finetune_utils.py 10.9 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Finetune utilities."""

Jared Casper's avatar
Jared Casper committed
18
19
from functools import partial

20
21
import torch

Neel Kant's avatar
Neel Kant committed
22
23
from megatron import get_args
from megatron import print_rank_0
Mohammad's avatar
Mohammad committed
24
from megatron import get_timers
25
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
26
from megatron.checkpointing import load_checkpoint
Mohammad's avatar
Mohammad committed
27
from megatron.checkpointing import save_checkpoint
28
29
30
31
from megatron.training import evaluate_and_print_results
from megatron.training import setup_model_and_optimizer
from megatron.training import train_step
from megatron.training import training_log
32
from megatron.utils import average_losses_across_data_parallel_group
mohammad's avatar
mohammad committed
33
34
from megatron.utils import calc_params_l2_norm
from megatron.utils import check_adlr_autoresume_termination
35
36


Mohammad's avatar
Mohammad committed
37
def process_batch(batch):
38
    """Process batch and produce inputs for the model."""
Mohammad's avatar
Mohammad committed
39
    args = get_args()
40
41
42
43
44
45
46
47
48
49
50

    tokens = batch['text'].long().cuda().contiguous()
    types = batch['types'].long().cuda().contiguous()
    labels = batch['label'].long().cuda().contiguous()
    attention_mask = batch['padding_mask'].float().cuda().contiguous()
    if args.fp16:
        attention_mask = attention_mask.half()

    return tokens, types, labels, attention_mask


Jared Casper's avatar
Jared Casper committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
def cross_entropy_loss_func(labels, output_tensor):
    logits = output_tensor

    # Cross-entropy loss.
    loss_func = torch.nn.CrossEntropyLoss()
    loss = loss_func(logits.contiguous().float(), labels)

    # Reduce loss for logging.
    averaged_loss = average_losses_across_data_parallel_group([loss])

    return loss, {'lm loss': averaged_loss[0]}


def _cross_entropy_forward_step(batch, model):
65
    """Simple forward step with cross-entropy loss."""
Mohammad's avatar
Mohammad committed
66
    timers = get_timers()
67
68

    # Get the batch.
mohammad's avatar
mohammad committed
69
    timers('batch-generator').start()
70
71
    try:
        batch_ = next(batch)
Neel Kant's avatar
Neel Kant committed
72
    except BaseException:
73
        batch_ = batch
Mohammad's avatar
Mohammad committed
74
    tokens, types, labels, attention_mask = process_batch(batch_)
mohammad's avatar
mohammad committed
75
    timers('batch-generator').stop()
76
77

    # Forward model.
Jared Casper's avatar
Jared Casper committed
78
    output_tensor = model(tokens, attention_mask, tokentype_ids=types)
79

Jared Casper's avatar
Jared Casper committed
80
    return output_tensor, partial(cross_entropy_loss_func, labels)
81
82


83
def build_data_loader(dataset, micro_batch_size, num_workers, drop_last):
84
85
86
87
88
89
90
91
92
93
    """Data loader. Note that batch-size is the local (per GPU) batch-size."""

    # Sampler.
    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    sampler = torch.utils.data.distributed.DistributedSampler(
        dataset, num_replicas=world_size, rank=rank)

    # Data loader. Note that batch size is the per GPU batch size.
    data_loader = torch.utils.data.DataLoader(dataset,
94
                                              batch_size=micro_batch_size,
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
                                              sampler=sampler,
                                              shuffle=False,
                                              num_workers=num_workers,
                                              drop_last=drop_last,
                                              pin_memory=True)

    return data_loader


def _build_infinite_size_dataloader(dataloader):
    """Build a looped dataloader with infinite size."""

    iterator = dataloader.__iter__()
    while True:
        try:
            yield iterator.__next__()
        except StopIteration:
            iterator = dataloader.__iter__()


