checkpointing.py 21 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Input/output checkpointing."""

import os
import random
import sys
import numpy as np

import torch

25
26
27
from megatron import (get_args,
                      mpu,
                      print_rank_0,
28
29
                      update_num_microbatches,
                      utils)
30

Vijay Korthikanti's avatar
Vijay Korthikanti committed
31
32
33
34
_CHECKPOINT_VERSION = None

def set_checkpoint_version(value):
    global _CHECKPOINT_VERSION
Jared Casper's avatar
Jared Casper committed
35
36
37
    if _CHECKPOINT_VERSION is not None:
        assert _CHECKPOINT_VERSION == value, \
            "checkpoint versions do not match"
Vijay Korthikanti's avatar
Vijay Korthikanti committed
38
39
40
41
42
    _CHECKPOINT_VERSION = value

def get_checkpoint_version():
    global _CHECKPOINT_VERSION
    return _CHECKPOINT_VERSION
43
44
45

def check_checkpoint_args(checkpoint_args):
    """Ensure fixed arguments for a model are the same for the input
46
    arguments and the one retrieved from checkpoint."""
47
48
    args = get_args()

49
50
51
52
53
    def _compare(arg_name, old_arg_name=None):
        if old_arg_name is not None:
            checkpoint_value = getattr(checkpoint_args, old_arg_name)
        else:
            checkpoint_value = getattr(checkpoint_args, arg_name)
54
55
56
57
58
59
60
61
62
        args_value = getattr(args, arg_name)
        error_message = '{} value from checkpoint ({}) is not equal to the ' \
                        'input argument value ({}).'.format(
                            arg_name, checkpoint_value, args_value)
        assert checkpoint_value == args_value, error_message

    _compare('num_layers')
    _compare('hidden_size')
    _compare('num_attention_heads')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
63
    if args.vocab_file:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
64
        _compare('max_position_embeddings')
65
66
67
        _compare('make_vocab_size_divisible_by')
        _compare('padded_vocab_size')
        _compare('tokenizer_type')
68
69
70
71
72
73
    if get_checkpoint_version() < 3.0:
        _compare('tensor_model_parallel_size',
                 old_arg_name='model_parallel_size')
    if get_checkpoint_version() >= 3.0:
        _compare('tensor_model_parallel_size')
        _compare('pipeline_model_parallel_size')
74
75
76
77
78
79
80
81
82


def ensure_directory_exists(filename):
    """Build filename's path if it does not already exists."""
    dirname = os.path.dirname(filename)
    if not os.path.exists(dirname):
        os.makedirs(dirname)


83
84
def get_checkpoint_name(checkpoints_path, iteration, release=False,
                        pipeline_parallel_size=None, tensor_rank=None, pipeline_rank=None):
85
86
87
88
89
    """A unified checkpoint name."""
    if release:
        directory = 'release'
    else:
        directory = 'iter_{:07d}'.format(iteration)
90
    # Use both the tensor and pipeline MP rank.
91
    if pipeline_parallel_size is None:
92
        pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
93
94
95
96
97
    if tensor_rank is None:
        tensor_rank = mpu.get_tensor_model_parallel_rank()
    if pipeline_rank is None:
        pipeline_rank = mpu.get_pipeline_model_parallel_rank()
    if pipeline_parallel_size == 1:
98
        return os.path.join(checkpoints_path, directory,
99
                            f'mp_rank_{tensor_rank:02d}',
100
                            'model_optim_rng.pt')
101
    return os.path.join(checkpoints_path, directory,
102
                        f'mp_rank_{tensor_rank:02d}_{pipeline_rank:03d}',
103
104
                        'model_optim_rng.pt')

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def find_checkpoint_rank_0(checkpoints_path, iteration, release=False):
    """Finds the checkpoint for rank 0 without knowing if we are using
    pipeline parallelism or not.

    Since the checkpoint naming scheme changes if pipeline parallelism
    is present, we need to look for both naming schemes if we don't
    know if the checkpoint has pipeline parallelism.

