checkpointing.py 19 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Input/output checkpointing."""

import os
import random
import sys
import numpy as np

import torch

25
26
27
from megatron import (get_args,
                      mpu,
                      print_rank_0,
28
29
                      update_num_microbatches,
                      utils)
30

Vijay Korthikanti's avatar
Vijay Korthikanti committed
31
32
33
34
_CHECKPOINT_VERSION = None

def set_checkpoint_version(value):
    global _CHECKPOINT_VERSION
Jared Casper's avatar
Jared Casper committed
35
36
37
    if _CHECKPOINT_VERSION is not None:
        assert _CHECKPOINT_VERSION == value, \
            "checkpoint versions do not match"
Vijay Korthikanti's avatar
Vijay Korthikanti committed
38
39
40
41
42
    _CHECKPOINT_VERSION = value

def get_checkpoint_version():
    global _CHECKPOINT_VERSION
    return _CHECKPOINT_VERSION
43
44
45

def check_checkpoint_args(checkpoint_args):
    """Ensure fixed arguments for a model are the same for the input
46
    arguments and the one retrieved from checkpoint."""
47
48
    args = get_args()

49
50
51
52
53
    def _compare(arg_name, old_arg_name=None):
        if old_arg_name is not None:
            checkpoint_value = getattr(checkpoint_args, old_arg_name)
        else:
            checkpoint_value = getattr(checkpoint_args, arg_name)
54
55
56
57
58
59
60
61
62
        args_value = getattr(args, arg_name)
        error_message = '{} value from checkpoint ({}) is not equal to the ' \
                        'input argument value ({}).'.format(
                            arg_name, checkpoint_value, args_value)
        assert checkpoint_value == args_value, error_message

    _compare('num_layers')
    _compare('hidden_size')
    _compare('num_attention_heads')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
63
    if args.vocab_file:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
64
        _compare('max_position_embeddings')
65
66
67
        _compare('make_vocab_size_divisible_by')
        _compare('padded_vocab_size')
        _compare('tokenizer_type')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
68
69
    if args.data_parallel_random_init:
        _compare('data_parallel_random_init')
70
71
72
73
74
75
    if get_checkpoint_version() < 3.0:
        _compare('tensor_model_parallel_size',
                 old_arg_name='model_parallel_size')
    if get_checkpoint_version() >= 3.0:
        _compare('tensor_model_parallel_size')
        _compare('pipeline_model_parallel_size')
76
77
78
79
80
81
82
83
84

def ensure_directory_exists(filename):
    """Build filename's path if it does not already exists."""
    dirname = os.path.dirname(filename)
    if not os.path.exists(dirname):
        os.makedirs(dirname)


def get_checkpoint_name(checkpoints_path, iteration,
85
                        release=False):
86
87
88
89
90
    """A unified checkpoint name."""
    if release:
        directory = 'release'
    else:
        directory = 'iter_{:07d}'.format(iteration)
91
92
    # Use both the tensor and pipeline MP rank.
    if mpu.get_pipeline_model_parallel_world_size() == 1:
93
94
        return os.path.join(checkpoints_path, directory,
                            'mp_rank_{:02d}'.format(
95
                                mpu.get_tensor_model_parallel_rank()),
96
                            'model_optim_rng.pt')
97
    return os.path.join(checkpoints_path, directory,
98
                        'mp_rank_{:02d}_{:03d}'.format(
99
100
                            mpu.get_tensor_model_parallel_rank(),
                            mpu.get_pipeline_model_parallel_rank()),
101
102
103
104
105
106
107
108
109
                        'model_optim_rng.pt')


def get_checkpoint_tracker_filename(checkpoints_path):
    """Tracker file rescords the latest chckpoint during
    training to restart from."""
    return os.path.join(checkpoints_path, 'latest_checkpointed_iteration.txt')


110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def read_metadata(tracker_filename):
    # Read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
    iteration = 0
    release = False
    with open(tracker_filename, 'r') as f:
        metastring = f.read().strip()
        try:
            iteration = int(metastring)
        except ValueError:
            release = metastring == 'release'
            if not release:
                print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format(
                    tracker_filename))
                sys.exit()
    assert iteration > 0 or release, 'error parsing metadata file {}'.format(
        tracker_filename)

128
129
130
131
    # Get the max iteration retrieved across the ranks.
    iters_cuda = torch.cuda.LongTensor([iteration])
    torch.distributed.all_reduce(iters_cuda, op=torch.distributed.ReduceOp.MAX)
    max_iter = iters_cuda[0].item()
132
133
134
135