Mohammad's avatar
Mohammad committed
115
def _build_train_valid_dataloaders(train_dataset, valid_dataset):
116
    """Traing and validation dataloaders."""
Mohammad's avatar
Mohammad committed
117
    args = get_args()
118
119
120

    print_rank_0('building train and validation dataloaders ...')
    # Training dataset.
121
    train_dataloader = build_data_loader(train_dataset, args.micro_batch_size,
122
123
124
125
126
127
                                         args.num_workers, not args.keep_last)
    # Set the training iterations.
    args.train_iters_per_epoch = len(train_dataloader)
    args.train_iters = args.epochs * args.train_iters_per_epoch
    # Validation dataset. For this dataset, we do not need to set up
    # shuffling so we can just use a simple infinite loop.
128
    valid_dataloader_ = build_data_loader(valid_dataset, args.micro_batch_size,
129
130
131
                                          args.num_workers, not args.keep_last)
    valid_dataloader = _build_infinite_size_dataloader(valid_dataloader_)

132
133
134
135
136
    # Now that we've built the data loaders, set batch_size arguments
    # to the actual batch size the model will see for this dataset.
    # This is necessary so pipeline transfers know what size they are
    # and the LR schedule, which is based on samples seen, gets set
    # correctly.
Jared Casper's avatar
Jared Casper committed
137
138
    args.orig_micro_batch_size = args.micro_batch_size
    args.orig_global_batch_size = args.global_batch_size
139
    if hasattr(train_dataset, 'sample_multiplier'):
140
        args.micro_batch_size *= train_dataset.sample_multiplier
141
        args.global_batch_size *= train_dataset.sample_multiplier
142

143
144
145
146
    return train_dataloader, valid_dataloader


def _train(model, optimizer, lr_scheduler, forward_step,
Mohammad's avatar
Mohammad committed
147
           train_dataloader, valid_dataloader, end_of_epoch_callback):
148
    """Train the model."""
Mohammad's avatar
Mohammad committed
149
150
    args = get_args()
    timers = get_timers()
151
152

    # Turn on training mode which enables dropout.
Jared Casper's avatar
Jared Casper committed
153
154
    for m in model:
        m.train()
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

    # Tracking loss.
    losses_dict_sum = {}

    # Starting epoch and iteration
    start_epoch = args.iteration // args.train_iters_per_epoch
    start_iteration = args.iteration % args.train_iters_per_epoch
    iteration = args.iteration

    # Memory reporting flag.
    report_memory_flag = True

    # For each remaining epoch
    timers('interval time').start()
    for epoch in range(start_epoch, args.epochs):
Neel Kant's avatar
Neel Kant committed
170
        print_rank_0('working on epoch {} ...'.format(epoch + 1))
171
172
173
174
175
176
177
178
179
180
181
182
183
184

        # Set the data loader epoch to shuffle the index iterator.
        train_dataloader.sampler.set_epoch(args.seed + epoch)

        # For all the batches in the dataset.
        for iteration_, batch in enumerate(train_dataloader):

            # Ignore the iterations before starting value
            if iteration_ < start_iteration:
                continue
            # Set to zero so the next epoch does not skip any batches.
            start_iteration = 0

            # Train for one step.
Jared Casper's avatar
Jared Casper committed
185
186
            out = train_step(forward_step, batch, model, optimizer, lr_scheduler)
            losses_dict, skipped_iter, grad_norm, num_zeros_in_grad = out
187
188
189
            iteration += 1

            # Logging.
190
191
192
            params_norm = None
            if args.log_params_norm:
                params_norm = calc_params_l2_norm(model)
193
194
            report_memory_flag = training_log(losses_dict, losses_dict_sum,
                                              optimizer.param_groups[0]['lr'],
195
196
                                              iteration,
                                              optimizer.get_loss_scale().item(),
197
                                              report_memory_flag, skipped_iter,
Jared Casper's avatar
Jared Casper committed
198
                                              grad_norm, params_norm, num_zeros_in_grad)
199
200

            # Autoresume
Neel Kant's avatar
Neel Kant committed
201
            if args.adlr_autoresume and \
202
               (iteration % args.adlr_autoresume_interval == 0):
Mohammad's avatar
Mohammad committed
203
204
                check_adlr_autoresume_termination(iteration, model,
                                                  optimizer, lr_scheduler)
205
206
207
208