    """

    # Look for checkpoint with no pipelining
    filename = get_checkpoint_name(checkpoints_path, iteration, release,
                                   pipeline_parallel_size=1,
                                   tensor_rank=0, pipeline_rank=0)
    if os.path.isfile(filename):
        return filename

    # Look for checkpoint with pipelining
    filename = get_checkpoint_name(checkpoints_path, iteration, release,
                                   pipeline_parallel_size=2,
                                   tensor_rank=0, pipeline_rank=0)
    if os.path.isfile(filename):
        return filename

    return None
130
131

def get_checkpoint_tracker_filename(checkpoints_path):
132

133
134
135
136
137
    """Tracker file rescords the latest chckpoint during
    training to restart from."""
    return os.path.join(checkpoints_path, 'latest_checkpointed_iteration.txt')


138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
def read_metadata(tracker_filename):
    # Read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
    iteration = 0
    release = False
    with open(tracker_filename, 'r') as f:
        metastring = f.read().strip()
        try:
            iteration = int(metastring)
        except ValueError:
            release = metastring == 'release'
            if not release:
                print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format(
                    tracker_filename))
                sys.exit()
    assert iteration > 0 or release, 'error parsing metadata file {}'.format(
        tracker_filename)

156
    # Get the max iteration retrieved across the ranks.
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    if torch.distributed.is_initialized():
        iters_cuda = torch.cuda.LongTensor([iteration])
        torch.distributed.all_reduce(iters_cuda, op=torch.distributed.ReduceOp.MAX)
        max_iter = iters_cuda[0].item()

        # We should now have all the same iteration.
        # If not, print a warning and chose the maximum
        # iteration across all ranks.
        if iteration != max_iter:
            print('WARNING: on rank {} found iteration {} in the '
                  'metadata while max iteration across the ranks '
                  'is {}, replacing it with max iteration.'.format(
                      rank, iteration, max_iter), flush=True)
    else:
        # When loading a checkpoint outside of training (for example,
        # when editing it), we might not have torch distributed
        # initialized, in this case, just assume we have the latest
        max_iter = iteration
175
176
177
    return max_iter, release


178
179
180
181
182
def save_checkpoint(iteration, model, optimizer, lr_scheduler):
    """Save a model checkpoint."""
    args = get_args()

    # Only rank zero of the data parallel writes to the disk.
183
    model = utils.unwrap_model(model)
184

Jared Casper's avatar
Jared Casper committed
185
186
    print_rank_0('saving checkpoint at iteration {:7d} to {}'.format(
        iteration, args.save))
187

Jared Casper's avatar
Jared Casper committed
188
    if not torch.distributed.is_initialized() or mpu.get_data_parallel_rank() == 0:
189
190
191
192

        # Arguments, iteration, and model.
        state_dict = {}
        state_dict['args'] = args
193
        state_dict['checkpoint_version'] = 3.0
194
        state_dict['iteration'] = iteration
195
196
197
198
199
200
        if len(model) == 1:
            state_dict['model'] = model[0].state_dict_for_save_checkpoint()
        else:
            for i in range(len(model)):
                mpu.set_virtual_pipeline_model_parallel_rank(i)
                state_dict['model%d' % i] = model[i].state_dict_for_save_checkpoint()
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

        # Optimizer stuff.
        if not args.no_save_optim:
            if optimizer is not None:
                state_dict['optimizer'] = optimizer.state_dict()
            if lr_scheduler is not None:
                state_dict['lr_scheduler'] = lr_scheduler.state_dict()

        # RNG states.
        if not args.no_save_rng:
            state_dict['random_rng_state'] = random.getstate()
            state_dict['np_rng_state'] = np.random.get_state()
            state_dict['torch_rng_state'] = torch.get_rng_state()
            state_dict['cuda_rng_state'] = torch.cuda.get_rng_state()
            state_dict['rng_tracker_states'] \
                = mpu.get_cuda_rng_tracker().get_states()

        # Save.
        checkpoint_name = get_checkpoint_name(args.save, iteration)
        ensure_directory_exists(checkpoint_name)
        torch.save(state_dict, checkpoint_name)