    # We should now have all the same iteration.
    # If not, print a warning and chose the maximum
    # iteration across all ranks.
136
137
138
139
140
    if iteration != max_iter:
        print('WARNING: on rank {} found iteration {} in the '
              'metadata while max iteration across the ranks '
              'is {}, replacing it with max iteration.'.format(
                  rank, iteration, max_iter), flush=True)
141
142
143
    return max_iter, release


144
145
def get_rng_state():
    """ collect rng state across data parallel ranks """
146
    args = get_args()
147
148
149
150
151
152
153
154
155
    rng_state = {
        'random_rng_state': random.getstate(),
        'np_rng_state': np.random.get_state(),
        'torch_rng_state': torch.get_rng_state(),
        'cuda_rng_state': torch.cuda.get_rng_state(),
        'rng_tracker_states': mpu.get_cuda_rng_tracker().get_states()}

    rng_state_list = None
    if torch.distributed.is_initialized() and \
156
157
            mpu.get_data_parallel_world_size() > 1 and \
            args.data_parallel_random_init:
158
159
160
        rng_state_list = \
            [None for i in range(mpu.get_data_parallel_world_size())]
        torch.distributed.all_gather_object(
161
            rng_state_list,
162
            rng_state,
163
164
165
166
167
168
169
            group=mpu.get_data_parallel_group())
    else:
        rng_state_list = [rng_state]

    return rng_state_list


170
def save_checkpoint(iteration, model, optimizer, opt_param_scheduler):
171
172
173
174
    """Save a model checkpoint."""
    args = get_args()

    # Only rank zero of the data parallel writes to the disk.
175
    model = utils.unwrap_model(model)
176

Jared Casper's avatar
Jared Casper committed
177
178
    print_rank_0('saving checkpoint at iteration {:7d} to {}'.format(
        iteration, args.save))
179

180
181
182
    # collect rng state across data parallel ranks
    rng_state = get_rng_state()

Jared Casper's avatar
Jared Casper committed
183
    if not torch.distributed.is_initialized() or mpu.get_data_parallel_rank() == 0:
184
185
186
187

        # Arguments, iteration, and model.
        state_dict = {}
        state_dict['args'] = args
188
        state_dict['checkpoint_version'] = 3.0
189
        state_dict['iteration'] = iteration
190
191
192
193
194
195
        if len(model) == 1:
            state_dict['model'] = model[0].state_dict_for_save_checkpoint()
        else:
            for i in range(len(model)):
                mpu.set_virtual_pipeline_model_parallel_rank(i)
                state_dict['model%d' % i] = model[i].state_dict_for_save_checkpoint()
196
197
198
199
200

        # Optimizer stuff.
        if not args.no_save_optim:
            if optimizer is not None:
                state_dict['optimizer'] = optimizer.state_dict()
201
202
            if opt_param_scheduler is not None:
                state_dict['opt_param_scheduler'] = opt_param_scheduler.state_dict()
203
204
205

        # RNG states.
        if not args.no_save_rng:
206
            state_dict["rng_state"] = rng_state
207
208
209
210
211
212
213

        # Save.
        checkpoint_name = get_checkpoint_name(args.save, iteration)
        ensure_directory_exists(checkpoint_name)
        torch.save(state_dict, checkpoint_name)

    # Wait so everyone is done (necessary)
Jared Casper's avatar
Jared Casper committed
214
215
216
217
218
219
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0('  successfully saved checkpoint at iteration {:7d} to {}'.format(
        iteration, args.save))

220
    # And update the latest iteration
Jared Casper's avatar
Jared Casper committed
221
    if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
222
223
224
225
226
        tracker_filename = get_checkpoint_tracker_filename(args.save)
        with open(tracker_filename, 'w') as f:
            f.write(str(iteration))

    # Wait so everyone is done (not necessary)
Jared Casper's avatar
Jared Casper committed
227
228
    if torch.distributed.is_initialized():
        torch.distributed.barrier()
229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
def _transpose_first_dim(t, num_splits, num_splits_first, model):
    input_shape = t.size()
    # We use a self_attention module but the values extracted aren't
    # specific to self attention so should work for cross attention as well
    while hasattr(model, 'module'):
        model = model.module
    attention_module = model.language_model.encoder.layers[0].self_attention
    hidden_size_per_attention_head = attention_module.hidden_size_per_attention_head
    num_attention_heads_per_partition = attention_module.num_attention_heads_per_partition
    if num_splits_first:
        """[num_splits * np * hn, h]
        -->(view) [num_splits, np, hn, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_splits, num_attention_heads_per_partition,
             hidden_size_per_attention_head) + input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(0, 1).contiguous()
    else:
        """[np * hn * num_splits, h]
        -->(view) [np, hn, num_splits, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_attention_heads_per_partition,
             hidden_size_per_attention_head, num_splits) +\
             input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(1, 2).contiguous()
    t = t.view(*input_shape)

