checkpointing.py 18.8 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Input/output checkpointing."""

import os
import random
import sys
import numpy as np

import torch

25
26
27
from megatron import (get_args,
                      mpu,
                      print_rank_0,
28
29
                      update_num_microbatches,
                      utils)
30

Vijay Korthikanti's avatar
Vijay Korthikanti committed
31
32
33
34
_CHECKPOINT_VERSION = None

def set_checkpoint_version(value):
    global _CHECKPOINT_VERSION
Jared Casper's avatar
Jared Casper committed
35
36
37
    if _CHECKPOINT_VERSION is not None:
        assert _CHECKPOINT_VERSION == value, \
            "checkpoint versions do not match"
Vijay Korthikanti's avatar
Vijay Korthikanti committed
38
39
40
41
42
    _CHECKPOINT_VERSION = value

def get_checkpoint_version():
    global _CHECKPOINT_VERSION
    return _CHECKPOINT_VERSION
43
44
45

def check_checkpoint_args(checkpoint_args):
    """Ensure fixed arguments for a model are the same for the input
46
    arguments and the one retrieved from checkpoint."""
47
48
    args = get_args()

49
50
51
52
53
    def _compare(arg_name, old_arg_name=None):
        if old_arg_name is not None:
            checkpoint_value = getattr(checkpoint_args, old_arg_name)
        else:
            checkpoint_value = getattr(checkpoint_args, arg_name)
54
55
56
57
58
59
60
61
62
        args_value = getattr(args, arg_name)
        error_message = '{} value from checkpoint ({}) is not equal to the ' \
                        'input argument value ({}).'.format(
                            arg_name, checkpoint_value, args_value)
        assert checkpoint_value == args_value, error_message

    _compare('num_layers')
    _compare('hidden_size')
    _compare('num_attention_heads')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
63
    if args.vocab_file:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
64
        _compare('max_position_embeddings')
65
66
67
        _compare('make_vocab_size_divisible_by')
        _compare('padded_vocab_size')
        _compare('tokenizer_type')
68
69
70
71
72
73
    if get_checkpoint_version() < 3.0:
        _compare('tensor_model_parallel_size',
                 old_arg_name='model_parallel_size')
    if get_checkpoint_version() >= 3.0:
        _compare('tensor_model_parallel_size')
        _compare('pipeline_model_parallel_size')
74
75
76
77
78
79
80
81
82
83


def ensure_directory_exists(filename):
    """Build filename's path if it does not already exists."""
    dirname = os.path.dirname(filename)
    if not os.path.exists(dirname):
        os.makedirs(dirname)


def get_checkpoint_name(checkpoints_path, iteration,
84
                        release=False):
85
86
87
88
89
    """A unified checkpoint name."""
    if release:
        directory = 'release'
    else:
        directory = 'iter_{:07d}'.format(iteration)
90
91
    # Use both the tensor and pipeline MP rank.
    if mpu.get_pipeline_model_parallel_world_size() == 1:
92
93
        return os.path.join(checkpoints_path, directory,
                            'mp_rank_{:02d}'.format(
94
                                mpu.get_tensor_model_parallel_rank()),
95
                            'model_optim_rng.pt')
96
    return os.path.join(checkpoints_path, directory,
97
                        'mp_rank_{:02d}_{:03d}'.format(
98
99
                            mpu.get_tensor_model_parallel_rank(),
                            mpu.get_pipeline_model_parallel_rank()),
100
101
102
103
104
105
106
107
108
                        'model_optim_rng.pt')


def get_checkpoint_tracker_filename(checkpoints_path):
    """Tracker file rescords the latest chckpoint during
    training to restart from."""
    return os.path.join(checkpoints_path, 'latest_checkpointed_iteration.txt')


109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
def read_metadata(tracker_filename):
    # Read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
    iteration = 0
    release = False
    with open(tracker_filename, 'r') as f:
        metastring = f.read().strip()
        try:
            iteration = int(metastring)
        except ValueError:
            release = metastring == 'release'
            if not release:
                print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format(
                    tracker_filename))
                sys.exit()
    assert iteration > 0 or release, 'error parsing metadata file {}'.format(
        tracker_filename)

127
128
129
130
    # Get the max iteration retrieved across the ranks.
    iters_cuda = torch.cuda.LongTensor([iteration])
    torch.distributed.all_reduce(iters_cuda, op=torch.distributed.ReduceOp.MAX)
    max_iter = iters_cuda[0].item()
131
132
133
134

