhangwenwei committed
83
        self.sync_2d = sync_2d
wuyuefeng's avatar
wuyuefeng committed
84
85
86
87
88
89
90
91
92
93
94
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

    def random_flip_data_3d(self, input_dict, direction='horizontal'):
95
96
97
98
99
100
101
102
103
104
        """Flip 3D data randomly.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            direction (str): Flip direction. Default: horizontal.

        Returns:
            dict: Flipped results, 'points', 'bbox3d_fields' keys are \
                updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
105
        assert direction in ['horizontal', 'vertical']
106
107
108
109
110
        if len(input_dict['bbox3d_fields']) == 0:  # test mode
            input_dict['bbox3d_fields'].append('empty_box3d')
            input_dict['empty_box3d'] = input_dict['box_type_3d'](
                np.array([], dtype=np.float32))
        assert len(input_dict['bbox3d_fields']) == 1
zhangwenwei's avatar
zhangwenwei committed
111
        for key in input_dict['bbox3d_fields']:
112
113
114
115
116
117
118
119
120
121
122
            if 'points' in input_dict:
                input_dict['points'] = input_dict[key].flip(
                    direction, points=input_dict['points'])
            else:
                input_dict[key].flip(direction)
        if 'centers2d' in input_dict:
            assert self.sync_2d is True and direction == 'horizontal', \
                'Only support sync_2d=True and horizontal flip with images'
            w = input_dict['img_shape'][1]
            input_dict['centers2d'][..., 0] = \
                w - input_dict['centers2d'][..., 0]
zhangwenwei's avatar
zhangwenwei committed
123
124

    def __call__(self, input_dict):
125
126
127
128
129
130
131
132
133
134
135
        """Call function to flip points, values in the ``bbox3d_fields`` and \
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Flipped results, 'flip', 'flip_direction', \
                'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added \
                into result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
136
        # filp 2D image and its annotations
zhangwenwei's avatar
zhangwenwei committed
137
        super(RandomFlip3D, self).__call__(input_dict)
zhangwenwei's avatar
zhangwenwei committed
138

zhangwenwei's avatar
zhangwenwei committed
139
        if self.sync_2d:
wuyuefeng's avatar
wuyuefeng committed
140
141
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
142
        else:
wuyuefeng's avatar
wuyuefeng committed
143
144
145
146
147
148
149
150
151
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
                ) < self.flip_ratio else False
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

152
153
154
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
155
156
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
157
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
158
159
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
160
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
161
162
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
163
    def __repr__(self):
164
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
165
        repr_str = self.__class__.__name__
166
        repr_str += f'(sync_2d={self.sync_2d},'
167
        repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
wuyuefeng's avatar
wuyuefeng committed
168
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
169

zhangwenwei's avatar
zhangwenwei committed
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
@PIPELINES.register_module()
class RandomJitterPoints(object):
    """Randomly jitter point coordinates.

    Different from the global translation in ``GlobalRotScaleTrans``, here we \
        apply different noises to each point in a scene.

    Args:
        jitter_std (list[float]): The standard deviation of jittering noise.
            This applies random noise to all points in a 3D scene, which is \
            sampled from a gaussian distribution whose standard deviation is \
            set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01]
        clip_range (list[float] | None): Clip the randomly generated jitter \
            noise into this range. If None is given, don't perform clipping.
            Defaults to [-0.05, 0.05]

    Note:
        This transform should only be used in point cloud segmentation tasks \
            because we don't transform ground-truth bboxes accordingly.
        For similar transform in detection task, please refer to `ObjectNoise`.
    """

    def __init__(self,
                 jitter_std=[0.01, 0.01, 0.01],
                 clip_range=[-0.05, 0.05]):
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(jitter_std, seq_types):
            assert isinstance(jitter_std, (int, float)), \
                f'unsupported jitter_std type {type(jitter_std)}'
            jitter_std = [jitter_std, jitter_std, jitter_std]
        self.jitter_std = jitter_std

        if clip_range is not None:
            if not isinstance(clip_range, seq_types):
                assert isinstance(clip_range, (int, float)), \
                    f'unsupported clip_range type {type(clip_range)}'
                clip_range = [-clip_range, clip_range]
        self.clip_range = clip_range

    def __call__(self, input_dict):
        """Call function to jitter all the points in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after adding noise to each point, \
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        jitter_std = np.array(self.jitter_std, dtype=np.float32)
        jitter_noise = \
            np.random.randn(points.shape[0], 3) * jitter_std[None, :]
        if self.clip_range is not None:
            jitter_noise = np.clip(jitter_noise, self.clip_range[0],
                                   self.clip_range[1])

        points.translate(jitter_noise)
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(jitter_std={self.jitter_std},'
        repr_str += f' clip_range={self.clip_range})'
        return repr_str