    return t
267

Mostofa Patwary's avatar
Mostofa Patwary committed
268
269
270
271
272
def fix_query_key_value_ordering(model, checkpoint_version):
    """Fix up query/key/value matrix ordering if checkpoint
    version is smaller than 2.0
    """
    if checkpoint_version < 2.0:
273
274
275
        if isinstance(model, list):
            assert len(model)==1
            model = model[0]
Mostofa Patwary's avatar
Mostofa Patwary committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        for name, param in model.named_parameters():
            if name.endswith(('.query_key_value.weight', '.query_key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 3, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 3, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
            if name.endswith(('.key_value.weight', '.key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 2, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 2, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
        print_rank_0(" succesfully fixed query-key-values ordering for"
                    " checkpoint version {}".format(checkpoint_version))

298
def load_checkpoint(model, optimizer, opt_param_scheduler, load_arg='load', strict=True):
299
300
301
302
303
    """Load a model checkpoint and return the iteration.
    strict (bool): whether to strictly enforce that the keys in
        :attr:`state_dict` of the checkpoint match the names of
        parameters and buffers in model.
    """
304
    args = get_args()
305
    load_dir = getattr(args, load_arg)
306

307
    model = utils.unwrap_model(model)
308

309
    # Read the tracker file and set the iteration.
310
    tracker_filename = get_checkpoint_tracker_filename(load_dir)
311
312
313
314
315
316
317
318
319
320
321

    # If no tracker file, return iretation zero.
    if not os.path.isfile(tracker_filename):
        print_rank_0('WARNING: could not find the metadata file {} '.format(
            tracker_filename))
        print_rank_0('    will not load any checkpoints and will start from '
                     'random')
        return 0

    # Otherwise, read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
322
    iteration, release = read_metadata(tracker_filename)
323
324

    # Checkpoint.
325
    checkpoint_name = get_checkpoint_name(load_dir, iteration, release)
Jared Casper's avatar
Jared Casper committed
326
    print_rank_0(f' loading checkpoint from {args.load} at iteration {iteration}')
327
328
329
330
331

    # Load the checkpoint.
    try:
        state_dict = torch.load(checkpoint_name, map_location='cpu')
    except ModuleNotFoundError:
mohammad's avatar
mohammad committed
332
        from megatron.fp16_deprecated import loss_scaler
333
334
335
        # For backward compatibility.
        print_rank_0(' > deserializing using the old code structure ...')
        sys.modules['fp16.loss_scaler'] = sys.modules[
mohammad's avatar
mohammad committed
336
337
338
            'megatron.fp16_deprecated.loss_scaler']
        sys.modules['megatron.fp16.loss_scaler'] = sys.modules[
            'megatron.fp16_deprecated.loss_scaler']
339
340
        state_dict = torch.load(checkpoint_name, map_location='cpu')
        sys.modules.pop('fp16.loss_scaler', None)
mohammad's avatar
mohammad committed
341
        sys.modules.pop('megatron.fp16.loss_scaler', None)
342
    except BaseException as e:
343
        print_rank_0('could not load the checkpoint')
344
        print_rank_0(e)
345
346
        sys.exit()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
347
348
349
    # set checkpoint version
    set_checkpoint_version(state_dict.get('checkpoint_version', 0))

350
351
352
353
354
355
356
    # Set iteration.
    if args.finetune or release:
        iteration = 0
    else:
        try:
            iteration = state_dict['iteration']
        except KeyError:
Neel Kant's avatar
Neel Kant committed
357
            try:  # Backward compatible with older checkpoints
358
359
360
361
362
363
364
365
                iteration = state_dict['total_iters']
            except KeyError:
                print_rank_0('A metadata file exists but unable to load '
                             'iteration from checkpoint {}, exiting'.format(
                                 checkpoint_name))
                sys.exit()

    # Check arguments.
mohammad's avatar
mohammad committed
366
367
    assert args.consumed_train_samples == 0
    assert args.consumed_valid_samples == 0
368
369
370
    if 'args' in state_dict:
        checkpoint_args = state_dict['args']
        check_checkpoint_args(checkpoint_args)
371
372
        args.consumed_train_samples = getattr(checkpoint_args,
                                              'consumed_train_samples', 0)
mohammad's avatar
mohammad committed
373
        update_num_microbatches(consumed_samples=args.consumed_train_samples)
374
375
        args.consumed_valid_samples = getattr(checkpoint_args,
                                              'consumed_valid_samples', 0)
376
377
378
379
    else:
        print_rank_0('could not find arguments in the checkpoint ...')

