finetune_utils.py 11.6 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Finetune utilities."""

Jared Casper's avatar
Jared Casper committed
18
19
from functools import partial

20
21
import torch

Neel Kant's avatar
Neel Kant committed
22
23
from megatron import get_args
from megatron import print_rank_0
Mohammad's avatar
Mohammad committed
24
from megatron import get_timers
25
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
26
from megatron.checkpointing import load_checkpoint
Mohammad's avatar
Mohammad committed
27
from megatron.checkpointing import save_checkpoint
28
29
30
31
from megatron.training import evaluate_and_print_results
from megatron.training import setup_model_and_optimizer
from megatron.training import train_step
from megatron.training import training_log
32
from megatron.utils import average_losses_across_data_parallel_group
mohammad's avatar
mohammad committed
33
34
from megatron.utils import calc_params_l2_norm
from megatron.utils import check_adlr_autoresume_termination
35
36


Mohammad's avatar
Mohammad committed
37
def process_batch(batch):
38
    """Process batch and produce inputs for the model."""
Mohammad's avatar
Mohammad committed
39
    args = get_args()
40
41
42
43
44
45
46
47
48
49
50

    tokens = batch['text'].long().cuda().contiguous()
    types = batch['types'].long().cuda().contiguous()
    labels = batch['label'].long().cuda().contiguous()
    attention_mask = batch['padding_mask'].float().cuda().contiguous()
    if args.fp16:
        attention_mask = attention_mask.half()

    return tokens, types, labels, attention_mask


Jared Casper's avatar
Jared Casper committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
def cross_entropy_loss_func(labels, output_tensor):
    logits = output_tensor

    # Cross-entropy loss.
    loss_func = torch.nn.CrossEntropyLoss()
    loss = loss_func(logits.contiguous().float(), labels)

    # Reduce loss for logging.
    averaged_loss = average_losses_across_data_parallel_group([loss])

    return loss, {'lm loss': averaged_loss[0]}


def _cross_entropy_forward_step(batch, model):
65
    """Simple forward step with cross-entropy loss."""
Mohammad's avatar
Mohammad committed
66
    timers = get_timers()
67
68

    # Get the batch.
mohammad's avatar
mohammad committed
69
    timers('batch-generator').start()
70
71
    try:
        batch_ = next(batch)
Neel Kant's avatar
Neel Kant committed
72
    except BaseException:
73
        batch_ = batch
Mohammad's avatar
Mohammad committed
74
    tokens, types, labels, attention_mask = process_batch(batch_)
mohammad's avatar
mohammad committed
75
    timers('batch-generator').stop()
76
77

    # Forward model.
Jared Casper's avatar
Jared Casper committed
78
    output_tensor = model(tokens, attention_mask, tokentype_ids=types)
79

Jared Casper's avatar
Jared Casper committed
80
    return output_tensor, partial(cross_entropy_loss_func, labels)
81
82


Mostofa Patwary's avatar
Mostofa Patwary committed
83
def build_data_loader(dataset, micro_batch_size, num_workers, drop_last,
Mostofa Patwary's avatar
Mostofa Patwary committed
84
        task_collate_fn=None):
85
86
87
88
89
90
91
92
93
94
    """Data loader. Note that batch-size is the local (per GPU) batch-size."""

    # Sampler.
    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    sampler = torch.utils.data.distributed.DistributedSampler(
        dataset, num_replicas=world_size, rank=rank)

    # Data loader. Note that batch size is the per GPU batch size.
    data_loader = torch.utils.data.DataLoader(dataset,
95
                                              batch_size=micro_batch_size,
96
97
98
99
                                              sampler=sampler,
                                              shuffle=False,
                                              num_workers=num_workers,
                                              drop_last=drop_last,
Mostofa Patwary's avatar
Mostofa Patwary committed
100
101
                                              pin_memory=True,
                                              collate_fn=task_collate_fn)
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

    return data_loader


def _build_infinite_size_dataloader(dataloader):
    """Build a looped dataloader with infinite size."""

    iterator = dataloader.__iter__()
    while True:
        try:
            yield iterator.__next__()
        except StopIteration:
            iterator = dataloader.__iter__()