239
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
240
class ObjectSample(object):
zhangwenwei's avatar
zhangwenwei committed
241
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
242
243
244
245
246

    Args:
        db_sampler (dict): Config dict of the database sampler.
        sample_2d (bool): Whether to also paste 2D image patch to the images
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
247
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
248
    """
zhangwenwei's avatar
zhangwenwei committed
249
250
251
252
253
254
255
256
257
258

    def __init__(self, db_sampler, sample_2d=False):
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
        self.db_sampler = build_from_cfg(db_sampler, OBJECTSAMPLERS)

    @staticmethod
    def remove_points_in_boxes(points, boxes):
259
260
261
        """Remove the points in the sampled bounding boxes.

        Args:
262
            points (:obj:`BasePoints`): Input point cloud array.
263
264
265
266
267
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
268
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
269
270
271
272
        points = points[np.logical_not(masks.any(-1))]
        return points

    def __call__(self, input_dict):
273
274
275
276
277
278
279
280
281
282
        """Call function to sample ground truth objects to the data.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after object sampling augmentation, \
                'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
283
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
284
285
        gt_labels_3d = input_dict['gt_labels_3d']

zhangwenwei's avatar
zhangwenwei committed
286
287
288
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
289
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
290
291
292
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
293
294
295
296
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
297
298
        else:
            sampled_dict = self.db_sampler.sample_all(
299
                gt_bboxes_3d.tensor.numpy(), gt_labels_3d, img=None)
zhangwenwei's avatar
zhangwenwei committed
300
301
302
303

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
304
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
305

zhangwenwei's avatar
zhangwenwei committed
306
307
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
308
309
310
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
311

zhangwenwei's avatar
zhangwenwei committed
312
313
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
314
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
315
316
317
318
319

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
320

zhangwenwei's avatar
zhangwenwei committed
321
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
322
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
323
324

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
325
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.long)
zhangwenwei's avatar
zhangwenwei committed
326
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
327

zhangwenwei's avatar
zhangwenwei committed
328
329
330
        return input_dict

    def __repr__(self):
331
        """str: Return a string that describes the module."""
332
333
334
335
336
337
338
339
340
        repr_str = self.__class__.__name__
        repr_str += f' sample_2d={self.sample_2d},'
        repr_str += f' data_root={self.sampler_cfg.data_root},'
        repr_str += f' info_path={self.sampler_cfg.info_path},'
        repr_str += f' rate={self.sampler_cfg.rate},'
        repr_str += f' prepare={self.sampler_cfg.prepare},'
        repr_str += f' classes={self.sampler_cfg.classes},'
        repr_str += f' sample_groups={self.sampler_cfg.sample_groups}'
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
341
342


343
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
344
class ObjectNoise(object):
zhangwenwei's avatar
zhangwenwei committed
345
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
346
347

    Args:
348
        translation_std (list[float], optional): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
349
350
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
351
        global_rot_range (list[float], optional): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
352
            Defaults to [0.0, 0.0].
353
        rot_range (list[float], optional): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
354
355
356
357
            Defaults to [-0.15707963267, 0.15707963267].
        num_try (int, optional): Number of times to try if the noise applied is
            invalid. Defaults to 100.
    """
zhangwenwei's avatar
zhangwenwei committed
358
359

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
360
                 translation_std=[0.25, 0.25, 0.25],
zhangwenwei's avatar
zhangwenwei committed
361
                 global_rot_range=[0.0, 0.0],
zhangwenwei's avatar
zhangwenwei committed
362
                 rot_range=[-0.15707963267, 0.15707963267],
zhangwenwei's avatar
zhangwenwei committed
363
                 num_try=100):
zhangwenwei's avatar
zhangwenwei committed
364
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
365
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
366
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
367
368
369
        self.num_try = num_try

    def __call__(self, input_dict):
370
371
372
373
374
375
376
377
378
        """Call function to apply noise to each ground truth in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after adding noise to each object, \
                'points', 'gt_bboxes_3d' keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
379
380
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
381

zhangwenwei's avatar
zhangwenwei committed
382
        # TODO: check this inplace function
383
        numpy_box = gt_bboxes_3d.tensor.numpy()
384
385
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
386
        noise_per_object_v3_(
387
            numpy_box,
388
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
389
390
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
391
392
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
393
394