    # We should now have all the same iteration.
    # If not, print a warning and chose the maximum
    # iteration across all ranks.
135
136
137
138
139
    if iteration != max_iter:
        print('WARNING: on rank {} found iteration {} in the '
              'metadata while max iteration across the ranks '
              'is {}, replacing it with max iteration.'.format(
                  rank, iteration, max_iter), flush=True)
140
141
142
    return max_iter, release


143
144
def get_rng_state():
    """ collect rng state across data parallel ranks """
145
    args = get_args()
146
147
148
149
150
151
152
153
154
    rng_state = {
        'random_rng_state': random.getstate(),
        'np_rng_state': np.random.get_state(),
        'torch_rng_state': torch.get_rng_state(),
        'cuda_rng_state': torch.cuda.get_rng_state(),
        'rng_tracker_states': mpu.get_cuda_rng_tracker().get_states()}

    rng_state_list = None
    if torch.distributed.is_initialized() and \
155
156
            mpu.get_data_parallel_world_size() > 1 and \
            args.data_parallel_random_init:
157
158
159
160
161
162
163
164
165
166
167
168
169
170
        if mpu.get_data_parallel_rank() == 0:
            rng_state_list = \
                [None for i in range(mpu.get_data_parallel_world_size())]
        torch.distributed.gather_object(
            rng_state,
            rng_state_list,
            dst=mpu.get_data_parallel_src_rank(),
            group=mpu.get_data_parallel_group())
    else:
        rng_state_list = [rng_state]

    return rng_state_list


171
172
173
174
175
def save_checkpoint(iteration, model, optimizer, lr_scheduler):
    """Save a model checkpoint."""
    args = get_args()

    # Only rank zero of the data parallel writes to the disk.
176
    model = utils.unwrap_model(model)
177

Jared Casper's avatar
Jared Casper committed
178
179
    print_rank_0('saving checkpoint at iteration {:7d} to {}'.format(
        iteration, args.save))
180

181
182
183
    # collect rng state across data parallel ranks
    rng_state = get_rng_state()

Jared Casper's avatar
Jared Casper committed
184
    if not torch.distributed.is_initialized() or mpu.get_data_parallel_rank() == 0:
185
186
187
188

        # Arguments, iteration, and model.
        state_dict = {}
        state_dict['args'] = args
189
        state_dict['checkpoint_version'] = 3.0
190
        state_dict['iteration'] = iteration
191
192
193
194
195
196
        if len(model) == 1:
            state_dict['model'] = model[0].state_dict_for_save_checkpoint()
        else:
            for i in range(len(model)):
                mpu.set_virtual_pipeline_model_parallel_rank(i)
                state_dict['model%d' % i] = model[i].state_dict_for_save_checkpoint()
197
198
199
200
201
202
203
204
205
206

        # Optimizer stuff.
        if not args.no_save_optim:
            if optimizer is not None:
                state_dict['optimizer'] = optimizer.state_dict()
            if lr_scheduler is not None:
                state_dict['lr_scheduler'] = lr_scheduler.state_dict()

        # RNG states.
        if not args.no_save_rng:
207
            state_dict["rng_state"] = rng_state
208
209
210
211
212
213
214

        # Save.
        checkpoint_name = get_checkpoint_name(args.save, iteration)
        ensure_directory_exists(checkpoint_name)
        torch.save(state_dict, checkpoint_name)

    # Wait so everyone is done (necessary)
Jared Casper's avatar
Jared Casper committed
215
216
217
218
219
220
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0('  successfully saved checkpoint at iteration {:7d} to {}'.format(
        iteration, args.save))

221
    # And update the latest iteration
Jared Casper's avatar
Jared Casper committed
222
    if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
223
224
225
226
227
        tracker_filename = get_checkpoint_tracker_filename(args.save)
        with open(tracker_filename, 'w') as f:
            f.write(str(iteration))

    # Wait so everyone is done (not necessary)
Jared Casper's avatar
Jared Casper committed
228
229
    if torch.distributed.is_initialized():
        torch.distributed.barrier()
230

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
def _transpose_first_dim(t, num_splits, num_splits_first, model):
    input_shape = t.size()
    # We use a self_attention module but the values extracted aren't
    # specific to self attention so should work for cross attention as well
    while hasattr(model, 'module'):
        model = model.module
    attention_module = model.language_model.encoder.layers[0].self_attention
    hidden_size_per_attention_head = attention_module.hidden_size_per_attention_head
    num_attention_heads_per_partition = attention_module.num_attention_heads_per_partition
    if num_splits_first:
        """[num_splits * np * hn, h]
        -->(view) [num_splits, np, hn, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_splits, num_attention_heads_per_partition,
             hidden_size_per_attention_head) + input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(0, 1).contiguous()
    else:
        """[np * hn * num_splits, h]
        -->(view) [np, hn, num_splits, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_attention_heads_per_partition,
             hidden_size_per_attention_head, num_splits) +\
             input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(1, 2).contiguous()
    t = t.view(*input_shape)