Mostofa Patwary's avatar
Mostofa Patwary committed
117
def _build_train_valid_dataloaders(train_dataset, valid_dataset, task_collate_fn=None):
118
    """Traing and validation dataloaders."""
Mohammad's avatar
Mohammad committed
119
    args = get_args()
120
121
122

    print_rank_0('building train and validation dataloaders ...')
    # Training dataset.
123
    train_dataloader = build_data_loader(train_dataset, args.micro_batch_size,
Mostofa Patwary's avatar
Mostofa Patwary committed
124
125
                                         args.num_workers, not args.keep_last,
                                         task_collate_fn)
126
127
128
129
130
    # Set the training iterations.
    args.train_iters_per_epoch = len(train_dataloader)
    args.train_iters = args.epochs * args.train_iters_per_epoch
    # Validation dataset. For this dataset, we do not need to set up
    # shuffling so we can just use a simple infinite loop.
131
    valid_dataloader_ = build_data_loader(valid_dataset, args.micro_batch_size,
Mostofa Patwary's avatar
Mostofa Patwary committed
132
133
                                          args.num_workers, not args.keep_last,
                                          task_collate_fn)
134
135
    valid_dataloader = _build_infinite_size_dataloader(valid_dataloader_)

136
137
138
139
140
    # Now that we've built the data loaders, set batch_size arguments
    # to the actual batch size the model will see for this dataset.
    # This is necessary so pipeline transfers know what size they are
    # and the LR schedule, which is based on samples seen, gets set
    # correctly.
Jared Casper's avatar
Jared Casper committed
141
142
    args.orig_micro_batch_size = args.micro_batch_size
    args.orig_global_batch_size = args.global_batch_size
143
    if hasattr(train_dataset, 'sample_multiplier'):
144
145
146
147
148
        # If our dataset as a sample_multiplier attribute that means
        # each "sample" from the dataset actually has multiple samples
        # that will collapse into the batch dimension (for example in
        # the RACE dataset that has several options), we need to
        # account for that when setting the micro batch size.
149
        args.micro_batch_size *= train_dataset.sample_multiplier
150
        args.global_batch_size *= train_dataset.sample_multiplier
151

152
153
154
155
    return train_dataloader, valid_dataloader


def _train(model, optimizer, lr_scheduler, forward_step,
Mohammad's avatar
Mohammad committed
156
           train_dataloader, valid_dataloader, end_of_epoch_callback):
157
    """Train the model."""
Mohammad's avatar
Mohammad committed
158
159
    args = get_args()
    timers = get_timers()
160
161

    # Turn on training mode which enables dropout.
Jared Casper's avatar
Jared Casper committed
162
163
    for m in model:
        m.train()
164
165
166
167
168
169
170
171
172
173
174
175
176

    # Tracking loss.
    losses_dict_sum = {}

    # Starting epoch and iteration
    start_epoch = args.iteration // args.train_iters_per_epoch
    start_iteration = args.iteration % args.train_iters_per_epoch
    iteration = args.iteration

    # Memory reporting flag.
    report_memory_flag = True

    # For each remaining epoch
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
177
    timers('interval-time').start()
178
    for epoch in range(start_epoch, args.epochs):
Neel Kant's avatar
Neel Kant committed
179
        print_rank_0('working on epoch {} ...'.format(epoch + 1))
180
181
182
183
184
185
186
187
188
189
190
191

        # Set the data loader epoch to shuffle the index iterator.
        train_dataloader.sampler.set_epoch(args.seed + epoch)

        # For all the batches in the dataset.
        for iteration_, batch in enumerate(train_dataloader):

            # Ignore the iterations before starting value
            if iteration_ < start_iteration:
                continue
            # Set to zero so the next epoch does not skip any batches.
            start_iteration = 0
Mostofa Patwary's avatar
Mostofa Patwary committed
192

193
            # Train for one step.
Jared Casper's avatar
Jared Casper committed
194
            out = train_step(forward_step, batch, model, optimizer, lr_scheduler)
Mostofa Patwary's avatar
Mostofa Patwary committed
195

Jared Casper's avatar
Jared Casper committed
196
            losses_dict, skipped_iter, grad_norm, num_zeros_in_grad = out
197
198
199
            iteration += 1

            # Logging.
200
201
202
            params_norm = None
            if args.log_params_norm:
                params_norm = calc_params_l2_norm(model)
203
204
            report_memory_flag = training_log(losses_dict, losses_dict_sum,
                                              optimizer.param_groups[0]['lr'],
205
206
                                              iteration,
                                              optimizer.get_loss_scale().item(),
207
                                              report_memory_flag, skipped_iter,
Jared Casper's avatar
Jared Casper committed
208
                                              grad_norm, params_norm, num_zeros_in_grad)
209
210