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
395
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
396
397
398
        return input_dict

    def __repr__(self):
399
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
400
        repr_str = self.__class__.__name__
401
402
403
404
        repr_str += f'(num_try={self.num_try},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' global_rot_range={self.global_rot_range},'
        repr_str += f' rot_range={self.rot_range})'
zhangwenwei's avatar
zhangwenwei committed
405
406
407
        return repr_str


408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
@PIPELINES.register_module()
class GlobalAlignment(object):
    """Apply global alignment to 3D scene points by rotation and translation.

    Args:
        rotation_axis (int): Rotation axis for points and bboxes rotation.

    Note:
        We do not record the applied rotation and translation as in \
            GlobalRotScaleTrans. Because usually, we do not need to reverse \
            the alignment step.
        For example, ScanNet 3D detection task uses aligned ground-truth \
            bounding boxes for evaluation.
    """

    def __init__(self, rotation_axis):
        self.rotation_axis = rotation_axis

    def _trans_points(self, input_dict, trans_factor):
        """Private function to translate points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            trans_factor (np.ndarray): Translation vector to be applied.

        Returns:
            dict: Results after translation, 'points' is updated in the dict.
        """
        input_dict['points'].translate(trans_factor)

    def _rot_points(self, input_dict, rot_mat):
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            rot_mat (np.ndarray): Rotation matrix to be applied.

        Returns:
            dict: Results after rotation, 'points' is updated in the dict.
        """
        # input should be rot_mat_T so I transpose it here
        input_dict['points'].rotate(rot_mat.T)

    def _check_rot_mat(self, rot_mat):
        """Check if rotation matrix is valid for self.rotation_axis.

        Args:
            rot_mat (np.ndarray): Rotation matrix to be applied.
        """
        is_valid = np.allclose(np.linalg.det(rot_mat), 1.0)
        valid_array = np.zeros(3)
        valid_array[self.rotation_axis] = 1.0
        is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all()
        is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all()
        assert is_valid, f'invalid rotation matrix {rot_mat}'

    def __call__(self, input_dict):
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after global alignment, 'points' and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
        assert 'axis_align_matrix' in input_dict['ann_info'].keys(), \
            'axis_align_matrix is not provided in GlobalAlignment'

        axis_align_matrix = input_dict['ann_info']['axis_align_matrix']
        assert axis_align_matrix.shape == (4, 4), \
            f'invalid shape {axis_align_matrix.shape} for axis_align_matrix'
        rot_mat = axis_align_matrix[:3, :3]
        trans_vec = axis_align_matrix[:3, -1]

        self._check_rot_mat(rot_mat)
        self._rot_points(input_dict, rot_mat)
        self._trans_points(input_dict, trans_vec)

        return input_dict

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(rotation_axis={self.rotation_axis})'
        return repr_str


495
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
496
class GlobalRotScaleTrans(object):
zhangwenwei's avatar
zhangwenwei committed
497
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
498
499
500

    Args:
        rot_range (list[float]): Range of rotation angle.
liyinhao's avatar
liyinhao committed
501
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
zhangwenwei's avatar
zhangwenwei committed
502
        scale_ratio_range (list[float]): Range of scale ratio.
liyinhao's avatar
liyinhao committed
503
            Defaults to [0.95, 1.05].
504
505
        translation_std (list[float]): The standard deviation of translation
            noise. This applies random translation to a scene by a noise, which
zhangwenwei's avatar
zhangwenwei committed
506
            is sampled from a gaussian distribution whose standard deviation
liyinhao's avatar
liyinhao committed
507
508
            is set by ``translation_std``. Defaults to [0, 0, 0]
        shift_height (bool): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
509
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
510
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
511
    """
zhangwenwei's avatar
zhangwenwei committed
512
513

