finetune_utils.py 12.4 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Finetune utilities."""

Jared Casper's avatar
Jared Casper committed
18
from functools import partial
19
import sys
20
21
import torch

22
from megatron import get_args, get_num_microbatches
Neel Kant's avatar
Neel Kant committed
23
from megatron import print_rank_0
Mohammad's avatar
Mohammad committed
24
from megatron import get_timers
25
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
26
from megatron.checkpointing import load_checkpoint
Mohammad's avatar
Mohammad committed
27
from megatron.checkpointing import save_checkpoint
28
from megatron.model import ModelType
29
30
31
32
from megatron.training import evaluate_and_print_results
from megatron.training import setup_model_and_optimizer
from megatron.training import train_step
from megatron.training import training_log
33
from megatron.utils import average_losses_across_data_parallel_group
mohammad's avatar
mohammad committed
34
35
from megatron.utils import calc_params_l2_norm
from megatron.utils import check_adlr_autoresume_termination
36
37


Mohammad's avatar
Mohammad committed
38
def process_batch(batch):
39
    """Process batch and produce inputs for the model."""
Mohammad's avatar
Mohammad committed
40
    args = get_args()
41
42
43
44
45
46
47
48
49
50
51

    tokens = batch['text'].long().cuda().contiguous()
    types = batch['types'].long().cuda().contiguous()
    labels = batch['label'].long().cuda().contiguous()
    attention_mask = batch['padding_mask'].float().cuda().contiguous()
    if args.fp16:
        attention_mask = attention_mask.half()

    return tokens, types, labels, attention_mask


Jared Casper's avatar
Jared Casper committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def cross_entropy_loss_func(labels, output_tensor):
    logits = output_tensor

    # Cross-entropy loss.
    loss_func = torch.nn.CrossEntropyLoss()
    loss = loss_func(logits.contiguous().float(), labels)

    # Reduce loss for logging.
    averaged_loss = average_losses_across_data_parallel_group([loss])

    return loss, {'lm loss': averaged_loss[0]}


def _cross_entropy_forward_step(batch, model):
66
    """Simple forward step with cross-entropy loss."""
Mohammad's avatar
Mohammad committed
67
    timers = get_timers()
68
69

    # Get the batch.
mohammad's avatar
mohammad committed
70
    timers('batch-generator').start()
71
72
    try:
        batch_ = next(batch)
Neel Kant's avatar
Neel Kant committed
73
    except BaseException:
74
        batch_ = batch
Mohammad's avatar
Mohammad committed
75
    tokens, types, labels, attention_mask = process_batch(batch_)
mohammad's avatar
mohammad committed
76
    timers('batch-generator').stop()
77
78

    # Forward model.
Jared Casper's avatar
Jared Casper committed
79
    output_tensor = model(tokens, attention_mask, tokentype_ids=types)
80

Jared Casper's avatar
Jared Casper committed
81
    return output_tensor, partial(cross_entropy_loss_func, labels)
82
83


Mostofa Patwary's avatar
Mostofa Patwary committed
84
def build_data_loader(dataset, micro_batch_size, num_workers, drop_last,
Mostofa Patwary's avatar
Mostofa Patwary committed
85
        task_collate_fn=None):
86
87
88
89
90
91
92
93
94
95
    """Data loader. Note that batch-size is the local (per GPU) batch-size."""

    # Sampler.
    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    sampler = torch.utils.data.distributed.DistributedSampler(
        dataset, num_replicas=world_size, rank=rank)

    # Data loader. Note that batch size is the per GPU batch size.
    data_loader = torch.utils.data.DataLoader(dataset,
96
                                              batch_size=micro_batch_size,
97
98
99
100
                                              sampler=sampler,
                                              shuffle=False,
                                              num_workers=num_workers,
                                              drop_last=drop_last,
Mostofa Patwary's avatar
Mostofa Patwary committed
101
102
                                              pin_memory=True,
                                              collate_fn=task_collate_fn)
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

    return data_loader


def _build_infinite_size_dataloader(dataloader):
    """Build a looped dataloader with infinite size."""

    iterator = dataloader.__iter__()
    while True:
        try:
            yield iterator.__next__()
        except StopIteration:
            iterator = dataloader.__iter__()