            # Autoresume
Neel Kant's avatar
Neel Kant committed
211
            if args.adlr_autoresume and \
212
               (iteration % args.adlr_autoresume_interval == 0):
Mohammad's avatar
Mohammad committed
213
214
                check_adlr_autoresume_termination(iteration, model,
                                                  optimizer, lr_scheduler)
215
216
217
218

            # Checkpointing
            if args.save and args.save_interval and \
               iteration % args.save_interval == 0:
Mohammad's avatar
Mohammad committed
219
                save_checkpoint(iteration, model, optimizer, lr_scheduler)
220
221
222
223
224

            # Evaluation
            if args.eval_interval and iteration % args.eval_interval == 0:
                prefix = 'iteration {}'.format(iteration)
                evaluate_and_print_results(prefix, forward_step,
Mohammad's avatar
Mohammad committed
225
226
                                           valid_dataloader, model,
                                           iteration, False)
227
228
229

        # Checkpointing at the end of each epoch.
        if args.save:
Mohammad's avatar
Mohammad committed
230
            save_checkpoint(iteration, model, optimizer, lr_scheduler)
231
232
233

        # Callback at the end of each epoch.
        if end_of_epoch_callback is not None:
Mohammad's avatar
Mohammad committed
234
            end_of_epoch_callback(model, epoch)
235
236


Mohammad's avatar
Mohammad committed
237
def finetune(train_valid_datasets_provider, model_provider,
238
             forward_step=_cross_entropy_forward_step,
Mostofa Patwary's avatar
Mostofa Patwary committed
239
240
             end_of_epoch_callback_provider=None,
             task_collate_fn=None):
241
    """Main finetune function used across all tasks."""
Mohammad's avatar
Mohammad committed
242
243
    args = get_args()
    timers = get_timers()
244

245
246
247
    assert args.rampup_batch_size is None, \
        'batch size scaling is not supported for finetuning'

248
    # Train and validation data loaders.
Mohammad's avatar
Mohammad committed
249
    timers('train/valid/test dataset/dataloder').start()
250
    if args.epochs > 0:
Mohammad's avatar
Mohammad committed
251
        train_dataset, valid_dataset = train_valid_datasets_provider()
252
        train_dataloader, valid_dataloader = _build_train_valid_dataloaders(
Mostofa Patwary's avatar
Mostofa Patwary committed
253
            train_dataset, valid_dataset, task_collate_fn)
254
255
    else:
        args.train_iters = 0
Mohammad's avatar
Mohammad committed
256
    timers('train/valid/test dataset/dataloder').stop()
257
258

    # Build calback function.
Mohammad's avatar
Mohammad committed
259
    timers('callback function').start()
260
261
    end_of_epoch_callback = None
    if end_of_epoch_callback_provider is not None:
Mohammad's avatar
Mohammad committed
262
263
        end_of_epoch_callback = end_of_epoch_callback_provider()
    timers('callback function').stop()
264
265

    # Build model, optimizer and learning rate scheduler.
Mohammad's avatar
Mohammad committed
266
267
268
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
269
270
271
272

    # If pretrained checkpoint is provided and we have not trained for
    # any iteration (i.e., iteration is zero), then load the pretrained
    # checkpoint.
Mohammad's avatar
Mohammad committed
273
    timers('pretrained checkpoint').start()
274
275
276
    if args.iteration == 0 and args.pretrained_checkpoint is not None:
        original_load = args.load
        args.load = args.pretrained_checkpoint
Mohammad's avatar
Mohammad committed
277
        _ = load_checkpoint(model, None, None)
278
279
        args.load = original_load
        # This is critical when only model is loaded. We should make sure
280
        # main parameters are also updated.
281
        optimizer.reload_model_params()
Mohammad's avatar
Mohammad committed
282
    timers('pretrained checkpoint').stop()
283

Mohammad's avatar
Mohammad committed
284
285
286
287
288
    # Print setup timing.
    print_rank_0('done with setups ...')
    timers.log(['train/valid/test dataset/dataloder', 'callback function',
                'model and optimizer', 'pretrained checkpoint'])
    print_rank_0('training ...')
289
290
291
292

    # Finetune the model.
    if args.epochs > 0:
        _train(model, optimizer, lr_scheduler, forward_step,
Mohammad's avatar
Mohammad committed
293
               train_dataloader, valid_dataloader, end_of_epoch_callback)
294
295
296
297
    # Or just evaluate.
    else:
        if end_of_epoch_callback is not None:
            print_rank_0('evaluation only mode, setting epoch to -1')
Mohammad's avatar
Mohammad committed
298
            end_of_epoch_callback(model, epoch=-1, output_predictions=True)
299
    print_rank_0('done :-)')