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
514
515
                 rot_range=[-0.78539816, 0.78539816],
                 scale_ratio_range=[0.95, 1.05],
wuyuefeng's avatar
wuyuefeng committed
516
517
                 translation_std=[0, 0, 0],
                 shift_height=False):
518
519
520
521
522
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(rot_range, seq_types):
            assert isinstance(rot_range, (int, float)), \
                f'unsupported rot_range type {type(rot_range)}'
            rot_range = [-rot_range, rot_range]
zhangwenwei's avatar
zhangwenwei committed
523
        self.rot_range = rot_range
524
525
526

        assert isinstance(scale_ratio_range, seq_types), \
            f'unsupported scale_ratio_range type {type(scale_ratio_range)}'
zhangwenwei's avatar
zhangwenwei committed
527
        self.scale_ratio_range = scale_ratio_range
528
529
530
531
532
533
534

        if not isinstance(translation_std, seq_types):
            assert isinstance(translation_std, (int, float)), \
                f'unsupported translation_std type {type(translation_std)}'
            translation_std = [
                translation_std, translation_std, translation_std
            ]
zhangwenwei's avatar
zhangwenwei committed
535
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
536
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
537
538

    def _trans_bbox_points(self, input_dict):
539
540
541
542
543
544
545
546
547
548
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after translation, 'points', 'pcd_trans' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
549
        translation_std = np.array(self.translation_std, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
550
551
        trans_factor = np.random.normal(scale=translation_std, size=3).T

552
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
553
554
555
556
557
        input_dict['pcd_trans'] = trans_factor
        for key in input_dict['bbox3d_fields']:
            input_dict[key].translate(trans_factor)

    def _rot_bbox_points(self, input_dict):
558
559
560
561
562
563
564
565
566
567
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after rotation, 'points', 'pcd_rotation' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
568
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
569
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
570

571
572
573
574
575
576
577
        # if no bbox in input_dict, only rotate points
        if len(input_dict['bbox3d_fields']) == 0:
            rot_mat_T = input_dict['points'].rotate(noise_rotation)
            input_dict['pcd_rotation'] = rot_mat_T
            return

        # rotate points with bboxes
zhangwenwei's avatar
zhangwenwei committed
578
        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
579
580
581
582
583
            if len(input_dict[key].tensor) != 0:
                points, rot_mat_T = input_dict[key].rotate(
                    noise_rotation, input_dict['points'])
                input_dict['points'] = points
                input_dict['pcd_rotation'] = rot_mat_T
584

zhangwenwei's avatar
zhangwenwei committed
585
    def _scale_bbox_points(self, input_dict):
586
587
588
589
590
591
592
593
594
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points'and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
595
        scale = input_dict['pcd_scale_factor']
596
597
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
598
        if self.shift_height:
599
600
            assert 'height' in points.attribute_dims.keys(), \
                'setting shift_height=True but points have no height attribute'
601
602
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
603

zhangwenwei's avatar
zhangwenwei committed
604
605
        for key in input_dict['bbox3d_fields']:
            input_dict[key].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
606

zhangwenwei's avatar
zhangwenwei committed
607
    def _random_scale(self, input_dict):
608
609
610
611
612
613
614
615
616
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'pcd_scale_factor' are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
617
618
619
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
620
621

    def __call__(self, input_dict):
622
623
624
625
626
627
628
629
630
631
632
        """Private function to rotate, scale and translate bounding boxes and \
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
                'pcd_scale_factor', 'pcd_trans' and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
633
634
635
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
636
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
637

zhangwenwei's avatar
zhangwenwei committed
638
639
640
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
641

zhangwenwei's avatar
zhangwenwei committed
642
        self._trans_bbox_points(input_dict)
643
644

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
645
646
647
        return input_dict

    def __repr__(self):
648
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
649
        repr_str = self.__class__.__name__
650
651
652
653
        repr_str += f'(rot_range={self.rot_range},'
        repr_str += f' scale_ratio_range={self.scale_ratio_range},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' shift_height={self.shift_height})'
zhangwenwei's avatar
zhangwenwei committed
654
655
656
        return repr_str


