checkpointing.py 16.3 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Input/output checkpointing."""

import os
import random
import sys
import numpy as np

import torch

25
26
27
from megatron import (get_args,
                      mpu,
                      print_rank_0,
28
29
                      update_num_microbatches,
                      utils)
30

Vijay Korthikanti's avatar
Vijay Korthikanti committed
31
32
33
34
_CHECKPOINT_VERSION = None

def set_checkpoint_version(value):
    global _CHECKPOINT_VERSION
Jared Casper's avatar
Jared Casper committed
35
36
37
    if _CHECKPOINT_VERSION is not None:
        assert _CHECKPOINT_VERSION == value, \
            "checkpoint versions do not match"
Vijay Korthikanti's avatar
Vijay Korthikanti committed
38
39
40
41
42
    _CHECKPOINT_VERSION = value

def get_checkpoint_version():
    global _CHECKPOINT_VERSION
    return _CHECKPOINT_VERSION
43
44
45

def check_checkpoint_args(checkpoint_args):
    """Ensure fixed arguments for a model are the same for the input
46
    arguments and the one retrieved from checkpoint."""
47
48
    args = get_args()

49
50
51
52
53
    def _compare(arg_name, old_arg_name=None):
        if old_arg_name is not None:
            checkpoint_value = getattr(checkpoint_args, old_arg_name)
        else:
            checkpoint_value = getattr(checkpoint_args, arg_name)
54
55
56
57
58
59
60
61
62
        args_value = getattr(args, arg_name)
        error_message = '{} value from checkpoint ({}) is not equal to the ' \
                        'input argument value ({}).'.format(
                            arg_name, checkpoint_value, args_value)
        assert checkpoint_value == args_value, error_message

    _compare('num_layers')
    _compare('hidden_size')
    _compare('num_attention_heads')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
63
    if args.vocab_file:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
64
        _compare('max_position_embeddings')
65
66
67
        _compare('make_vocab_size_divisible_by')
        _compare('padded_vocab_size')
        _compare('tokenizer_type')
68
69
70
71
72
73
    if get_checkpoint_version() < 3.0:
        _compare('tensor_model_parallel_size',
                 old_arg_name='model_parallel_size')
    if get_checkpoint_version() >= 3.0:
        _compare('tensor_model_parallel_size')
        _compare('pipeline_model_parallel_size')
74
75
76
77
78
79
80
81
82
83


def ensure_directory_exists(filename):
    """Build filename's path if it does not already exists."""
    dirname = os.path.dirname(filename)
    if not os.path.exists(dirname):
        os.makedirs(dirname)


def get_checkpoint_name(checkpoints_path, iteration,
84
                        release=False):
85
86
87
88
89
    """A unified checkpoint name."""
    if release:
        directory = 'release'
    else:
        directory = 'iter_{:07d}'.format(iteration)
90
91
    # Use both the tensor and pipeline MP rank.
    if mpu.get_pipeline_model_parallel_world_size() == 1:
92
93
        return os.path.join(checkpoints_path, directory,
                            'mp_rank_{:02d}'.format(
94
                                mpu.get_tensor_model_parallel_rank()),
95
                            'model_optim_rng.pt')
96
    return os.path.join(checkpoints_path, directory,
97
                        'mp_rank_{:02d}_{:03d}'.format(
98
99
                            mpu.get_tensor_model_parallel_rank(),
                            mpu.get_pipeline_model_parallel_rank()),
100
101
102
103
104
105
106
107
108
109
110
111
112
113
                        'model_optim_rng.pt')


def get_checkpoint_tracker_filename(checkpoints_path):
    """Tracker file rescords the latest chckpoint during
    training to restart from."""
    return os.path.join(checkpoints_path, 'latest_checkpointed_iteration.txt')


def save_checkpoint(iteration, model, optimizer, lr_scheduler):
    """Save a model checkpoint."""
    args = get_args()