    return t
268

Mostofa Patwary's avatar
Mostofa Patwary committed
269
270
271
272
273
def fix_query_key_value_ordering(model, checkpoint_version):
    """Fix up query/key/value matrix ordering if checkpoint
    version is smaller than 2.0
    """
    if checkpoint_version < 2.0:
274
275
276
        if isinstance(model, list):
            assert len(model)==1
            model = model[0]
Mostofa Patwary's avatar
Mostofa Patwary committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        for name, param in model.named_parameters():
            if name.endswith(('.query_key_value.weight', '.query_key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 3, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 3, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
            if name.endswith(('.key_value.weight', '.key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 2, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 2, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
        print_rank_0(" succesfully fixed query-key-values ordering for"
                    " checkpoint version {}".format(checkpoint_version))

299
def load_checkpoint(model, optimizer, lr_scheduler, load_arg='load', strict=True):
300
301
302
303
304
    """Load a model checkpoint and return the iteration.
    strict (bool): whether to strictly enforce that the keys in
        :attr:`state_dict` of the checkpoint match the names of
        parameters and buffers in model.
    """
305
    args = get_args()
306
    load_dir = getattr(args, load_arg)
307

308
    model = utils.unwrap_model(model)
309

310
    # Read the tracker file and set the iteration.
311
    tracker_filename = get_checkpoint_tracker_filename(load_dir)
312
313
314
315
316
317
318
319
320
321
322

    # If no tracker file, return iretation zero.
    if not os.path.isfile(tracker_filename):
        print_rank_0('WARNING: could not find the metadata file {} '.format(
            tracker_filename))
        print_rank_0('    will not load any checkpoints and will start from '
                     'random')
        return 0

    # Otherwise, read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
323
    iteration, release = read_metadata(tracker_filename)
324
325

    # Checkpoint.
326
    checkpoint_name = get_checkpoint_name(load_dir, iteration, release)
Jared Casper's avatar
Jared Casper committed
327
    print_rank_0(f' loading checkpoint from {args.load} at iteration {iteration}')
328
329
330
331
332

    # Load the checkpoint.
    try:
        state_dict = torch.load(checkpoint_name, map_location='cpu')
    except ModuleNotFoundError:
mohammad's avatar
mohammad committed
333
        from megatron.fp16_deprecated import loss_scaler
334
335
336
        # For backward compatibility.
        print_rank_0(' > deserializing using the old code structure ...')
        sys.modules['fp16.loss_scaler'] = sys.modules[
mohammad's avatar
mohammad committed
337
338
339
            'megatron.fp16_deprecated.loss_scaler']
        sys.modules['megatron.fp16.loss_scaler'] = sys.modules[
            'megatron.fp16_deprecated.loss_scaler']
340
341
        state_dict = torch.load(checkpoint_name, map_location='cpu')
        sys.modules.pop('fp16.loss_scaler', None)
mohammad's avatar
mohammad committed
342
        sys.modules.pop('megatron.fp16.loss_scaler', None)
343
    except BaseException as e:
344
        print_rank_0('could not load the checkpoint')
345
        print_rank_0(e)
346
347
        sys.exit()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
348
349
350
    # set checkpoint version
    set_checkpoint_version(state_dict.get('checkpoint_version', 0))

351
352
353
354
355
356
357
    # Set iteration.
    if args.finetune or release:
        iteration = 0
    else:
        try:
            iteration = state_dict['iteration']
        except KeyError:
Neel Kant's avatar
Neel Kant committed
358
            try:  # Backward compatible with older checkpoints
359
360
361
362
363
364
365
366
                iteration = state_dict['total_iters']
            except KeyError:
                print_rank_0('A metadata file exists but unable to load '
                             'iteration from checkpoint {}, exiting'.format(
                                 checkpoint_name))
                sys.exit()

    # Check arguments.
mohammad's avatar
mohammad committed
367
368
    assert args.consumed_train_samples == 0
    assert args.consumed_valid_samples == 0
369
370
371
    if 'args' in state_dict:
        checkpoint_args = state_dict['args']
        check_checkpoint_args(checkpoint_args)
372
373
        args.consumed_train_samples = getattr(checkpoint_args,
                                              'consumed_train_samples', 0)
mohammad's avatar
mohammad committed
374
        update_num_microbatches(consumed_samples=args.consumed_train_samples)
375
376
        args.consumed_valid_samples = getattr(checkpoint_args,
                                              'consumed_valid_samples', 0)
377
378
379
380
    else:
        print_rank_0('could not find arguments in the checkpoint ...')