657
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
658
class PointShuffle(object):
659
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
660
661

    def __call__(self, input_dict):
662
663
664
665
666
667
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
668
669
            dict: Results after filtering, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
670
        """
671
672
673
674
675
676
677
678
679
680
681
682
        idx = input_dict['points'].shuffle()
        idx = idx.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[idx]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[idx]

zhangwenwei's avatar
zhangwenwei committed
683
684
685
686
687
688
        return input_dict

    def __repr__(self):
        return self.__class__.__name__


689
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
690
class ObjectRangeFilter(object):
691
692
693
694
695
    """Filter objects by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
696
697
698
699
700
701

    def __init__(self, point_cloud_range):
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
        self.bev_range = self.pcd_range[[0, 1, 3, 4]]

    def __call__(self, input_dict):
702
703
704
705
706
707
708
709
710
        """Call function to filter objects by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
711
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
712
        gt_labels_3d = input_dict['gt_labels_3d']
713
        mask = gt_bboxes_3d.in_range_bev(self.bev_range)
zhangwenwei's avatar
zhangwenwei committed
714
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
715
716
717
718
719
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
720
721

        # limit rad to [-pi, pi]
722
723
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
724
725
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
726
727
728
        return input_dict

    def __repr__(self):
729
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
730
        repr_str = self.__class__.__name__
731
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
732
733
734
        return repr_str


735
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
736
class PointsRangeFilter(object):
737
738
739
740
741
    """Filter points by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
742
743

    def __init__(self, point_cloud_range):
744
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
745
746

    def __call__(self, input_dict):
747
748
749
750
751
752
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
753
754
            dict: Results after filtering, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
755
        """
zhangwenwei's avatar
zhangwenwei committed
756
        points = input_dict['points']
757
758
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
759
        input_dict['points'] = clean_points
760
761
762
763
764
765
766
767
768
769
770
        points_mask = points_mask.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[points_mask]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask]

zhangwenwei's avatar
zhangwenwei committed
771
772
773
        return input_dict

    def __repr__(self):
774
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
775
        repr_str = self.__class__.__name__
776
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
777
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
778
779
780
781


@PIPELINES.register_module()
class ObjectNameFilter(object):
zhangwenwei's avatar
zhangwenwei committed
782
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
783
784

    Args:
liyinhao's avatar
liyinhao committed
785
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
786
787
788
789
790
791
792
    """

    def __init__(self, classes):
        self.classes = classes
        self.labels = list(range(len(self.classes)))

    def __call__(self, input_dict):
793
794
795
796
797
798
799
800
801
        """Call function to filter objects by their names.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
802
803
804
805
806
807
808
809
810
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

    def __repr__(self):
811
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
812
813
814
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840


@PIPELINES.register_module()
class IndoorPointSample(object):
    """Indoor point sample.

    Sampling data to a certain number.

    Args:
        name (str): Name of the dataset.
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, num_points):
        self.num_points = num_points

    def points_random_sampling(self,
                               points,
                               num_samples,
                               replace=None,
                               return_choices=False):
        """Points random sampling.

        Sample points to a certain number.

        Args:
841
            points (np.ndarray | :obj:`BasePoints`): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
842
843
            num_samples (int): Number of samples to be sampled.
            replace (bool): Whether the sample is with or without replacement.
liyinhao's avatar
liyinhao committed
844
845
            Defaults to None.
            return_choices (bool): Whether return choice. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
846
847

        Returns:
848
849
            tuple[np.ndarray] | np.ndarray:

850
                - points (np.ndarray | :obj:`BasePoints`): 3D Points.
851
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
852
853
854
855
856
857
858
859
860
861
862
        """
        if replace is None:
            replace = (points.shape[0] < num_samples)
        choices = np.random.choice(
            points.shape[0], num_samples, replace=replace)
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

    def __call__(self, results):
863
864
865
866
867
868
869
870
871
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
872
873
874
        points = results['points']
        points, choices = self.points_random_sampling(
            points, self.num_points, return_choices=True)
875
        results['points'] = points
876

wuyuefeng's avatar
wuyuefeng committed
877
878
879
        pts_instance_mask = results.get('pts_instance_mask', None)
        pts_semantic_mask = results.get('pts_semantic_mask', None)

880
        if pts_instance_mask is not None:
wuyuefeng's avatar
wuyuefeng committed
881
882
            pts_instance_mask = pts_instance_mask[choices]
            results['pts_instance_mask'] = pts_instance_mask
883
884
885

        if pts_semantic_mask is not None:
            pts_semantic_mask = pts_semantic_mask[choices]
wuyuefeng's avatar
wuyuefeng committed
886
887
888
889
890
            results['pts_semantic_mask'] = pts_semantic_mask

        return results

    def __repr__(self):
891
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
892
        repr_str = self.__class__.__name__
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
        repr_str += f'(num_points={self.num_points})'
        return repr_str


@PIPELINES.register_module()
class IndoorPatchPointSample(object):
    r"""Indoor point sample within a patch. Modified from `PointNet++ <https://
    github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py>`_.