    # Only rank zero of the data parallel writes to the disk.
114
    model = utils.unwrap_model(model)
115

Jared Casper's avatar
Jared Casper committed
116
117
    print_rank_0('saving checkpoint at iteration {:7d} to {}'.format(
        iteration, args.save))
118

Jared Casper's avatar
Jared Casper committed
119
    if not torch.distributed.is_initialized() or mpu.get_data_parallel_rank() == 0:
120
121
122
123

        # Arguments, iteration, and model.
        state_dict = {}
        state_dict['args'] = args
124
        state_dict['checkpoint_version'] = 3.0
125
        state_dict['iteration'] = iteration
126
127
128
129
130
131
        if len(model) == 1:
            state_dict['model'] = model[0].state_dict_for_save_checkpoint()
        else:
            for i in range(len(model)):
                mpu.set_virtual_pipeline_model_parallel_rank(i)
                state_dict['model%d' % i] = model[i].state_dict_for_save_checkpoint()
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

        # Optimizer stuff.
        if not args.no_save_optim:
            if optimizer is not None:
                state_dict['optimizer'] = optimizer.state_dict()
            if lr_scheduler is not None:
                state_dict['lr_scheduler'] = lr_scheduler.state_dict()

        # RNG states.
        if not args.no_save_rng:
            state_dict['random_rng_state'] = random.getstate()
            state_dict['np_rng_state'] = np.random.get_state()
            state_dict['torch_rng_state'] = torch.get_rng_state()
            state_dict['cuda_rng_state'] = torch.cuda.get_rng_state()
            state_dict['rng_tracker_states'] \
                = mpu.get_cuda_rng_tracker().get_states()

        # Save.
        checkpoint_name = get_checkpoint_name(args.save, iteration)
        ensure_directory_exists(checkpoint_name)
        torch.save(state_dict, checkpoint_name)

    # Wait so everyone is done (necessary)
Jared Casper's avatar
Jared Casper committed
155
156
157
158
159
160
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0('  successfully saved checkpoint at iteration {:7d} to {}'.format(
        iteration, args.save))

161
    # And update the latest iteration
Jared Casper's avatar
Jared Casper committed
162
    if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
163
164
165
166
167
        tracker_filename = get_checkpoint_tracker_filename(args.save)
        with open(tracker_filename, 'w') as f:
            f.write(str(iteration))

    # Wait so everyone is done (not necessary)
Jared Casper's avatar
Jared Casper committed
168
169
    if torch.distributed.is_initialized():
        torch.distributed.barrier()
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
def _transpose_first_dim(t, num_splits, num_splits_first, model):
    input_shape = t.size()
    # We use a self_attention module but the values extracted aren't
    # specific to self attention so should work for cross attention as well
    while hasattr(model, 'module'):
        model = model.module
    attention_module = model.language_model.encoder.layers[0].self_attention
    hidden_size_per_attention_head = attention_module.hidden_size_per_attention_head
    num_attention_heads_per_partition = attention_module.num_attention_heads_per_partition
    if num_splits_first:
        """[num_splits * np * hn, h]
        -->(view) [num_splits, np, hn, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_splits, num_attention_heads_per_partition,
             hidden_size_per_attention_head) + input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(0, 1).contiguous()
    else:
        """[np * hn * num_splits, h]
        -->(view) [np, hn, num_splits, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_attention_heads_per_partition,
             hidden_size_per_attention_head, num_splits) +\
             input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(1, 2).contiguous()
    t = t.view(*input_shape)

    return t
208

Mostofa Patwary's avatar
Mostofa Patwary committed
209
210
211
212
213
def fix_query_key_value_ordering(model, checkpoint_version):
    """Fix up query/key/value matrix ordering if checkpoint
    version is smaller than 2.0
    """
    if checkpoint_version < 2.0:
214
215
216
        if isinstance(model, list):
            assert len(model)==1
            model = model[0]
Mostofa Patwary's avatar
Mostofa Patwary committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        for name, param in model.named_parameters():
            if name.endswith(('.query_key_value.weight', '.query_key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 3, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 3, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
            if name.endswith(('.key_value.weight', '.key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 2, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 2, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
        print_rank_0(" succesfully fixed query-key-values ordering for"
                    " checkpoint version {}".format(checkpoint_version))