            # Checkpointing
            if args.save and args.save_interval and \
               iteration % args.save_interval == 0:
Mohammad's avatar
Mohammad committed
209
                save_checkpoint(iteration, model, optimizer, lr_scheduler)
210
211
212
213
214

            # Evaluation
            if args.eval_interval and iteration % args.eval_interval == 0:
                prefix = 'iteration {}'.format(iteration)
                evaluate_and_print_results(prefix, forward_step,
Mohammad's avatar
Mohammad committed
215
216
                                           valid_dataloader, model,
                                           iteration, False)
217
218
219

        # Checkpointing at the end of each epoch.
        if args.save:
Mohammad's avatar
Mohammad committed
220
            save_checkpoint(iteration, model, optimizer, lr_scheduler)
221
222
223

        # Callback at the end of each epoch.
        if end_of_epoch_callback is not None:
Mohammad's avatar
Mohammad committed
224
            end_of_epoch_callback(model, epoch)
225
226


Mohammad's avatar
Mohammad committed
227
def finetune(train_valid_datasets_provider, model_provider,
228
229
230
             forward_step=_cross_entropy_forward_step,
             end_of_epoch_callback_provider=None):
    """Main finetune function used across all tasks."""
Mohammad's avatar
Mohammad committed
231
232
    args = get_args()
    timers = get_timers()
233

234
235
236
    assert args.rampup_batch_size is None, \
        'batch size scaling is not supported for finetuning'

237
    # Train and validation data loaders.
Mohammad's avatar
Mohammad committed
238
    timers('train/valid/test dataset/dataloder').start()
239
    if args.epochs > 0:
Mohammad's avatar
Mohammad committed
240
        train_dataset, valid_dataset = train_valid_datasets_provider()
241
        train_dataloader, valid_dataloader = _build_train_valid_dataloaders(
Mohammad's avatar
Mohammad committed
242
            train_dataset, valid_dataset)
243
244
    else:
        args.train_iters = 0
Mohammad's avatar
Mohammad committed
245
    timers('train/valid/test dataset/dataloder').stop()
246
247

    # Build calback function.
Mohammad's avatar
Mohammad committed
248
    timers('callback function').start()
249
250
    end_of_epoch_callback = None
    if end_of_epoch_callback_provider is not None:
Mohammad's avatar
Mohammad committed
251
252
        end_of_epoch_callback = end_of_epoch_callback_provider()
    timers('callback function').stop()
253
254

    # Build model, optimizer and learning rate scheduler.
Mohammad's avatar
Mohammad committed
255
256
257
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
258
259
260
261

    # If pretrained checkpoint is provided and we have not trained for
    # any iteration (i.e., iteration is zero), then load the pretrained
    # checkpoint.
Mohammad's avatar
Mohammad committed
262
    timers('pretrained checkpoint').start()
263
264
265
    if args.iteration == 0 and args.pretrained_checkpoint is not None:
        original_load = args.load
        args.load = args.pretrained_checkpoint
Mohammad's avatar
Mohammad committed
266
        _ = load_checkpoint(model, None, None)
267
268
        args.load = original_load
        # This is critical when only model is loaded. We should make sure
269
        # main parameters are also updated.
270
        optimizer.reload_model_params()
Mohammad's avatar
Mohammad committed
271
    timers('pretrained checkpoint').stop()
272

Mohammad's avatar
Mohammad committed
273
274
275
276
277
    # Print setup timing.
    print_rank_0('done with setups ...')
    timers.log(['train/valid/test dataset/dataloder', 'callback function',
                'model and optimizer', 'pretrained checkpoint'])
    print_rank_0('training ...')
278
279
280
281

    # Finetune the model.
    if args.epochs > 0:
        _train(model, optimizer, lr_scheduler, forward_step,
Mohammad's avatar
Mohammad committed
282
               train_dataloader, valid_dataloader, end_of_epoch_callback)
283
284
285
286
    # Or just evaluate.
    else:
        if end_of_epoch_callback is not None:
            print_rank_0('evaluation only mode, setting epoch to -1')
Mohammad's avatar
Mohammad committed
287
            end_of_epoch_callback(model, epoch=-1, output_predictions=True)
288
    print_rank_0('done :-)')