checkpointing.py 11.3 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Input/output checkpointing."""

import os
import random
import sys
import numpy as np

import torch
Neel Kant's avatar
Neel Kant committed
24
from torch.nn.parallel import DistributedDataParallel as torchDDP
25

Neel Kant's avatar
Neel Kant committed
26
from megatron import mpu, get_args
27
from megatron import get_args
Neel Kant's avatar
Neel Kant committed
28
from megatron import print_rank_0
29

Vijay Korthikanti's avatar
Vijay Korthikanti committed
30
31
32
33
_CHECKPOINT_VERSION = None

def set_checkpoint_version(value):
    global _CHECKPOINT_VERSION
Vijay Korthikanti's avatar
Vijay Korthikanti committed
34
35
    assert _CHECKPOINT_VERSION is None, \
        "checkpoint version already set"
Vijay Korthikanti's avatar
Vijay Korthikanti committed
36
37
38
39
40
    _CHECKPOINT_VERSION = value

def get_checkpoint_version():
    global _CHECKPOINT_VERSION
    return _CHECKPOINT_VERSION
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

def check_checkpoint_args(checkpoint_args):
    """Ensure fixed arguments for a model are the same for the input
    arguments and the one retreived frm checkpoint."""
    args = get_args()

    def _compare(arg_name):
        checkpoint_value = getattr(checkpoint_args, arg_name)
        args_value = getattr(args, arg_name)
        error_message = '{} value from checkpoint ({}) is not equal to the ' \
                        'input argument value ({}).'.format(
                            arg_name, checkpoint_value, args_value)
        assert checkpoint_value == args_value, error_message

    _compare('num_layers')
    _compare('hidden_size')
    _compare('num_attention_heads')
58
    _compare('max_position_embeddings')
59
60
61
    _compare('make_vocab_size_divisible_by')
    _compare('padded_vocab_size')
    _compare('tokenizer_type')
62
    _compare('intra_layer_model_parallel_size')
63
64
65
66
67
68
69
70
71
72


def ensure_directory_exists(filename):
    """Build filename's path if it does not already exists."""
    dirname = os.path.dirname(filename)
    if not os.path.exists(dirname):
        os.makedirs(dirname)


def get_checkpoint_name(checkpoints_path, iteration,
73
                        release=False):
74
75
76
77
78
    """A unified checkpoint name."""
    if release:
        directory = 'release'
    else:
        directory = 'iter_{:07d}'.format(iteration)
79
80
81
82
83
84
    # Use both the intra-layer and inter-layer MP rank.
    if mpu.get_inter_layer_model_parallel_world_size() == 1:
        return os.path.join(checkpoints_path, directory,
                            'mp_rank_{:02d}'.format(
                                mpu.get_intra_layer_model_parallel_rank()),
                            'model_optim_rng.pt')
85
    return os.path.join(checkpoints_path, directory,
86
87
88
                        'mp_rank_{:02d}_{:03d}'.format(
                            mpu.get_intra_layer_model_parallel_rank(),
                            mpu.get_inter_layer_model_parallel_rank()),
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
                        'model_optim_rng.pt')


def get_checkpoint_tracker_filename(checkpoints_path):
    """Tracker file rescords the latest chckpoint during
    training to restart from."""
    return os.path.join(checkpoints_path, 'latest_checkpointed_iteration.txt')


def save_checkpoint(iteration, model, optimizer, lr_scheduler):
    """Save a model checkpoint."""
    args = get_args()

    # Only rank zero of the data parallel writes to the disk.
    if isinstance(model, torchDDP):
        model = model.module
    if mpu.get_data_parallel_rank() == 0:

        # Arguments, iteration, and model.
        state_dict = {}
        state_dict['args'] = args
110
        state_dict['checkpoint_version'] = 2.0
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        state_dict['iteration'] = iteration
        state_dict['model'] = model.state_dict_for_save_checkpoint()

        # Optimizer stuff.
        if not args.no_save_optim:
            if optimizer is not None:
                state_dict['optimizer'] = optimizer.state_dict()
            if lr_scheduler is not None:
                state_dict['lr_scheduler'] = lr_scheduler.state_dict()

        # RNG states.
        if not args.no_save_rng:
            state_dict['random_rng_state'] = random.getstate()
            state_dict['np_rng_state'] = np.random.get_state()
            state_dict['torch_rng_state'] = torch.get_rng_state()
            state_dict['cuda_rng_state'] = torch.cuda.get_rng_state()
            state_dict['rng_tracker_states'] \
                = mpu.get_cuda_rng_tracker().get_states()

        # Save.
        checkpoint_name = get_checkpoint_name(args.save, iteration)
        print('global rank {} is saving checkpoint at iteration {:7d} to {}'.
              format(torch.distributed.get_rank(), iteration, checkpoint_name))
        ensure_directory_exists(checkpoint_name)
        torch.save(state_dict, checkpoint_name)
        print('  successfully saved {}'.format(checkpoint_name))

    # Wait so everyone is done (necessary)
139
    torch.distributed.barrier()
140
141
142
143
144
145
    # And update the latest iteration
    if torch.distributed.get_rank() == 0:
        tracker_filename = get_checkpoint_tracker_filename(args.save)
        with open(tracker_filename, 'w') as f:
            f.write(str(iteration))
    # Wait so everyone is done (not necessary)
146
    torch.distributed.barrier()
147
148