239
def load_checkpoint(model, optimizer, lr_scheduler, load_arg='load', strict=True):
240
241
242
243
244
    """Load a model checkpoint and return the iteration.
    strict (bool): whether to strictly enforce that the keys in
        :attr:`state_dict` of the checkpoint match the names of
        parameters and buffers in model.
    """
245
    args = get_args()
246
    load_dir = getattr(args, load_arg)
247

248
    model = utils.unwrap_model(model)
249

250
    # Read the tracker file and set the iteration.
251
    tracker_filename = get_checkpoint_tracker_filename(load_dir)
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

    # If no tracker file, return iretation zero.
    if not os.path.isfile(tracker_filename):
        print_rank_0('WARNING: could not find the metadata file {} '.format(
            tracker_filename))
        print_rank_0('    will not load any checkpoints and will start from '
                     'random')
        return 0

    # Otherwise, read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
    iteration = 0
    release = False
    with open(tracker_filename, 'r') as f:
        metastring = f.read().strip()
        try:
            iteration = int(metastring)
        except ValueError:
            release = metastring == 'release'
            if not release:
                print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format(
                    tracker_filename))
                sys.exit()

    assert iteration > 0 or release, 'error parsing metadata file {}'.format(
        tracker_filename)

    # Checkpoint.
280
    checkpoint_name = get_checkpoint_name(load_dir, iteration, release)
Jared Casper's avatar
Jared Casper committed
281
    print_rank_0(f' loading checkpoint from {args.load} at iteration {iteration}')
282
283
284
285
286

    # Load the checkpoint.
    try:
        state_dict = torch.load(checkpoint_name, map_location='cpu')
    except ModuleNotFoundError:
mohammad's avatar
mohammad committed
287
        from megatron.fp16_deprecated import loss_scaler
288
289
290
        # For backward compatibility.
        print_rank_0(' > deserializing using the old code structure ...')
        sys.modules['fp16.loss_scaler'] = sys.modules[
mohammad's avatar
mohammad committed
291
292
293
            'megatron.fp16_deprecated.loss_scaler']
        sys.modules['megatron.fp16.loss_scaler'] = sys.modules[
            'megatron.fp16_deprecated.loss_scaler']
294
295
        state_dict = torch.load(checkpoint_name, map_location='cpu')
        sys.modules.pop('fp16.loss_scaler', None)
mohammad's avatar
mohammad committed
296
        sys.modules.pop('megatron.fp16.loss_scaler', None)
297
    except BaseException as e:
298
        print_rank_0('could not load the checkpoint')
299
        print_rank_0(e)
300
301
        sys.exit()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
302
303
304
    # set checkpoint version
    set_checkpoint_version(state_dict.get('checkpoint_version', 0))

305
306
307
308
309
310
311
    # Set iteration.
    if args.finetune or release:
        iteration = 0
    else:
        try:
            iteration = state_dict['iteration']
        except KeyError:
Neel Kant's avatar
Neel Kant committed
312
            try:  # Backward compatible with older checkpoints
313
314
315
316
317
318
319
320
                iteration = state_dict['total_iters']
            except KeyError:
                print_rank_0('A metadata file exists but unable to load '
                             'iteration from checkpoint {}, exiting'.format(
                                 checkpoint_name))
                sys.exit()

    # Check arguments.
mohammad's avatar
mohammad committed
321
322
    assert args.consumed_train_samples == 0
    assert args.consumed_valid_samples == 0
323
324
325
    if 'args' in state_dict:
        checkpoint_args = state_dict['args']
        check_checkpoint_args(checkpoint_args)
326
327
        args.consumed_train_samples = getattr(checkpoint_args,
                                              'consumed_train_samples', 0)
mohammad's avatar
mohammad committed
328
        update_num_microbatches(consumed_samples=args.consumed_train_samples)
329
330
        args.consumed_valid_samples = getattr(checkpoint_args,
                                              'consumed_valid_samples', 0)
331
332
333
334
    else:
        print_rank_0('could not find arguments in the checkpoint ...')