    # Wait so everyone is done (necessary)
Jared Casper's avatar
Jared Casper committed
224
225
226
227
228
229
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0('  successfully saved checkpoint at iteration {:7d} to {}'.format(
        iteration, args.save))

230
    # And update the latest iteration
Jared Casper's avatar
Jared Casper committed
231
    if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
232
233
234
235
236
        tracker_filename = get_checkpoint_tracker_filename(args.save)
        with open(tracker_filename, 'w') as f:
            f.write(str(iteration))

    # Wait so everyone is done (not necessary)
Jared Casper's avatar
Jared Casper committed
237
238
    if torch.distributed.is_initialized():
        torch.distributed.barrier()
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
def _transpose_first_dim(t, num_splits, num_splits_first, model):
    input_shape = t.size()
    # We use a self_attention module but the values extracted aren't
    # specific to self attention so should work for cross attention as well
    while hasattr(model, 'module'):
        model = model.module
    attention_module = model.language_model.encoder.layers[0].self_attention
    hidden_size_per_attention_head = attention_module.hidden_size_per_attention_head
    num_attention_heads_per_partition = attention_module.num_attention_heads_per_partition
    if num_splits_first:
        """[num_splits * np * hn, h]
        -->(view) [num_splits, np, hn, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_splits, num_attention_heads_per_partition,
             hidden_size_per_attention_head) + input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(0, 1).contiguous()
    else:
        """[np * hn * num_splits, h]
        -->(view) [np, hn, num_splits, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_attention_heads_per_partition,
             hidden_size_per_attention_head, num_splits) +\
             input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(1, 2).contiguous()
    t = t.view(*input_shape)

    return t
277

Mostofa Patwary's avatar
Mostofa Patwary committed
278
279
280
281
282
def fix_query_key_value_ordering(model, checkpoint_version):
    """Fix up query/key/value matrix ordering if checkpoint
    version is smaller than 2.0
    """
    if checkpoint_version < 2.0:
283
284
285
        if isinstance(model, list):
            assert len(model)==1
            model = model[0]
Mostofa Patwary's avatar
Mostofa Patwary committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        for name, param in model.named_parameters():
            if name.endswith(('.query_key_value.weight', '.query_key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 3, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 3, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
            if name.endswith(('.key_value.weight', '.key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 2, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 2, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
        print_rank_0(" succesfully fixed query-key-values ordering for"
                    " checkpoint version {}".format(checkpoint_version))

308
309
310
311
def _load_base_checkpoint(load_dir, rank0=False):
    """ Load the base state_dict from the given directory

    If rank0 is true, just loads rank 0 checkpoint, ignoring arguments.
312
    """
313

314

315
    # Read the tracker file and set the iteration.
316
    tracker_filename = get_checkpoint_tracker_filename(load_dir)
317

318
    # If no tracker file, return nothing
319
    if not os.path.isfile(tracker_filename):
320
321
322
323
324
325
        if not rank0:
            print_rank_0('WARNING: could not find the metadata file {} '.format(
                tracker_filename))
            print_rank_0('    will not load any checkpoints and will start from '
                         'random')
        return None, False
326
327
328

    # Otherwise, read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
329
    iteration, release = read_metadata(tracker_filename)
330
331

    # Checkpoint.
332
333
334
335
336
337
338
339
    if rank0:
        checkpoint_name = find_checkpoint_rank_0(load_dir, iteration, release)
    else:
        checkpoint_name = get_checkpoint_name(load_dir, iteration, release)
        if release:
            print_rank_0(f' loading release checkpoint from {load_dir}')
        else:
            print_rank_0(f' loading checkpoint from {load_dir} at iteration {iteration}')
340
341
342
343
344