    Sampling data to a certain number for semantic segmentation.

    Args:
        num_points (int): Number of points to be sampled.
        block_size (float, optional): Size of a block to sample points from.
            Defaults to 1.5.
        sample_rate (float, optional): Stride used in sliding patch generation.
            Defaults to 1.0.
        ignore_index (int, optional): Label index that won't be used for the
            segmentation task. This is set in PointSegClassMapping as neg_cls.
            Defaults to None.
        use_normalized_coord (bool, optional): Whether to use normalized xyz as
            additional features. Defaults to False.
        num_try (int, optional): Number of times to try if the patch selected
            is invalid. Defaults to 10.
    """

    def __init__(self,
                 num_points,
                 block_size=1.5,
                 sample_rate=1.0,
                 ignore_index=None,
                 use_normalized_coord=False,
                 num_try=10):
        self.num_points = num_points
        self.block_size = block_size
        self.sample_rate = sample_rate
        self.ignore_index = ignore_index
        self.use_normalized_coord = use_normalized_coord
        self.num_try = num_try

    def _input_generation(self, coords, patch_center, coord_max, attributes,
                          attribute_dims, point_type):
        """Generating model input.

        Generate input by subtracting patch center and adding additional \
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (np.ndarray): Sampled 3D Points.
            patch_center (np.ndarray): Center coordinate of the selected patch.
            coord_max (np.ndarray): Max coordinate of all 3D Points.
            attributes (np.ndarray): features of input points.
            attribute_dims (dict): Dictionary to indicate the meaning of extra
                dimension.
947
            point_type (type): class of input points inherited from BasePoints.
948
949

        Returns:
950
            :obj:`BasePoints`: The generated input data.
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.copy()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        if self.use_normalized_coord:
            normalized_coord = coords / coord_max
            attributes = np.concatenate([attributes, normalized_coord], axis=1)
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(normalized_coord=[
                    attributes.shape[1], attributes.shape[1] +
                    1, attributes.shape[1] + 2
                ]))

        points = np.concatenate([centered_coords, attributes], axis=1)
        points = point_type(
            points, points_dim=points.shape[1], attribute_dims=attribute_dims)

        return points

    def _patch_points_sampling(self, points, sem_mask, replace=None):
        """Patch points sampling.

        First sample a valid patch.
        Then sample points within that patch to a certain number.

        Args:
981
            points (:obj:`BasePoints`): 3D Points.
982
983
984
985
986
            sem_mask (np.ndarray): semantic segmentation mask for input points.
            replace (bool): Whether the sample is with or without replacement.
                Defaults to None.

        Returns:
987
            tuple[:obj:`BasePoints`, np.ndarray] | :obj:`BasePoints`:
988

989
                - points (:obj:`BasePoints`): 3D Points.
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
                - choices (np.ndarray): The generated random samples.
        """
        coords = points.coord.numpy()
        attributes = points.tensor[:, 3:].numpy()
        attribute_dims = points.attribute_dims
        point_type = type(points)

        coord_max = np.amax(coords, axis=0)
        coord_min = np.amin(coords, axis=0)

        for i in range(self.num_try):
            # random sample a point as patch center
            cur_center = coords[np.random.choice(coords.shape[0])]

            # boundary of a patch
            cur_max = cur_center + np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_min = cur_center - np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_max[2] = coord_max[2]
            cur_min[2] = coord_min[2]
            cur_choice = np.sum(
                (coords >= (cur_min - 0.2)) * (coords <= (cur_max + 0.2)),
                axis=1) == 3

            if not cur_choice.any():  # no points in this patch
                continue

            cur_coords = coords[cur_choice, :]
            cur_sem_mask = sem_mask[cur_choice]