    # Model.
335
336
337
338
339
340
    if len(model) == 1:
        model[0].load_state_dict(state_dict['model'], strict=strict)
    else:
        for i in range(len(model)):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
            model[i].load_state_dict(state_dict['model%d' % i], strict=strict)
341

Mostofa Patwary's avatar
Mostofa Patwary committed
342
343
344
345
    # Fix up query/key/value matrix ordering if needed
    checkpoint_version = get_checkpoint_version()
    print_rank_0(f' checkpoint version {checkpoint_version}')
    fix_query_key_value_ordering(model, checkpoint_version)
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

    # Optimizer.
    if not release and not args.finetune and not args.no_load_optim:
        try:
            if optimizer is not None:
                optimizer.load_state_dict(state_dict['optimizer'])
            if lr_scheduler is not None:
                lr_scheduler.load_state_dict(state_dict['lr_scheduler'])
        except KeyError:
            print_rank_0('Unable to load optimizer from checkpoint {}. '
                         'Specify --no-load-optim or --finetune to prevent '
                         'attempting to load the optimizer state, '
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

    # rng states.
    if not release and not args.finetune and not args.no_load_rng:
        try:
            random.setstate(state_dict['random_rng_state'])
            np.random.set_state(state_dict['np_rng_state'])
            torch.set_rng_state(state_dict['torch_rng_state'])
            torch.cuda.set_rng_state(state_dict['cuda_rng_state'])
368
369
370
            # Check for empty states array
            if not state_dict['rng_tracker_states']:
                raise KeyError
371
372
373
            mpu.get_cuda_rng_tracker().set_states(
                state_dict['rng_tracker_states'])
        except KeyError:
374
            print_rank_0('Unable to load rng state from checkpoint {}. '
375
                         'Specify --no-load-rng or --finetune to prevent '
376
                         'attempting to load the rng state, '
377
378
379
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

Jared Casper's avatar
Jared Casper committed
380
381
382
383
384
385
    # Some utilities want to load a checkpoint without distributed being initialized
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0(f'  successfully loaded checkpoint from {args.load} '
                 f'at iteration {iteration}')
386
387

    return iteration
Neel Kant's avatar
Neel Kant committed
388
389


390
391
392
393
394
395
def load_biencoder_checkpoint(model, only_query_model=False,
        only_context_model=False, custom_load_path=None):
    """
    selectively load retrieval models for indexing/retrieving 
    from saved checkpoints
    """
Neel Kant's avatar
Neel Kant committed
396
397
398

    args = get_args()

399
    model = utils.unwrap_model(model)
Neel Kant's avatar
Neel Kant committed
400

401
    load_path = custom_load_path if custom_load_path is not None else args.load
Neel Kant's avatar
Neel Kant committed
402
403
404
405
406
407
408
409
410
411
412

    tracker_filename = get_checkpoint_tracker_filename(load_path)
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    checkpoint_name = get_checkpoint_name(load_path, iteration, False)
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
413
    ret_state_dict = state_dict['model']
Neel Kant's avatar
Neel Kant committed
414
415

    if only_query_model:
416
        ret_state_dict.pop('context_model')
Mostofa Patwary's avatar
Mostofa Patwary committed
417
    if only_context_model:
418
        ret_state_dict.pop('query_model')
Neel Kant's avatar
Neel Kant committed
419

420
421
    assert len(model) == 1
    model[0].load_state_dict(ret_state_dict)
Neel Kant's avatar
Neel Kant committed
422
423
424
425
426
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

Neel Kant's avatar
Neel Kant committed
427
    return model
428