Mostofa Patwary's avatar
Mostofa Patwary committed
118
119
def _build_train_valid_dataloaders(train_dataset, valid_dataset, 
    task_collate_fn=None):
120
    """Traing and validation dataloaders."""
Mohammad's avatar
Mohammad committed
121
    args = get_args()
122
123
124

    print_rank_0('building train and validation dataloaders ...')
    # Training dataset.
125
    train_dataloader = build_data_loader(train_dataset, args.micro_batch_size,
Mostofa Patwary's avatar
Mostofa Patwary committed
126
127
                                         args.num_workers, not args.keep_last,
                                         task_collate_fn)
128
129
130
131
132
    # Set the training iterations.
    args.train_iters_per_epoch = len(train_dataloader)
    args.train_iters = args.epochs * args.train_iters_per_epoch
    # Validation dataset. For this dataset, we do not need to set up
    # shuffling so we can just use a simple infinite loop.
133
    valid_dataloader_ = build_data_loader(valid_dataset, args.micro_batch_size,
Mostofa Patwary's avatar
Mostofa Patwary committed
134
135
                                          args.num_workers, not args.keep_last,
                                          task_collate_fn)
136
137
    valid_dataloader = _build_infinite_size_dataloader(valid_dataloader_)

138
139
140
141
142
    # Now that we've built the data loaders, set batch_size arguments
    # to the actual batch size the model will see for this dataset.
    # This is necessary so pipeline transfers know what size they are
    # and the LR schedule, which is based on samples seen, gets set
    # correctly.
Jared Casper's avatar
Jared Casper committed
143
144
    args.orig_micro_batch_size = args.micro_batch_size
    args.orig_global_batch_size = args.global_batch_size
145
    if hasattr(train_dataset, 'sample_multiplier'):
146
147
148
149
150
        # If our dataset as a sample_multiplier attribute that means
        # each "sample" from the dataset actually has multiple samples
        # that will collapse into the batch dimension (for example in
        # the RACE dataset that has several options), we need to
        # account for that when setting the micro batch size.
151
        args.micro_batch_size *= train_dataset.sample_multiplier
152
        args.global_batch_size *= train_dataset.sample_multiplier
153

154
155
156
    return train_dataloader, valid_dataloader


157
def _train(model, optimizer, opt_param_scheduler, forward_step,
Mohammad's avatar
Mohammad committed
158
           train_dataloader, valid_dataloader, end_of_epoch_callback):
159
    """Train the model."""
Mohammad's avatar
Mohammad committed
160
161
    args = get_args()
    timers = get_timers()
162

163
164
    assert get_num_microbatches() == 1, "finetuning with gradient accumulation doesn't currently work"

165
    # Turn on training mode which enables dropout.
Jared Casper's avatar
Jared Casper committed
166
167
    for m in model:
        m.train()
168
169
170
171
172
173
174
175
176
177
178
179
180

    # Tracking loss.
    losses_dict_sum = {}

    # Starting epoch and iteration
    start_epoch = args.iteration // args.train_iters_per_epoch
    start_iteration = args.iteration % args.train_iters_per_epoch
    iteration = args.iteration

    # Memory reporting flag.
    report_memory_flag = True

    # For each remaining epoch
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
181
    timers('interval-time').start()
182
    for epoch in range(start_epoch, args.epochs):
Neel Kant's avatar
Neel Kant committed
183
        print_rank_0('working on epoch {} ...'.format(epoch + 1))
184
185
186
187
188
189
190
191
192
193
194
195
196
197

        # Set the data loader epoch to shuffle the index iterator.
        train_dataloader.sampler.set_epoch(args.seed + epoch)

        # For all the batches in the dataset.
        for iteration_, batch in enumerate(train_dataloader):

            # Ignore the iterations before starting value
            if iteration_ < start_iteration:
                continue
            # Set to zero so the next epoch does not skip any batches.
            start_iteration = 0

            # Train for one step.
198
            out = train_step(forward_step, batch, model, optimizer, opt_param_scheduler)
Mostofa Patwary's avatar
Mostofa Patwary committed
199

Jared Casper's avatar
Jared Casper committed
200
            losses_dict, skipped_iter, grad_norm, num_zeros_in_grad = out
201
202
203
            iteration += 1

            # Logging.
204
205
206
            params_norm = None
            if args.log_params_norm:
                params_norm = calc_params_l2_norm(model)
207
208
            report_memory_flag = training_log(losses_dict, losses_dict_sum,
                                              optimizer.param_groups[0]['lr'],
209
210
                                              iteration,
                                              optimizer.get_loss_scale().item(),
211
                                              report_memory_flag, skipped_iter,
Jared Casper's avatar
Jared Casper committed
212
                                              grad_norm, params_norm, num_zeros_in_grad)
213
214

            # Autoresume
Neel Kant's avatar
Neel Kant committed
215
            if args.adlr_autoresume and \
216
               (iteration % args.adlr_autoresume_interval == 0):
Mohammad's avatar
Mohammad committed
217
                check_adlr_autoresume_termination(iteration, model,
218
                                                  optimizer, opt_param_scheduler)
219
220

            # Checkpointing
221
            saved_checkpoint = False
222
223
            if args.save and args.save_interval and \
               iteration % args.save_interval == 0:
224
                save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
225
                saved_checkpoint = True
226
227
228
229
230