    # Model.
381
382
383
384
385
386
    if len(model) == 1:
        model[0].load_state_dict(state_dict['model'], strict=strict)
    else:
        for i in range(len(model)):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
            model[i].load_state_dict(state_dict['model%d' % i], strict=strict)
387

Mostofa Patwary's avatar
Mostofa Patwary committed
388
389
390
391
    # Fix up query/key/value matrix ordering if needed
    checkpoint_version = get_checkpoint_version()
    print_rank_0(f' checkpoint version {checkpoint_version}')
    fix_query_key_value_ordering(model, checkpoint_version)
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

    # Optimizer.
    if not release and not args.finetune and not args.no_load_optim:
        try:
            if optimizer is not None:
                optimizer.load_state_dict(state_dict['optimizer'])
            if lr_scheduler is not None:
                lr_scheduler.load_state_dict(state_dict['lr_scheduler'])
        except KeyError:
            print_rank_0('Unable to load optimizer from checkpoint {}. '
                         'Specify --no-load-optim or --finetune to prevent '
                         'attempting to load the optimizer state, '
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

    # rng states.
    if not release and not args.finetune and not args.no_load_rng:
        try:
410
411
            if 'rng_state' in state_dict:
                # access rng_state for data parallel rank
412
413
414
415
                if args.data_parallel_random_init:
                    rng_state = state_dict['rng_state'][mpu.get_data_parallel_rank()]
                else:
                    rng_state = state_dict['rng_state'][0]
416
417
418
419
420
421
422
423
                random.setstate(rng_state['random_rng_state'])
                np.random.set_state(rng_state['np_rng_state'])
                torch.set_rng_state(rng_state['torch_rng_state'])
                torch.cuda.set_rng_state(rng_state['cuda_rng_state'])
                # Check for empty states array
                if not rng_state['rng_tracker_states']:
                    raise KeyError
                mpu.get_cuda_rng_tracker().set_states(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
424
                    rng_state['rng_tracker_states'])
425
426
427
428
429
430
431
432
433
434
            else:  # backward compatability
                random.setstate(state_dict['random_rng_state'])
                np.random.set_state(state_dict['np_rng_state'])
                torch.set_rng_state(state_dict['torch_rng_state'])
                torch.cuda.set_rng_state(state_dict['cuda_rng_state'])
                # Check for empty states array
                if not state_dict['rng_tracker_states']:
                    raise KeyError
                mpu.get_cuda_rng_tracker().set_states(
                    state_dict['rng_tracker_states'])
435
        except KeyError:
436
            print_rank_0('Unable to load rng state from checkpoint {}. '
437
                         'Specify --no-load-rng or --finetune to prevent '
438
                         'attempting to load the rng state, '
439
440
441
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

Jared Casper's avatar
Jared Casper committed
442
443
444
445
446
447
    # Some utilities want to load a checkpoint without distributed being initialized
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0(f'  successfully loaded checkpoint from {args.load} '
                 f'at iteration {iteration}')
448
449

    return iteration
Neel Kant's avatar
Neel Kant committed
450
451


452
453
454
455
456
457
def load_biencoder_checkpoint(model, only_query_model=False,
        only_context_model=False, custom_load_path=None):
    """
    selectively load retrieval models for indexing/retrieving 
    from saved checkpoints
    """
Neel Kant's avatar
Neel Kant committed
458
459
460

    args = get_args()

461
    model = utils.unwrap_model(model)
Neel Kant's avatar
Neel Kant committed
462

463
    load_path = custom_load_path if custom_load_path is not None else args.load
Neel Kant's avatar
Neel Kant committed
464
465
466
467
468
469
470
471
472
473
474

    tracker_filename = get_checkpoint_tracker_filename(load_path)
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    checkpoint_name = get_checkpoint_name(load_path, iteration, False)
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
475
    ret_state_dict = state_dict['model']
Neel Kant's avatar
Neel Kant committed
476
477

    if only_query_model:
478
        ret_state_dict.pop('context_model')
Mostofa Patwary's avatar
Mostofa Patwary committed
479
    if only_context_model:
480
        ret_state_dict.pop('query_model')
Neel Kant's avatar
Neel Kant committed
481

482
483
    assert len(model) == 1
    model[0].load_state_dict(ret_state_dict)
Neel Kant's avatar
Neel Kant committed
484
485
486
487
488
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

Neel Kant's avatar
Neel Kant committed
489
    return model
490