    # Model.
380
381
382
383
384
385
    if len(model) == 1:
        model[0].load_state_dict(state_dict['model'], strict=strict)
    else:
        for i in range(len(model)):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
            model[i].load_state_dict(state_dict['model%d' % i], strict=strict)
386

Mostofa Patwary's avatar
Mostofa Patwary committed
387
388
389
390
    # Fix up query/key/value matrix ordering if needed
    checkpoint_version = get_checkpoint_version()
    print_rank_0(f' checkpoint version {checkpoint_version}')
    fix_query_key_value_ordering(model, checkpoint_version)
391
392
393
394
395
396

    # Optimizer.
    if not release and not args.finetune and not args.no_load_optim:
        try:
            if optimizer is not None:
                optimizer.load_state_dict(state_dict['optimizer'])
397
398
399
400
401
            if opt_param_scheduler is not None:
                if 'lr_scheduler' in state_dict: # backward compatbility
                    opt_param_scheduler.load_state_dict(state_dict['lr_scheduler'])
                else:
                    opt_param_scheduler.load_state_dict(state_dict['opt_param_scheduler'])
402
403
404
405
406
407
408
409
410
411
        except KeyError:
            print_rank_0('Unable to load optimizer from checkpoint {}. '
                         'Specify --no-load-optim or --finetune to prevent '
                         'attempting to load the optimizer state, '
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

    # rng states.
    if not release and not args.finetune and not args.no_load_rng:
        try:
412
413
            if 'rng_state' in state_dict:
                # access rng_state for data parallel rank
414
                if args.data_parallel_random_init:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
415

416
417
418
                    rng_state = state_dict['rng_state'][mpu.get_data_parallel_rank()]
                else:
                    rng_state = state_dict['rng_state'][0]
419
420
421
422
423
424
425
426
                random.setstate(rng_state['random_rng_state'])
                np.random.set_state(rng_state['np_rng_state'])
                torch.set_rng_state(rng_state['torch_rng_state'])
                torch.cuda.set_rng_state(rng_state['cuda_rng_state'])
                # Check for empty states array
                if not rng_state['rng_tracker_states']:
                    raise KeyError
                mpu.get_cuda_rng_tracker().set_states(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
427
                    rng_state['rng_tracker_states'])
428
429
430
431
432
433
434
435
436
437
            else:  # backward compatability
                random.setstate(state_dict['random_rng_state'])
                np.random.set_state(state_dict['np_rng_state'])
                torch.set_rng_state(state_dict['torch_rng_state'])
                torch.cuda.set_rng_state(state_dict['cuda_rng_state'])
                # Check for empty states array
                if not state_dict['rng_tracker_states']:
                    raise KeyError
                mpu.get_cuda_rng_tracker().set_states(
                    state_dict['rng_tracker_states'])
438
        except KeyError:
439
            print_rank_0('Unable to load rng state from checkpoint {}. '
440
                         'Specify --no-load-rng or --finetune to prevent '
441
                         'attempting to load the rng state, '
442
443
444
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

Jared Casper's avatar
Jared Casper committed
445
446
447
448
449
450
    # Some utilities want to load a checkpoint without distributed being initialized
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0(f'  successfully loaded checkpoint from {args.load} '
                 f'at iteration {iteration}')
451
452

    return iteration
Neel Kant's avatar
Neel Kant committed
453
454


455
456
457
458
459
460
def load_biencoder_checkpoint(model, only_query_model=False,
        only_context_model=False, custom_load_path=None):
    """
    selectively load retrieval models for indexing/retrieving 
    from saved checkpoints
    """
Neel Kant's avatar
Neel Kant committed
461
462
463

    args = get_args()

464
    model = utils.unwrap_model(model)
Neel Kant's avatar
Neel Kant committed
465

466
    load_path = custom_load_path if custom_load_path is not None else args.load
Neel Kant's avatar
Neel Kant committed
467
468
469
470
471
472
473
474
475
476
477

    tracker_filename = get_checkpoint_tracker_filename(load_path)
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    checkpoint_name = get_checkpoint_name(load_path, iteration, False)
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
478
    ret_state_dict = state_dict['model']
Neel Kant's avatar
Neel Kant committed
479
480

    if only_query_model:
481
        ret_state_dict.pop('context_model')
Mostofa Patwary's avatar
Mostofa Patwary committed
482
    if only_context_model:
483
        ret_state_dict.pop('query_model')
Neel Kant's avatar
Neel Kant committed
484

485
486
    assert len(model) == 1
    model[0].load_state_dict(ret_state_dict)
Neel Kant's avatar
Neel Kant committed
487
488
489
490
491
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

Neel Kant's avatar
Neel Kant committed
492
    return model
493