finetune_utils.py 9.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Finetune utilities."""

import torch

Mohammad's avatar
Mohammad committed
20
21
from megatron import get_args
from megatron import get_timers
22
from megatron import mpu
Mohammad's avatar
Mohammad committed
23
24
25
from megatron import print_rank_0
from megatron.checkpointing  import load_checkpoint
from megatron.checkpointing import save_checkpoint
26
27
28
29
30
31
32
33
from megatron.training import evaluate_and_print_results
from megatron.training import setup_model_and_optimizer
from megatron.training import train_step
from megatron.training import training_log
from megatron.utils import check_adlr_autoresume_termination
from megatron.utils import reduce_losses


Mohammad's avatar
Mohammad committed
34
def process_batch(batch):
35
    """Process batch and produce inputs for the model."""
Mohammad's avatar
Mohammad committed
36
    args = get_args()
37
38
39
40
41
42
43
44
45
46
47

    tokens = batch['text'].long().cuda().contiguous()
    types = batch['types'].long().cuda().contiguous()
    labels = batch['label'].long().cuda().contiguous()
    attention_mask = batch['padding_mask'].float().cuda().contiguous()
    if args.fp16:
        attention_mask = attention_mask.half()

    return tokens, types, labels, attention_mask


Mohammad's avatar
Mohammad committed
48
def _cross_entropy_forward_step(batch, model):
49
    """Simple forward step with cross-entropy loss."""
Mohammad's avatar
Mohammad committed
50
    timers = get_timers()
51
52
53
54
55
56
57

    # Get the batch.
    timers('batch generator').start()
    try:
        batch_ = next(batch)
    except:
        batch_ = batch
Mohammad's avatar
Mohammad committed
58
    tokens, types, labels, attention_mask = process_batch(batch_)
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    timers('batch generator').stop()

    # Forward model.
    logits = model(tokens, attention_mask, types)

    # Cross-entropy loss.
    loss_func = torch.nn.CrossEntropyLoss()
    loss = loss_func(logits.contiguous().float(), labels)

    # Reduce loss for logging.
    reduced_loss = reduce_losses([loss])

    return loss, {'lm loss': reduced_loss[0]}


def build_data_loader(dataset, batch_size, num_workers, drop_last):
    """Data loader. Note that batch-size is the local (per GPU) batch-size."""

    # Sampler.
    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    sampler = torch.utils.data.distributed.DistributedSampler(
        dataset, num_replicas=world_size, rank=rank)

    # Data loader. Note that batch size is the per GPU batch size.
    data_loader = torch.utils.data.DataLoader(dataset,
                                              batch_size=batch_size,
                                              sampler=sampler,
                                              shuffle=False,
                                              num_workers=num_workers,
                                              drop_last=drop_last,
                                              pin_memory=True)

    return data_loader


def _build_infinite_size_dataloader(dataloader):
    """Build a looped dataloader with infinite size."""

    iterator = dataloader.__iter__()
    while True:
        try:
            yield iterator.__next__()
        except StopIteration:
            iterator = dataloader.__iter__()


Mohammad's avatar
Mohammad committed
106
def _build_train_valid_dataloaders(train_dataset, valid_dataset):
107
    """Traing and validation dataloaders."""
Mohammad's avatar
Mohammad committed
108
    args = get_args()
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

    print_rank_0('building train and validation dataloaders ...')
    # Training dataset.
    train_dataloader = build_data_loader(train_dataset, args.batch_size,
                                         args.num_workers, not args.keep_last)
    # Set the training iterations.
    args.train_iters_per_epoch = len(train_dataloader)
    args.train_iters = args.epochs * args.train_iters_per_epoch
    # Validation dataset. For this dataset, we do not need to set up
    # shuffling so we can just use a simple infinite loop.
    valid_dataloader_ = build_data_loader(valid_dataset, args.batch_size,
                                          args.num_workers, not args.keep_last)
    valid_dataloader = _build_infinite_size_dataloader(valid_dataloader_)

    return train_dataloader, valid_dataloader


def _train(model, optimizer, lr_scheduler, forward_step,
Mohammad's avatar
Mohammad committed
127
           train_dataloader, valid_dataloader, end_of_epoch_callback):
128
    """Train the model."""
Mohammad's avatar
Mohammad committed
129
130
    args = get_args()
    timers = get_timers()
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    losses_dict_sum = {}

    # Starting epoch and iteration
    start_epoch = args.iteration // args.train_iters_per_epoch
    start_iteration = args.iteration % args.train_iters_per_epoch
    iteration = args.iteration

    # Memory reporting flag.
    report_memory_flag = True

    # For each remaining epoch
    timers('interval time').start()
    for epoch in range(start_epoch, args.epochs):
        print_rank_0('working on epoch {} ...'.format(epoch+1))

        # Set the data loader epoch to shuffle the index iterator.
        train_dataloader.sampler.set_epoch(args.seed + epoch)

        # For all the batches in the dataset.
        for iteration_, batch in enumerate(train_dataloader):

            # Ignore the iterations before starting value
            if iteration_ < start_iteration:
                continue
            # Set to zero so the next epoch does not skip any batches.
            start_iteration = 0