            # Evaluation
            if args.eval_interval and iteration % args.eval_interval == 0:
                prefix = 'iteration {}'.format(iteration)
                evaluate_and_print_results(prefix, forward_step,
Mohammad's avatar
Mohammad committed
231
232
                                           valid_dataloader, model,
                                           iteration, False)
233

234
235
236
            # Exiting based on iterations
            if args.exit_interval and iteration % args.exit_interval == 0:
                if not saved_checkpoint:
237
                    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
238
239
240
241
                torch.distributed.barrier()
                print_rank_0('exiting program at iteration {}'.format(iteration))
                sys.exit()

242
243
        # Checkpointing at the end of each epoch.
        if args.save:
244
            save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
245
246
247

        # Callback at the end of each epoch.
        if end_of_epoch_callback is not None:
Mohammad's avatar
Mohammad committed
248
            end_of_epoch_callback(model, epoch)
249
250


Mohammad's avatar
Mohammad committed
251
def finetune(train_valid_datasets_provider, model_provider,
252
             model_type=ModelType.encoder_or_decoder,
253
             forward_step=_cross_entropy_forward_step,
Mostofa Patwary's avatar
Mostofa Patwary committed
254
255
             end_of_epoch_callback_provider=None,
             task_collate_fn=None):
256
    """Main finetune function used across all tasks."""
Mohammad's avatar
Mohammad committed
257
258
    args = get_args()
    timers = get_timers()
259

260
261
262
    assert args.rampup_batch_size is None, \
        'batch size scaling is not supported for finetuning'

263
    # Train and validation data loaders.
Mohammad's avatar
Mohammad committed
264
    timers('train/valid/test dataset/dataloder').start()
265
    if args.epochs > 0:
Mohammad's avatar
Mohammad committed
266
        train_dataset, valid_dataset = train_valid_datasets_provider()
267
        train_dataloader, valid_dataloader = _build_train_valid_dataloaders(
Mostofa Patwary's avatar
Mostofa Patwary committed
268
            train_dataset, valid_dataset, task_collate_fn)
269
270
    else:
        args.train_iters = 0
Mohammad's avatar
Mohammad committed
271
    timers('train/valid/test dataset/dataloder').stop()
272
273

    # Build calback function.
Mohammad's avatar
Mohammad committed
274
    timers('callback function').start()
275
276
    end_of_epoch_callback = None
    if end_of_epoch_callback_provider is not None:
Mohammad's avatar
Mohammad committed
277
278
        end_of_epoch_callback = end_of_epoch_callback_provider()
    timers('callback function').stop()
279
280

    # Build model, optimizer and learning rate scheduler.
Mohammad's avatar
Mohammad committed
281
    timers('model and optimizer').start()
282
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(model_provider, model_type)
Mohammad's avatar
Mohammad committed
283
    timers('model and optimizer').stop()
284
285
286
287

    # If pretrained checkpoint is provided and we have not trained for
    # any iteration (i.e., iteration is zero), then load the pretrained
    # checkpoint.
Mohammad's avatar
Mohammad committed
288
    timers('pretrained checkpoint').start()
289
290
291
    if args.iteration == 0 and args.pretrained_checkpoint is not None:
        original_load = args.load
        args.load = args.pretrained_checkpoint
Mostofa Patwary's avatar
Mostofa Patwary committed
292
293
        original_rng = args.no_load_rng
        args.no_load_rng = True
Mohammad's avatar
Mohammad committed
294
        _ = load_checkpoint(model, None, None)
295
        args.load = original_load
Mostofa Patwary's avatar
Mostofa Patwary committed
296
        args.no_load_rng = original_rng
297
        # This is critical when only model is loaded. We should make sure
298
        # main parameters are also updated.
299
        optimizer.reload_model_params()
Mohammad's avatar
Mohammad committed
300
    timers('pretrained checkpoint').stop()
301

Mohammad's avatar
Mohammad committed
302
303
304
305
306
    # Print setup timing.
    print_rank_0('done with setups ...')
    timers.log(['train/valid/test dataset/dataloder', 'callback function',
                'model and optimizer', 'pretrained checkpoint'])
    print_rank_0('training ...')
307
308
309

    # Finetune the model.
    if args.epochs > 0:
310
        _train(model, optimizer, opt_param_scheduler, forward_step,
Mohammad's avatar
Mohammad committed
311
               train_dataloader, valid_dataloader, end_of_epoch_callback)
312
313
314
315
    # Or just evaluate.
    else:
        if end_of_epoch_callback is not None:
            print_rank_0('evaluation only mode, setting epoch to -1')
Mohammad's avatar
Mohammad committed
316
            end_of_epoch_callback(model, epoch=-1, output_predictions=True)
317
    print_rank_0('done :-)')