    # Load the checkpoint.
    try:
        state_dict = torch.load(checkpoint_name, map_location='cpu')
    except ModuleNotFoundError:
mohammad's avatar
mohammad committed
345
        from megatron.fp16_deprecated import loss_scaler
346
        # For backward compatibility.
347
348
        if not rank0:
            print_rank_0(' > deserializing using the old code structure ...')
349
        sys.modules['fp16.loss_scaler'] = sys.modules[
mohammad's avatar
mohammad committed
350
351
352
            'megatron.fp16_deprecated.loss_scaler']
        sys.modules['megatron.fp16.loss_scaler'] = sys.modules[
            'megatron.fp16_deprecated.loss_scaler']
353
354
        state_dict = torch.load(checkpoint_name, map_location='cpu')
        sys.modules.pop('fp16.loss_scaler', None)
mohammad's avatar
mohammad committed
355
        sys.modules.pop('megatron.fp16.loss_scaler', None)
356
    except BaseException as e:
357
        print_rank_0('could not load the checkpoint')
358
        print_rank_0(e)
359
360
        sys.exit()

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    return state_dict, release

def load_args_from_checkpoint(args, load_arg='load'):
    """Set any arguments that are not currently set from the checkpoint
    specified in the arguments.

    Returns the same args NameSpace with the new values added/updated.

    If no checkpoint is specified in args, or if the checkpoint is
    there but invalid, the arguments will not be modified

    """
    load_dir = getattr(args, load_arg)

    if load_dir is None:
        return args

    state_dict, release = _load_base_checkpoint(load_dir, True)

    if not state_dict:
        return args

    if 'args' not in state_dict:
        return args

    checkpoint_args = state_dict['args']
    checkpoint_version = state_dict.get('checkpoint_version', 0)
    args.iteration = state_dict['iteration']

    def _set_arg(arg_name, old_arg_name=None, force=False):
        if not force and getattr(args, arg_name, None) is not None:
            return

        if old_arg_name is not None:
            checkpoint_value = getattr(checkpoint_args, old_arg_name, None)
        else:
            checkpoint_value = getattr(checkpoint_args, arg_name, None)

        if checkpoint_value is not None:
Jared Casper's avatar
Jared Casper committed
400
            print(f"Setting {arg_name} to {checkpoint_value} from checkpoint")
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
            setattr(args, arg_name, checkpoint_value)

    _set_arg('num_layers')
    _set_arg('hidden_size')
    _set_arg('ffn_hidden_size')
    _set_arg('seq_length')
    _set_arg('num_attention_heads')
    _set_arg('kv_channels')
    _set_arg('max_position_embeddings')
    _set_arg('tokenizer_type')
    _set_arg('padded_vocab_size')
    if checkpoint_version < 3.0:
        _set_arg('tensor_model_parallel_size',
                 'model_parallel_size')
    else:
        _set_arg('tensor_model_parallel_size', force=True)
        _set_arg('pipeline_model_parallel_size', force=True)
        _set_arg('num_layers_per_virtual_pipeline_stage')
    return args

def load_checkpoint(model, optimizer, lr_scheduler, load_arg='load', strict=True):
    """Load a model checkpoint and return the iteration.
    strict (bool): whether to strictly enforce that the keys in
        :attr:`state_dict` of the checkpoint match the names of
        parameters and buffers in model.
    """
    args = get_args()
    load_dir = getattr(args, load_arg)

    model = utils.unwrap_model(model)

    state_dict, release = _load_base_checkpoint(load_dir, False)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
434
435
436
    # set checkpoint version
    set_checkpoint_version(state_dict.get('checkpoint_version', 0))

437
438
439
440
441
442
443
    # Set iteration.
    if args.finetune or release:
        iteration = 0
    else:
        try:
            iteration = state_dict['iteration']
        except KeyError:
Neel Kant's avatar
Neel Kant committed
444
            try:  # Backward compatible with older checkpoints
445
446
447
448
449
450
451
452
                iteration = state_dict['total_iters']
            except KeyError:
                print_rank_0('A metadata file exists but unable to load '
                             'iteration from checkpoint {}, exiting'.format(
                                 checkpoint_name))
                sys.exit()

    # Check arguments.
mohammad's avatar
mohammad committed
453
454
    assert args.consumed_train_samples == 0
    assert args.consumed_valid_samples == 0
455
456
457
    if 'args' in state_dict:
        checkpoint_args = state_dict['args']
        check_checkpoint_args(checkpoint_args)
458
459
        args.consumed_train_samples = getattr(checkpoint_args,
                                              'consumed_train_samples', 0)
mohammad's avatar
mohammad committed
460
        update_num_microbatches(consumed_samples=args.consumed_train_samples)
461
462
        args.consumed_valid_samples = getattr(checkpoint_args,
                                              'consumed_valid_samples', 0)
463
464
465
466
    else:
        print_rank_0('could not find arguments in the checkpoint ...')