            # Train for one step.
Mohammad's avatar
Mohammad committed
164
165
            losses_dict, _ = train_step(forward_step, batch, model,
                                        optimizer, lr_scheduler)
166
167
168
169
170
171
            iteration += 1

            # Logging.
            report_memory_flag = training_log(losses_dict, losses_dict_sum,
                                              optimizer.param_groups[0]['lr'],
                                              iteration, optimizer.loss_scale,
Mohammad's avatar
Mohammad committed
172
                                              report_memory_flag)
173
174
175
176

            # Autoresume
            if args.adlr_autoresume  and \
               (iteration % args.adlr_autoresume_interval == 0):
Mohammad's avatar
Mohammad committed
177
178
                check_adlr_autoresume_termination(iteration, model,
                                                  optimizer, lr_scheduler)
179
180
181
182

            # Checkpointing
            if args.save and args.save_interval and \
               iteration % args.save_interval == 0:
Mohammad's avatar
Mohammad committed
183
                save_checkpoint(iteration, model, optimizer, lr_scheduler)
184
185
186
187
188

            # Evaluation
            if args.eval_interval and iteration % args.eval_interval == 0:
                prefix = 'iteration {}'.format(iteration)
                evaluate_and_print_results(prefix, forward_step,
Mohammad's avatar
Mohammad committed
189
190
                                           valid_dataloader, model,
                                           iteration, False)
191
192
193

        # Checkpointing at the end of each epoch.
        if args.save:
Mohammad's avatar
Mohammad committed
194
            save_checkpoint(iteration, model, optimizer, lr_scheduler)
195
196
197

        # Callback at the end of each epoch.
        if end_of_epoch_callback is not None:
Mohammad's avatar
Mohammad committed
198
            end_of_epoch_callback(model, epoch)
199
200


Mohammad's avatar
Mohammad committed
201
def finetune(train_valid_datasets_provider, model_provider,
202
203
204
             forward_step=_cross_entropy_forward_step,
             end_of_epoch_callback_provider=None):
    """Main finetune function used across all tasks."""
Mohammad's avatar
Mohammad committed
205
206
    args = get_args()
    timers = get_timers()
207
208

    # Train and validation data loaders.
Mohammad's avatar
Mohammad committed
209
    timers('train/valid/test dataset/dataloder').start()
210
    if args.epochs > 0:
Mohammad's avatar
Mohammad committed
211
        train_dataset, valid_dataset = train_valid_datasets_provider()
212
        train_dataloader, valid_dataloader = _build_train_valid_dataloaders(
Mohammad's avatar
Mohammad committed
213
214
            train_dataset, valid_dataset)
    timers('train/valid/test dataset/dataloder').stop()
215
216

    # Build calback function.
Mohammad's avatar
Mohammad committed
217
    timers('callback function').start()
218
219
    end_of_epoch_callback = None
    if end_of_epoch_callback_provider is not None:
Mohammad's avatar
Mohammad committed
220
221
        end_of_epoch_callback = end_of_epoch_callback_provider()
    timers('callback function').stop()
222
223

    # Build model, optimizer and learning rate scheduler.
Mohammad's avatar
Mohammad committed
224
225
226
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
227
228
229
230

    # If pretrained checkpoint is provided and we have not trained for
    # any iteration (i.e., iteration is zero), then load the pretrained
    # checkpoint.
Mohammad's avatar
Mohammad committed
231
    timers('pretrained checkpoint').start()
232
233
234
    if args.iteration == 0 and args.pretrained_checkpoint is not None:
        original_load = args.load
        args.load = args.pretrained_checkpoint
Mohammad's avatar
Mohammad committed
235
        _ = load_checkpoint(model, None, None)
236
237
238
239
240
        args.load = original_load
        # This is critical when only model is loaded. We should make sure
        # master parameters are also updated.
        if args.fp16:
            optimizer._model_params_to_master_params()
Mohammad's avatar
Mohammad committed
241
    timers('pretrained checkpoint').stop()
242

Mohammad's avatar
Mohammad committed
243
244
245
246
247
    # Print setup timing.
    print_rank_0('done with setups ...')
    timers.log(['train/valid/test dataset/dataloder', 'callback function',
                'model and optimizer', 'pretrained checkpoint'])
    print_rank_0('training ...')
248
249
250
251

    # Finetune the model.
    if args.epochs > 0:
        _train(model, optimizer, lr_scheduler, forward_step,
Mohammad's avatar
Mohammad committed
252
               train_dataloader, valid_dataloader, end_of_epoch_callback)
253
254
255
256
    # Or just evaluate.
    else:
        if end_of_epoch_callback is not None:
            print_rank_0('evaluation only mode, setting epoch to -1')
Mohammad's avatar
Mohammad committed
257
            end_of_epoch_callback(model, epoch=-1, output_predictions=True)
258
259

    print_rank_0('done :-)')