            # two criterion for patch sampling, adopted from PointNet++
            # points within selected patch shoule be scattered separately
            mask = np.sum(
                (cur_coords >= (cur_min - 0.01)) * (cur_coords <=
                                                    (cur_max + 0.01)),
                axis=1) == 3
            # not sure if 31, 31, 62 are just some big values used to transform
            # coords from 3d array to 1d and then check their uniqueness
            # this is used in all the ScanNet code following PointNet++
            vidx = np.ceil((cur_coords[mask, :] - cur_min) /
                           (cur_max - cur_min) * np.array([31.0, 31.0, 62.0]))
            vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 +
                             vidx[:, 2])
            flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02

            # selected patch should contain enough annotated points
            if self.ignore_index is None:
                flag2 = True
            else:
                flag2 = np.sum(cur_sem_mask != self.ignore_index) / \
                               len(cur_sem_mask) >= 0.7

            if flag1 and flag2:
                break

        # random sample idx
        if replace is None:
            replace = (cur_sem_mask.shape[0] < self.num_points)
        choices = np.random.choice(
            np.where(cur_choice)[0], self.num_points, replace=replace)

        # construct model input
        points = self._input_generation(coords[choices], cur_center, coord_max,
                                        attributes[choices], attribute_dims,
                                        point_type)

        return points, choices

    def __call__(self, results):
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']

        assert 'pts_semantic_mask' in results.keys(), \
            'semantic mask should be provided in training and evaluation'
        pts_semantic_mask = results['pts_semantic_mask']

        points, choices = self._patch_points_sampling(points,
                                                      pts_semantic_mask)

        results['points'] = points
        results['pts_semantic_mask'] = pts_semantic_mask[choices]
        pts_instance_mask = results.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            results['pts_instance_mask'] = pts_instance_mask[choices]

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_points={self.num_points},'
        repr_str += f' block_size={self.block_size},'
        repr_str += f' sample_rate={self.sample_rate},'
        repr_str += f' ignore_index={self.ignore_index},'
        repr_str += f' use_normalized_coord={self.use_normalized_coord},'
        repr_str += f' num_try={self.num_try})'
wuyuefeng's avatar
wuyuefeng committed
1095
        return repr_str
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123


@PIPELINES.register_module()
class BackgroundPointsFilter(object):
    """Filter background points near the bounding box.

    Args:
        bbox_enlarge_range (tuple[float], float): Bbox enlarge range.
    """

    def __init__(self, bbox_enlarge_range):
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

    def __call__(self, input_dict):
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1124
1125
            dict: Results after filtering, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
1126
1127
1128
1129
1130
1131
1132
1133
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

        gt_bboxes_3d_np = gt_bboxes_3d.tensor.numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.numpy()
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
1134
1135
1136
        points_numpy = points.tensor.numpy()
        foreground_masks = box_np_ops.points_in_rbbox(points_numpy,
                                                      gt_bboxes_3d_np)
1137
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
1138
            points_numpy, enlarged_gt_bboxes_3d)
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
1157
        repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})'
1158
        return repr_str
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230


@PIPELINES.register_module()
class VoxelBasedPointSampler(object):
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
        prev_sweep_cfg (dict): Config for sampling previous points.
        time_dim (int): Index that indicate the time dimention
            for input points.
    """

    def __init__(self, cur_sweep_cfg, prev_sweep_cfg=None, time_dim=3):
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

    def _sample_points(self, points, sampler, point_dim):
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
            point_dim (int): The dimention of each points

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

    def __call__(self, results):
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
1231
1232
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
1233
1234
1235
1236
1237
1238
1239
1240
1241
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

1242
        points_numpy = np.concatenate(extra_channel, axis=-1)
1243
1244
1245
1246
1247

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
1248
1249
1250
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
1251
1252
1253
1254
1255
1256
1257
1258
1259
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
1260
                                               points_numpy.shape[1])
1261
1262
1263
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
1264
                                                     points_numpy.shape[1])
1265

1266
1267
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
1268
        else:
1269
            points_numpy = cur_sweep_points
1270
1271

        if self.cur_voxel_generator._max_num_points == 1:
1272
1273
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
1274
1275
1276

        # Restore the correspoinding seg and mask fields
        for key, dim_index in map_fields2dim:
1277
            results[key] = points_numpy[..., dim_index]
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str