149
def load_checkpoint(model, optimizer, lr_scheduler, load_arg='load'):
150
151
    """Load a model checkpoint and return the iteration."""
    args = get_args()
152
    load_dir = getattr(args, load_arg)
153
154
155
156

    if isinstance(model, torchDDP):
        model = model.module
    # Read the tracker file and set the iteration.
157
    tracker_filename = get_checkpoint_tracker_filename(load_dir)
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

    # If no tracker file, return iretation zero.
    if not os.path.isfile(tracker_filename):
        print_rank_0('WARNING: could not find the metadata file {} '.format(
            tracker_filename))
        print_rank_0('    will not load any checkpoints and will start from '
                     'random')
        return 0

    # Otherwise, read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
    iteration = 0
    release = False
    with open(tracker_filename, 'r') as f:
        metastring = f.read().strip()
        try:
            iteration = int(metastring)
        except ValueError:
            release = metastring == 'release'
            if not release:
                print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format(
                    tracker_filename))
                sys.exit()

    assert iteration > 0 or release, 'error parsing metadata file {}'.format(
        tracker_filename)

    # Checkpoint.
186
    checkpoint_name = get_checkpoint_name(load_dir, iteration, release)
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    # Load the checkpoint.
    try:
        state_dict = torch.load(checkpoint_name, map_location='cpu')
    except ModuleNotFoundError:
        # For backward compatibility.
        print_rank_0(' > deserializing using the old code structure ...')
        sys.modules['fp16.loss_scaler'] = sys.modules[
            'megatron.fp16.loss_scaler']
        state_dict = torch.load(checkpoint_name, map_location='cpu')
        sys.modules.pop('fp16.loss_scaler', None)
Neel Kant's avatar
Neel Kant committed
201
    except BaseException:
202
203
204
        print_rank_0('could not load the checkpoint')
        sys.exit()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
205
206
207
    # set checkpoint version
    set_checkpoint_version(state_dict.get('checkpoint_version', 0))

208
209
210
211
212
213
214
    # Set iteration.
    if args.finetune or release:
        iteration = 0
    else:
        try:
            iteration = state_dict['iteration']
        except KeyError:
Neel Kant's avatar
Neel Kant committed
215
            try:  # Backward compatible with older checkpoints
216
217
218
219
220
221
                iteration = state_dict['total_iters']
            except KeyError:
                print_rank_0('A metadata file exists but unable to load '
                             'iteration from checkpoint {}, exiting'.format(
                                 checkpoint_name))
                sys.exit()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
222
 
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

    # Check arguments.
    if 'args' in state_dict:
        checkpoint_args = state_dict['args']
        check_checkpoint_args(checkpoint_args)
    else:
        print_rank_0('could not find arguments in the checkpoint ...')

    # Model.
    model.load_state_dict(state_dict['model'])

    # Optimizer.
    if not release and not args.finetune and not args.no_load_optim:
        try:
            if optimizer is not None:
                optimizer.load_state_dict(state_dict['optimizer'])
            if lr_scheduler is not None:
                lr_scheduler.load_state_dict(state_dict['lr_scheduler'])
        except KeyError:
            print_rank_0('Unable to load optimizer from checkpoint {}. '
                         'Specify --no-load-optim or --finetune to prevent '
                         'attempting to load the optimizer state, '
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

    # rng states.
    if not release and not args.finetune and not args.no_load_rng:
        try:
            random.setstate(state_dict['random_rng_state'])
            np.random.set_state(state_dict['np_rng_state'])
            torch.set_rng_state(state_dict['torch_rng_state'])
            torch.cuda.set_rng_state(state_dict['cuda_rng_state'])
            mpu.get_cuda_rng_tracker().set_states(
                state_dict['rng_tracker_states'])
        except KeyError:
            print_rank_0('Unable to load optimizer from checkpoint {}. '
                         'Specify --no-load-rng or --finetune to prevent '
                         'attempting to load the optimizer state, '
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

264
    torch.distributed.barrier()
265
266
267
268
    if mpu.get_data_parallel_rank() == 0:
        print('  successfully loaded {}'.format(checkpoint_name))

    return iteration
Neel Kant's avatar
Neel Kant committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307


def load_ict_checkpoint(model, only_query_model=False, only_block_model=False, from_realm_chkpt=False):
    """selectively load ICT models for indexing/retrieving from ICT or REALM checkpoints"""

    args = get_args()

    if isinstance(model, torchDDP):
        model = model.module

    load_path = args.load if from_realm_chkpt else args.ict_load

    tracker_filename = get_checkpoint_tracker_filename(load_path)
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    # assert iteration > 0
    checkpoint_name = get_checkpoint_name(load_path, iteration, False)
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
    ict_state_dict = state_dict['model']
    if from_realm_chkpt and mpu.get_data_parallel_rank() == 0:
        print(" loading ICT state dict from REALM", flush=True)
        ict_state_dict = ict_state_dict['retriever']['ict_model']

    if only_query_model:
        ict_state_dict.pop('context_model')
    if only_block_model:
        ict_state_dict.pop('question_model')

    model.load_state_dict(ict_state_dict)
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

Neel Kant's avatar
Neel Kant committed
308
    return model