    # Model.
467
468
469
470
471
472
    if len(model) == 1:
        model[0].load_state_dict(state_dict['model'], strict=strict)
    else:
        for i in range(len(model)):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
            model[i].load_state_dict(state_dict['model%d' % i], strict=strict)
473

Mostofa Patwary's avatar
Mostofa Patwary committed
474
475
476
477
    # Fix up query/key/value matrix ordering if needed
    checkpoint_version = get_checkpoint_version()
    print_rank_0(f' checkpoint version {checkpoint_version}')
    fix_query_key_value_ordering(model, checkpoint_version)
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

    # Optimizer.
    if not release and not args.finetune and not args.no_load_optim:
        try:
            if optimizer is not None:
                optimizer.load_state_dict(state_dict['optimizer'])
            if lr_scheduler is not None:
                lr_scheduler.load_state_dict(state_dict['lr_scheduler'])
        except KeyError:
            print_rank_0('Unable to load optimizer from checkpoint {}. '
                         'Specify --no-load-optim or --finetune to prevent '
                         'attempting to load the optimizer state, '
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

    # rng states.
    if not release and not args.finetune and not args.no_load_rng:
        try:
            random.setstate(state_dict['random_rng_state'])
            np.random.set_state(state_dict['np_rng_state'])
            torch.set_rng_state(state_dict['torch_rng_state'])
            torch.cuda.set_rng_state(state_dict['cuda_rng_state'])
500
501
502
            # Check for empty states array
            if not state_dict['rng_tracker_states']:
                raise KeyError
503
504
505
            mpu.get_cuda_rng_tracker().set_states(
                state_dict['rng_tracker_states'])
        except KeyError:
506
            print_rank_0('Unable to load rng state from checkpoint {}. '
507
                         'Specify --no-load-rng or --finetune to prevent '
508
                         'attempting to load the rng state, '
509
510
511
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

Jared Casper's avatar
Jared Casper committed
512
513
514
515
516
517
    # Some utilities want to load a checkpoint without distributed being initialized
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0(f'  successfully loaded checkpoint from {args.load} '
                 f'at iteration {iteration}')
518
519

    return iteration
Neel Kant's avatar
Neel Kant committed
520
521


522
523
524
def load_biencoder_checkpoint(model, only_query_model=False,
        only_context_model=False, custom_load_path=None):
    """
525
    selectively load retrieval models for indexing/retrieving
526
527
    from saved checkpoints
    """
Neel Kant's avatar
Neel Kant committed
528
529
530

    args = get_args()

531
    model = utils.unwrap_model(model)
Neel Kant's avatar
Neel Kant committed
532

533
    load_path = custom_load_path if custom_load_path is not None else args.load
Neel Kant's avatar
Neel Kant committed
534
535
536
537
538
539
540
541
542
543
544

    tracker_filename = get_checkpoint_tracker_filename(load_path)
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    checkpoint_name = get_checkpoint_name(load_path, iteration, False)
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
545
    ret_state_dict = state_dict['model']
Neel Kant's avatar
Neel Kant committed
546
547

    if only_query_model:
548
        ret_state_dict.pop('context_model')
Mostofa Patwary's avatar
Mostofa Patwary committed
549
    if only_context_model:
550
        ret_state_dict.pop('query_model')
Neel Kant's avatar
Neel Kant committed
551

552
553
    assert len(model) == 1
    model[0].load_state_dict(ret_state_dict)
Neel Kant's avatar
Neel Kant committed
554
555
556
557
558
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

Neel Kant's avatar
Neel Kant committed
559
    return model